
Seeing is Believing: A Client-Centric Specification of Database
Isolation

Natacha Crooks
The University of Texas at Austin and Cornell University

Youer Pu
Cornell University

Lorenzo Alvisi
The University of Texas at Austin and Cornell University

Allen Clement
Google, Inc.

ABSTRACT
This paper introduces the first state-based formalization of
isolation guarantees. Our approach is premised on a simple
observation: applications view storage systems as black-boxes
that transition through a series of states, a subset of which are
observed by applications. Defining isolation guarantees in terms
of these states frees definitions from implementation-specific
assumptions. It makes immediately clear what anomalies, if any,
applications can expect to observe, thus bridging the gap that
exists today between how isolation guarantees are defined and
how they are perceived. The clarity that results from definitions
based on client-observable states brings forth several benefits.
First, it allows us to easily compare the guarantees of distinct,
but semantically close, isolation guarantees. We find that several
well-known guarantees, previously thought to be distinct, are in
fact equivalent, and that many previously incomparable flavors of
snapshot isolation can be organized in a clean hierarchy. Second,
freeing definitions from implementation-specific artefacts can
suggest more efficient implementations of the same isolation
guarantee. We show how a client-centric implementation of
parallel snapshot isolation can be more resilient to slowdown
cascades, a common phenomenon in large-scale datacenters.

ACM Reference format:
Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017. See-
ing is Believing: A Client-Centric Specification of Database Isolation. In
Proceedings of PODC ’17, Washington, DC, USA, July 25-27, 2017, 30 pages.
http://dx.doi.org/10.1145/3087801.3087802

1 INTRODUCTION
Large-scale applications such as Facebook [1], or Twitter [56] of-
fload the managing of data at scale to replicated and/or distributed
systems. These systems, which often span multiple regions or
continents, must sustain high-throughput, guarantee low-latency,
and remain available across failures. To meet these demands, com-
mercial databases or distributed storage systems like MySQL [45],
Oracle [46], or SQL Server [42] often give up serializability [47]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PODC ’17, July 25-27, 2017, Washington, DC, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4992-5/17/07. . . $15.00
http://dx.doi.org/10.1145/3087801.3087802

(the gold-standard correctness criterion: an interleaved execution
of transactions must be equivalent to a serial schedule) and
instead privilege weaker but more scalable correctness crite-
ria [2, 15, 34, 45, 49, 50, 53, 61] (referred to as weak isolation) such
as snapshot isolation [15] or read committed [15]. In fact, to the
best of our knowledge, almost all SQL databases use read commit-
ted as their default isolation level [39, 42, 45, 46, 50, 51], with some
only supporting read-committed or snapshot isolation [45, 51]1.

This trend poses an additional burden on the application pro-
grammer, as these weaker isolation guarantees allow for counter-
intuitive application behaviors: relaxing the ordering of operations
yields better performance, but introduces schedules and anomalies
that could not arise if transactions executed atomically and se-
quentially. These anomalies may affect application logic: consider
a bank account with a $50 balance and no overdraft allowed. If
the application runs under read-committed [15], the underlying
database may allow two transactions to concurrently withdraw
$45, incorrectly leaving the account with a negative balance [15].

To mitigate this increased programming complexity, many com-
mercial databases and distributed storage systems [14, 28, 29, 39–
41, 45, 46, 50] interact with applications through a front-end
that gives applications the illusion of querying or writing to a
logically centralized, failure-free node that will scale as much as
one’s wallet will allow [28, 29, 39, 40, 46]. In practice, however,
this abstraction is leaky: a careful understanding of the system
that implements a given isolation level is oftentimes necessary to
determine which anomalies the system will admit and how these
will affect application correctness.

Indeed, the guarantees provided by isolation levels are of-
ten dependent on specific and occasionally implicit system
properties—be it properties of storage (e.g., whether it is single
or multiversioned [16]); of the chosen concurrency control (e.g.,
whether it is based on locking or timestamps [15]); or other system
features (e.g., the existence of a centralized timestamp [27]).

Consider for example serializability [47]: the original ANSI SQL
specification states that guaranteeing serializability is equivalent
to preventing four phenomena [15]. This equivalence, however,
only holds for lock-based, single version databases. Such implicit
dependencies continue to have practical consequences: current
multiversioned commercial databases that prevent these four phe-
nomenas, such as Oracle 12c, claim to implement serializability,
when they in fact implement the weaker notion of snapshot iso-
lation [11, 27, 46]. As such, they accept non-serializable schedules
akin to the schedule in Figure 1(r), an anomaly commonly referred
to as write skew [15]. In contrast, a majority reject the (serializable)
1As of June 2017

http://dx.doi.org/10.1145/3087801.3087802
http://dx.doi.org/10.1145/3087801.3087802

T1 T2 T1 T2

No

Yes

No

No

No

Yes

No

No

Yes

Yes

No

No

Conflict Serializability (S)

Multiversion Serializability (MS)

Anomaly Serializable (AS)

Oracle 12c (O)

MySQL Community Edition (M)

Rococo (R)

Accepts AcceptsModel

Execution l Execution r

Start

Ti
m
e

Start

w(x,x1)

Commit
Commit

w(y,y1)

w(x,x2)

w(y,y2)

r(y,y0)

w(y,y1)

r(x,x0)

w(x,x2)

Commit

Commit

Start

Start

Figure 1: Serializability. Abbreviations refer to: S[47], MS[17],
AS[15] O[46], M[45], R[43].

schedule of Figure 1(l) because, for performance reasons, these
systems choose not reorder writes.

We submit that the root of this complexity is a fundamental
semantic gap between how application programmers experience
isolation guarantees and how they are currently formally defined.
From a programmer’s perspective, isolation guarantees are
contracts between the storage systems and its clients, specifying
the set of behaviors that clients can expect to observe—i.e., the set
of admissible values that each read is allowed to return. When it
comes to formally defining these guarantees, however, the current
practice is to focus, rather than on the values that the clients can
observe, on the mechanisms that can produce those values—i.e.,
histories capturing the relative ordering of low-level read and
write operations.

Expressing isolation at such a low level of abstraction has
significant drawbacks. First, it requires application programmers
to reason about the ordering of operations that they cannot
directly observe. Second, it makes it easy, as we have seen, to
inadvertently contaminate what should be system-independent
guarantees with system-specific assumptions. Third, by relying
on operations that are only meaningful within one of the layers
in the system’s stack, it makes it hard to reason end-to-end about
the system’s guarantees.

To address these issues, we propose a new model that, for the
first time, expresses isolation guarantees exclusively as properties
of states that applications can observe, without relying on tradi-
tional notions—such as dependency graphs, histories, or version
orders— that are instead invisible to applications. This new foun-
dation comes at no cost in terms of generality or expressiveness:
we offer below state-based and client-centric definitions of most
modern isolation definitions, and prove that they are equivalent
to their existing counterparts. It does, however, result in greater
clarity, which yields significant benefits.

First, this model makes clear to developers what anomalies, if
any, their applications can expect to observe, thus bridging the
semantic gap between how isolation is experienced and how it is
formalized. For example, we show (§5.1) how a state-based and
client-centric definition brings immediately into focus the root
cause of the write-skew anomaly, which distinguishes snapshot
isolation from serializability.

Second, by removing the distorting effects of implementation
artefacts, our approach makes it easy to compare the guarantees of
distinct, but semantically close, isolation guarantees. The results
are sometimes surprising. We prove (§5.2) that several well-known
flavors of isolation in fact provide the same guarantees: parallel

snapshot isolation (PSI) [20, 53] is equivalent to lazy consistency
(PL-2+) [2, 3]; similarly, generalized snapshot isolation (GSI) [48]
is actually equivalent to ANSI snapshot isolation (ANSI SI) [15],
though GSI was proposed as a more scalable alternative to ANSI SI.
Likewise, we also show that the lesser known strong session SI [24]
and prefix-consistent SI [48] are also equivalent. Ultimately, the
insights offered by state-based definitions enable us to organize
in a clean hierarchy (§5.2) what used to be incomparable flavors
of snapshot isolation [2, 9, 15, 24, 37, 48, 53].

Finally, by focusing on how clients perceive a given isolation
guarantee, rather than on the mechanisms currently used to
implement it, a state-based formalization can lead to a fresh,
end-to-end perspective on how that guarantee should be imple-
mented. Specifically, a state-based definition of parallel snapshot
isolation (PSI) makes clear that the requirement of totally ordering
transactions at each datacenter, which is baked into its current
definition [53], is only an implementation artefact. Removing it
offers the opportunity of an alternative implementation of PSI
that makes it resilient to slowdown cascades [37], a common failure
scenario in large-scale datacenters that has inhibited the adoption
of stronger isolation models in industry [5].

After quickly reviewing in Section 2 the current approach to
formalizing isolation guarantees, we introduce our state-based
model in Section 3, and use it in Section 4 to define several
isolation guarantees. We highlight the benefits of our approach in
Section 5, summarize related work in Section 6 before outlining
its limitations and concluding in Section 7.

2 BACKGROUND
Isolation guarantees have been formalized in many different ways:
initial specifications of serializability [47] define correctness as a
function of schedule equivalence, while weaker isolation guaran-
tees have been defined using implementation-oriented operational
specifications [13, 15, 53] or by relating the order in which trans-
actions commit with the values that they observe [20, 21, 52]. The
most prevalent approach, however, has been to formulate isolation
guarantees as dependency graphs, with edges denoting conflicts
between transactions: this method was introduced by Bernstein
et al. to formalize serializability for both single-version [16] and
multiversioned databases [17], and subsequently refined by Adya
to specify weak isolation guarantees [2]. Adya’s specification
has since been adopted as the de-facto language for specifying
isolation [25, 37, 54, 58]. We select Adya’s model as a baseline and
prove our definitions equivalent to his in §4.

Adya’s formalism We summarize below some of the key
definitions and results from Adya’s treatment of isolation [2]; a
more complete description can be found in Appendix A.

Adya’s model is expressed in terms of histories, which consist
of two parts: a partial order of events that reflect the operations of
a set of transactions, and a version order that imposes a total order
on committed object versions. Every history is associated with
a directed serialization graph DSG(H) [17], whose nodes consist
of committed transactions and whose edges mark the conflicts
(read-write, write-write, or write-read) that occur between them.
For specific isolation levels, Adya further augments the model
with logical start and commit timestamps for transactions, leading

x: x0
y: y0
z: z0

x: x1
y: y0
z: z0

x: x1
y: y1
z: z0

x: x1
y: y2
z: z1

Read States of r3(z,z0)

Execution e
s0 s1 s3

Read States of r2(y,y1)

Ta Tc Td

sfr2 = s0

sfr3= slr3 = s2
w1(x,x1)

r2(y,y1) r3(z,z0)

w2(y,y1)

w3(y,y2) w4(z,z1)

r4(x,x0) r5(z,z1)

Ta

Tb

Tc

Td

Te

Transactions Ƭ slr2 = s2
Complete

State

Figure 2: Read States and execution.

to start-ordered serialization graphs (SSG (H)) that add start-
dependency edges to the nodes and edges of the corresponding
DSG(H) (two transactions T ,T ′ are start-ordered if the commit
timestamp of one precedes the start timestamp of the other).

An execution satisfies a given isolation level if it disallows
aborted reads, intermediate reads, and circularity. The first two
conditions prevent a transaction T1 from reading, respectively, (i)
values produced by an aborted transaction T2 and (ii) a version
of an object x written by a transaction T2 that T2 subsequently
overwrites. The third condition is more complex. Disallowing
circularity prevents cycles in the serialization graph; the specific
edges that compose the cycle, however, are dependent on the
particular isolation level: read-uncommitted disallows cycles
consisting only of write-write edges in the DSG(H) (referred to
by Adya as phenomenon G0)2, while all remaining ANSI SQL iso-
lation levels disallow cycles consisting of write-write/write-read
edges (phenomenon G1). Serializability also disallows cycles that
include read-write edges (G2). In contrast, snapshot isolation dis-
allows write-write/write-read edges without corresponding start
edges (G-SI(a)) as well as cycles containing a single read-write
edge in the SSG(H) (G-SI(b)).

Towards a new formalism Adya’s formalism, like its other
existing counterparts, specifies isolation guarantees as constraints
on the ordering of the read and write operations that the storage
system performs, and relies on low-level implementation details
like timestamps or version order. Unfortunately, applications
cannot directly observe this ordering: to them, the storage system
is a black box. All they can observe are the values returned
by the read operations they issue: they experience the storage
system as if it were going through a sequence of atomic state
transitions, of which they observe a subset. To make it easier for
applications to reason about different levels of isolation, we adopt
the viewpoint of the applications that must ultimately use their
guarantees and introduce a new formalization of isolation based
on application-observable states.

3 A STATE-BASED MODEL
To the best of our knowledge, our model is the first to specify
isolation without relying on some notion of history. Instead, it
associates with each transaction the set of candidate states (called
read states) from which the transaction may have retrieved the
values it read during its execution. Read states perform a role
similar to Kripke structures [35]: they inform the application
of the set of possible worlds (i.e., states) consistent with what a
transaction observed during its execution.

Intuitively, a storage system guarantees a specific isolation
level I if it can produce an execution (a sequence of atomic state
2We will use Adya’s shorthand for this and other phenomena in §4, when we prove
that our new state-based definitions of isolation guarantees are equivalent to his.

transitions) that satisfies two conditions. First, the execution must
be consistent with the values observed by each transaction T ; in
our model, this requirement is expressed by associating every
transactionT with a set of read states, representing the states that
the storage could have been in when the application executed T ’s
operations. Second, the execution must be valid, in that it must
satisfy the constraints imposed by I ; I effectively narrows down
which transactions’ read states can be used to build an acceptable
execution. If no read state proves suitable for some transaction,
then I does not hold.

More formally, we define a storage system S with respect to a
set K of keys and V of values; a system state s is a unique map-
ping from keys to values produced by writes from aborted or com-
mitted transactions. For simplicity, we assume that each value is
uniquely identifiable, as is common practice both in existing for-
malisms [2, 17] and in practical systems (ETags in Azure [40] and
S3 [7], timestamps in Cassandra [8]). There can thus be no ambigu-
ity, when reading an object, as to which transaction wrote its con-
tent. In the initial system state, all keys have value ⊥; later states
similarly include every key, possibly mapped to ⊥. As is common
in database systems, we assume that applications modify the stor-
age system’s state using transactions. A transaction T is a tuple
(ΣT ,

to−−→), where ΣT is the set of operations in T , and
to−−→ is a total

order on ΣT . Operations can be either reads or writes. Read oper-
ations r (k,v) retrieve value v by reading key k; write operations
w (k,v) update k to its new value v . The read set of T comprises
the keys read by T : RT = {k |r (k,v) ∈ΣT }. Similarly, the write set of
T comprises the keys that T updates:WT = {k |w (k,v) ∈ ΣT }. For
simplicity of exposition, we assume that a transaction only writes
a key once. Finally, we assume the existence of a time oracle O that
assigns distinct real-time start and commit timestamps (T .start
and T .commit) to every transaction T ∈ T . A transaction T1 time-
precedesT2 (we writeT1<s T2) ifT1.commit <T2.start . Applying a
transactionT to a state s transitions the system to a state s ′ that is
identical to s in every key except those written by T . Formally,

Definition 1 s
T−→ s ′ ≡

((
[(k, v) ∈ s ′ ∧ (k, v) < s] ⇒ k ∈

WT
)
∧
(
w (k,v) ∈ΣT ⇒ (k,v) ∈s ′

))
.

We refer to s as the parent state of T (denoted as sp,T) 3; to the
transaction that generated s as Ts ; and to the set of keys in which
s and s ′ differ as ∆(s,s ′). An execution e for a set of transactions

T is a totally ordered set defined by the pair (Se ,
T ∈T−−−−−→), where

Se is the set of states generated by applying, starting from the
system’s initial state, a permutation of all the transactions in T .
We write s

∗−→s ′ (respectively, s
+−→s ′) to denote a sequence of zero

(respectively, one) or more state transitions from s to s ′ in e. For
example, in Figure 2, T comprises five transactions, operating on
a state that consists of the current version of keys x , y, and z.

Note that while e identifies the state transitions produced by
each transactionT ∈T , it does not specify from which states in Se
each operation inT reads. In particular, reading a key in replicated
distributed systems will not necessarily return the value produced
by the latest write to that key, as writes may become visible in
different orders at different replicas. In general, multiple states in
3Henceforth, we will drop the subscripted T unless there is ambiguity.

Se may be compatible with the value returned by any given op-
eration. We call this subset the operation’s read states. To prevent
operations from reading from the future, we restrict the valid read
states for the operations inT to be no later than sp . Further, once an
operation in T writes v to k , we require all subsequent operations
inT that read k to return v [2]: in this case, their set of read states
by convention includes all states in Se up to and including sp .

Definition 2 Given an execution e for a set of transactions T , let
T ∈ T and let sp denote T ’s parent state. The read states for a read
operation o=r (k,v) ∈ΣT define the set of states
RSe (o)= {s ∈Se |s

∗−→sp∧(
(k,v) ∈s∨ (∃w (k,v) ∈ΣT :w (k,v)

to−−→r (k,v))
)
}.

Figure 2 illustrates the notion of read states for the operations
executed by transaction Tb . Since r2 returns y1, its only possible
read state is s2, i.e., the only state containing y1. When it comes
to r3, however, z0 could have been read from any of s0, s1, or s2:
from the perspective of the client executing Tb , these read states
are indistinguishable. By convention, write operations have read
states too: for a write operation in T , they include all states in Se
up to and including T ’s parent state. It is easy to prove that the
read states of any operation o define a subsequence of contiguous
states in the total order that e defines on Se . We refer to the
first state in that sequence as sfo and to the last state as slo . For
instance, in Figure 2, sfr3 is s0 (the first state that contains z0) and
slr3 is s2 (z0 is overwritten in s3). When the predicate PREREADe (T)
holds, then such states exist for all transactions in T :

Definition 3 Let PREREADe (T)≡∀o ∈ΣT :RSe (o),∅.
Then PREREADe (T)≡∀T ∈T : PREREADe (T).

We say that a state s is complete for T in e if every operation in
T can read from s . We write:

Definition 4 COMPLETEe,T (s)≡s ∈
∩

o∈ΣT
RSe (o).

Looking again at Figure 2, s2 is a complete state for transaction
Tb , as it is in the set of candidate read states of both r2 (y,y1) ({s2})
and r3 (z, z0) ({s0, s1, s2}). A complete state is not guaranteed to
exist: no such state exists for Te , as the sole candidate read states
of r4 and r5 (respectively, s0 and s3) are distinct. As we will see in
§4, complete states are key to determining whether transactions
read from a consistent snapshot.

4 ISOLATION
Isolation guarantees specify the valid set of executions for a given
set of transactions T . We show that it is possible to formalize
these guarantees solely in terms of each transaction’s read and
commit states, without relying on histories of low-level operations
or on implementation details such as timestamps. The underlying
reason is simple: ultimately, it is through the visible states pro-
duced during an execution that the storage system can “prove"
to its users that a given isolation guarantee holds. Histories are
just the mechanism that generates those probatory states; indeed,
multiple histories can map to the same execution.

In a state-based model, isolation guarantees constrain each
transaction T ∈ T in two ways. First, they limit which states,

among those in the candidate read sets of the operations in T , are
admissible. Second, they restrict which states can serve as parent
states for T . We express these constraints by means of a commit
test: for an execution e of a set T of transactions to be valid under
a given isolation level I, each transaction T in e must satisfy the
commit test CTI (T,e) for I.
Definition 5 Given a set of transactions T and their read states, a
storage system satisfies an isolation level I iff ∃e :∀T ∈T :CTI (T,e).

Table 1 summarizes the commit tests that define the isolation
guarantees most commonly-used in research and industry: the
ANSI SQL isolation levels (serializability, read committed, read
uncommitted, and snapshot isolation) as well as parallel snapshot
isolation [20, 53], strict serializability [47], and the recently
proposed read atomic [13] isolation level. Though our state-based
definitions make no reference to histories, we prove that they
are equivalent to those in Adya’s classic treatment. As the proofs
follow a similar structure, we provide an informal proof sketch
only for serializability and snapshot isolation, deferring a more
complete and formal treatment to Appendices A, B and E.

Serializability Serializability requires the values observed
by the operations in each transactionT to be consistent with those
that would have been observed in a sequential execution. The
commit test enforces this requirement through two complemen-
tary conditions on observable states. First, all of T ’s operations
must read from the same state s (i.e., s must be a complete state
forT). Second, s must be the parent state of T , i.e., the state that T
transitions from. These two conditions suffice to guarantee that T
will observe the effects of all transactions that committed before
it. This definition is equivalent to Adya’s cycle-based definition.
Specifically, we prove that (a more formal proof can be found in
Appendix A.2):
Theorem 1 ∃e :∀T ∈T :CTSER (T,e)≡¬G1∧¬G2.

Proof sketch. (∃e : ∀T ∈ T : CTSER (T,e) ⇒ ¬G1∧¬G2). By
definition, e is a totally-ordered execution where the parent state
of every transaction T is a complete state for T . Considering the
order of transactions in e , we make three observations. First, all
write-write edges in the DSG point in the same direction, as they
map to state transitions in the totally-ordered execution e . Second,
all write-read edges point in the same direction as write-write
edges: given any transactionT , since all operations inT read from
T ’s parent state, all write-read edges that end in T must originate
from a transaction that precedes T in e’s total order. Finally,
all read-write dependency edges point in the same direction as
write-write and write-read edges: as all read operations in T
read from T ’s parent state, the value they return cannot be later
overwritten by a transaction T ′ ordered before T in e . Since all
edges point in the same direction, no cycle can form in the DSG.

(∃e :∀T ∈T :CTSER (T,e)⇐¬G1∧¬G2). If no cycle exists in the
DSG, we can construct an execution e ′ such that the parent state sp
of each transaction T is a complete state for T . We construct e ′ by
topologically sorting the DSG (it is acyclic) and by applying every
transaction in the resulting order. Thus, if a transactionT ′ writes a
value thatT subsequently reads (write-read edge), the state associ-
ated withT ′ is guaranteed to precedeT ’s state in the execution e ′.

Serializability (CTSER (T,e)) COMPLETEe,T (sp)
Snapshot Isolation (CTSI (T,e)) ∃s ∈Se .COMPLETEe,T (s)∧NO-CONFT (s)
Read Committed (CTRC (T,e)) PREREADe (T)

Read Uncommitted (CTRU (T,e)) True

Parallel Snapshot Isolation (CTPSI (e,T)) PREREADe (T)∧∀T ′ ▷T :∀o ∈ΣT :o .k ∈WT ′⇒sT ′
∗−→slo

Strict Serializability (CTSSER (e,T)) COMPLETEe,T (sp)∧∀T ′ ∈ T :T ′<s T⇒sT ′
∗−→sT

Read Atomic (CTRA (e,T)) ∀r1 (k1,v1),r2 (k2,v2) ∈ΣT ∧k2 ∈WTsfr1
⇒sfr1

∗−→sfr2

Table 1: Commit Tests

Moreover, as there are no backpointing read-write edges, no other
transaction in e ′ will update an object read byT between the state
produced by T ′ and sp . sp is therefore a valid read state for every
operation in T and, consequently, a complete state for T . □

Snapshot isolation (SI) Like serializability, SI prevents
transactions T from seeing the effects of concurrently running
transactions. The commit test enforces this requirement by having
all operations inT read from the same state s , produced by a trans-
action that precedes T in the execution e . However, SI no longer
insists on that state s being T ’s parent state sp : other transactions,
whose operations T will not observe, may commit in between s
and sp . The commit test only forbids T from modifying any of the
keys that changed value as the system’s state progressed from s
to sp . Denoting the set of keys in which s and s ′ differ as ∆(s,s ′),
we express this as NO-CONFT (s) ≡ ∆(s,sp)∩WT = ∅. We prove that
this definition is equivalent to Adya’s (a more formal proof can be
found Appendix A.3):
Theorem 2 ∃e :∀T ∈T :CTSI (T,e)≡¬G1∧¬G-SI.

Proof sketch. (∃e : ∀T ∈ T : CTSI (T,e)⇐ ¬G1∧¬G-SI). We
construct a valid execution for any history satisfying ¬G1∧¬G-SI
using the time-precedes partial order introduced by Adya. First,
we topologically sort transactions according to their commit
point, and apply them in the resulting order to generate an
execution e . Next, we prove that every transaction T satisfies
the commit test: we first show that the state created by the last
transactionTr s on whichT start-depends is a complete state. AsT
start-depends on Tr s , it must also start-depend on all transactions
that precede Tr s , since, by construction, these transactions have
a commit timestamp smaller than Tr s . Moreover, as Tr s is the last
transaction that T starts-depend on, all subsequent transactions
will either be concurrent with T , or start-depend on T . Adya’s
(¬G-SI) requirement (formally, that there cannot be a write-read
/write-write edge without also a start dependency edge and there
cannot be a cycle consisting of a single read-write edge) implies
that T can only read or overwrite a value written by a transaction
T ′ if T start-depends on T ′. Any such T ′ must either be Tr s or
precede Tr s in e . Similarly, if another transaction T ′′ overwrites
a value that T reads, T cannot start-depend on T ′′ as it would
otherwise create a cycle with a start-edge and a single read-write
edge. T ′′ is therefore ordered after Tr s in e . We conclude that sTr s
necessarily contains all the values that T reads: it is a complete
state. Next, we show that ∆(sTr s , sT) = ∅. By construction, T
cannot start-depend on any transaction T ′ that follows Tr s in the
execution but precedes T . By G-SI, there cannot be a write-write

dependency edge fromT ′ toT , and their write-sets must therefore
be distinct. Consequently: ∆(sTr s ,sT)=∅.

(∃e :∀T ∈ T :CTSI (T,e)⇒¬G1∧¬G-SI). We show that the se-
rialization graph SSG (H) corresponding to e does not exhibit phe-
nomena G1 or G-SI. Every transaction in e reads from some previ-
ous state and commits in the total order defined by e . It follows that
all write-write and write-read edges follow the total order intro-
duced by e: there can be no cycle consisting of write-write/write-
read dependencies. ¬G1 is thus satisfied. To show that SSG (H)
does not exhibit G-SI, we first select the start and commit point of
each transaction. We assign commit points to transactions accord-
ing to their order in e . We assign the start point of each transaction
T to be directly after the commit point of the first transactionTr s in
e whose generated state satisfies COMPLETEe,T (s)∧ (∆(s,sp)∩WT =

∅). It follows that Tr s (and all the transactions that precede it in e)
start-precedeT . Proving ¬G-SIa is then straightforward: any trans-
actionT ′ thatT write-read/write-write depends on precedesTr s in
the execution, and consequently start-precedesT . Proving ¬G-SIb
requires a little more care. By ¬G-SIa, there necessarily exists a
corresponding start-depend edge for any write-read or write-write
edge between two transactions T and T ′: if there exists a cycle
with exactly one read-write edge in the SSG (H), there must exist
a cycle with exactly one read-write edge and only start-depend
edges in SSG (H). Assuming by contradiction that G-SIb holds and
that there exists a cycle with one read-write edge and multiple
start-depend edges (we reduce this cycle to a single start-depend
edge as start-edges are transitive). Let T read-write depend on
T ′: sT ′ is ordered after sTr s in e (otherwise sTr s cannot be a valid
read state for T). However, as previously mentioned, T only has
start-depend edges with transactions that precede Tr s (included)
in e . T ′ thus does not start-depend on T , a contradiction. □

Unlike Adya’s, however, the correctness of our state-based def-
inition does not rely on using start and commit timestamps. This
is a crucial difference. Including these low-level attributes in the
definition has encouraged the development of variations of SI that
differ in their use of timestamps, whose fundamental guarantees
are, as a result, difficult to compare. In §5.2 we show that, when
expressed in terms of application-observable states, several of
these variations, thought to be distinct, are actually equivalent!4

Read committed Read committed allowsT to see the effects
of concurrent transactions, as long as they are committed. The
commit test therefore no longer constrains all operations in T to
read from the same state; instead, it only requires each of them to

4As proofs follow a similar structure, we defer all subsequent proofs to Appendices

read from a state that precedes T in the execution e . We prove in
Appendix A.4 that:
Theorem 3 ∃e :∀T ∈T :CTRC (T,e)≡¬G1.

Read uncommitted Read uncommitted allows T to see the
effects of concurrent transactions, whether they have committed
or not. The commit test reflects this permissiveness, to the point
of allowing transactions to read arbitrary values. Still, we prove in
Appendix A.5 that:
Theorem 4 ∃e :∀T ∈T :CTRU (T,e)≡¬G0.

The reason behind the laxity of the state-based definition is
that isolation models in databases consider only committed trans-
actions and are therefore unable to distinguish values produced by
aborted transactions from those produced by future transactions.
This distinction, however, is not lost in environments, such as
transactional memory, where correctness depends on providing
guarantees such as opacity [30] for all live transactions. We
discuss this further in Section 7.

Strict Serializability Strict serializability guarantees that the
real-time order of transactions will be reflected in the final history
or execution. It can be expressed by adding the following condition
to the serializability commit test: ∀T ′ ∈T :T ′<s T⇒sT ′

∗−→sT .

Parallel Snapshot Isolation Parallel snapshot isolation
(PSI) was recently proposed by Sovran et al [53] to address SI’s
scalability issues in geo-replicated settings. Snapshot isolation
requires transactions to read from a snapshot (a complete state in
our parlance) that reflects a single commit ordering of transactions.
The coordination implied by this requirement is expensive to carry
out in a geo-replicated system and must be enforced even when
transactions do not conflict. PSI aims to offer a scalable alternative
by allowing distinct geo-replicated sites to commit transactions
in different orders. The specification of PSI is given as an abstract
specification code that an implementation must emulate. Specifi-
cally, a PSI execution must enforce three properties. First, site snap-
shot read: all operations read the most recent committed version at
the transaction’s origin site as of the time when the transaction be-
gan (P1). Second, no write-write conflicts: the write sets of each pair
of somewhere-concurrent committed transactionsmust be disjoint
(two transactions are somewhere-concurrent if they are concur-
rent on site(T1) or site(T2)) (P2). And finally, commit causality across
sites: if a transaction T1 commits at a site A before a transaction
T2 starts at site A, then T1 cannot commit after T2 at any site.

Our first step towards a state-based definition of PSI is to
populate, using solely client-observable states, the precede-
set of each transaction T , i.e., the set of transactions after
which T must be ordered. A transaction T ′ is in T ’s precede-
set if (i) T reads a value that T ′ wrote; or (ii) T writes
an object modified by T ′ and the execution orders T ′ be-
fore T ; or (iii) T ′ precedes T ′′ and T ′′ precedes T . Formally:
D-PRECe (T̂) = {T |∃o ∈ ΣT̂ :T =Tsfo } ∪ {T |sT

+−→ sT̂ ∧WT̂ ∩WT , ∅}.
We writeTi ▶Tj ifTi ∈D-PRECe (Tj) andTi ▷Tj ifTi transitively pre-
cedes Tj . PSI guarantees that the state observed by a transaction
T ’s operation includes the effects of all transactions that precede it.
We can express this requirement in PSI’s commit test as follows:

Withdraw(acc,amnt)
s = READ(S) ; c = READ(C)

If (s+c>=amt)
If (acc = s) WRITE(S,s-amnt)

else WRITE(C,c-amnt)
else WRITE(Log,Fail) ; abort

C=30
S=30

C=-10
S=30 Fail

C=30
S=30

C=-10
S=30

C=-10
S=-10
OK

C=-10,S=30C=30,S=30

T1 T2

T1 T2

C=30,S=30

s1 s2 s3

s1 s2 s3

a)

b)

State Transition Read State

C=-10,S=30

C=30,S=30

Figure 3: Simple Banking Application. Alice and Bob share
checking and savings accounts. Withdrawals are allowed as
long as the sum of both account is greater than zero.

Definition 6 CTPSI (T,e) ≡ PREREADe (T) ∧∀T ′ ▷T : ∀o ∈ ΣT : o.k ∈
WT ′⇒sT ′

∗−→slo .
This client-centric definition of PSI makes immediately clear

that the state which operations observe is not necessarily a
complete state, and hence may not correspond to a snapshot of
the database at a specific time. We prove the following theorem in
Appendix E.3:
Theorem 5 ∃e :∀T ∈T :CTPSI (T,e)≡PSI.

Read Atomic Read atomic [13], like PSI, aims to be a
scalable alternative to snapshot isolation. It preserves atomic
visibility (transactions observe either all or none of a committed
transaction’s effects) but does not preclude write-write conflicts
nor guarantees that transactions will read from a causally consis-
tent prefix of the execution. These weaker guarantees allow for
efficient implementations and nonetheless ensure synchronization
independence: one client’s transactions cannot cause another
client’s transactions to fail or stall. Read atomic can be expressed
in our state-based model as follows:
Definition 7 CTRA (T,e) ≡ ∀r1 (k1, v1), r2 (k2, v2) ∈ ΣT ∧ k2 ∈
WTsfr1

⇒sfr1
∗−→sfr2 .

Intuitively, if an operation o1 observes the writes of a transac-
tion Ti ’s, all subsequent operations that read a key included in
Ti ’s write set must read from a state that includes Ti ’s effects. We
prove the following theorem in Appendix B:
Theorem 6 ∃e :∀T ∈T :CTRA (T,e)≡RA.

5 BENEFITS OF A STATE-BASED APPROACH
Specifying isolation using client-observable states rather than
histories is not only equally expressive, but brings forth several
benefits: it gives application developers a clearer intuition for
the implications of choosing a given isolation level (§5.1), brings
additional clarity to how different isolation levels relate (§5.2), and
opens up opportunities for performance improvements in existing
implementations (§5.3).

5.1 Minimizing the intuition gap
A state-based model makes it easier for application programmers
to understand the anomalies allowed by weak isolation levels, as

☰

 ⊂

☰

 ⊂
 ⊂

 ⊂

☰
Figure 4: Snapshot-based isolation guarantees hierarchy.
(ANSI SI [15, 24], Adya SI [2], Strong SI [24], GSI [48], PSI [53],
Strong Session SI [24], PL-2+ [3], PC-SI [24]).

it precisely captures the root cause of these anomalies. Consider,
for example, snapshot isolation: it allows for a non-serializable be-
havior called write-skew (see §1), illustrated in the simple banking
example of Figure 3. Alice and Bob share checking (C) and savings
(S) accounts, each holding $30, the sum of which should never
be negative. Before performing a withdrawal, they check that the
total funds in their accounts allow for it. They then withdraw
the amount from the specified account, using the other account
to cover any overdraft. Suppose Alice and Bob try concurrently
to withdraw $40 from, respectively, their checking and savings
account, and issue transactionsT1 andT2. Figure 3(a) shows an ex-
ecution under serializability. Because transactions read from their
parent state (see Table 1), T2 observes T1’s withdrawal and, since
the balance of Bob’s accounts is below $40, aborts. In contrast, con-
sider the execution under snapshot isolation in Figure 3(b). As it is
is legal for bothT1 andT2 to read from a complete but stale state s1,
Alice and Bob can both find that the combined funds in the two ac-
counts exceed $40, and, unaware of each other, proceed to generate
an execution whose final state s3 is illegal. The state-based defini-
tions of snapshot isolation and serializability make both the causes
and the danger of write-skew immediately clear: to satisfy snap-
shot isolation, it suffices that both transactions read from the same
complete state s1, even though this behavior is clearly not serial-
izable, as s1 is not the parent state of T2. The link is, arguably, less
obvious with the history-based definition of snapshot isolation,
which requires “disallowing all cycles consisting of write-write
and write-read dependencies and a single anti-dependency”.

5.2 Removing implementation artefacts
By cleanly separating high-level properties from low-level im-
plementation details, a state-based model makes the plethora of
isolation guarantees introduced in recent years easier to compare.
We leverage this newfound clarity below to systematize snapshot-
based guarantees, including ANSI SI [15], Adya SI [2], Weak
SI [24], Strong SI [24], generalized snapshot isolation (GSI) [48],
parallel snapshot isolation (PSI) [53], Strong Session SI [24], PL-2+
(Lazy Consistency) [3], Prefix-Consistent SI (PC-SI) [24]. We find
that several of these isolation guarantees, previously thought to
be distinct, are in fact equivalent from a client’s perspective, and
establish a clean hierarchy that encompasses them.

Snapshot-based isolation guarantees, broadly speaking, are
defined as follows. A transaction is assigned both a start and a
commit timestamp; the first determines the database snapshot

from which the transaction can read (it includes all transactions
with a smaller commit timestamp), while the second maintains
the “first-committer-wins” rule: no conflicting transactions should
write to the same objects. The details of these protocols, however,
differ. Each strikes a different performance trade-off in how it
assigns timestamps and computes snapshots that influences its
high-level guarantee in ways that can only be understood by
applications with in-depth knowledge of the internals of the
systems. As a result, it is hard for application developers and
researchers alike to compare and contrast them.

In contrast, formulating isolation in terms of client-observable
states forces definitions that specify guarantees according to how
they are perceived by clients. It then becomes straightforward to
understand what guarantees are provided, and to observe their
differences and similarities. Specifically, it clearly exposes the
three dimensions along which snapshot-based guarantees differ:
(i) time (whether timestamps are logical [2, 37, 53] or based on
real-time [15, 24, 48]); (ii) snapshot recency (whether the computed
snapshot contains all transactions that committed before the
transaction start time) [2, 24] or can be stale [9, 24, 48, 53]; and
state completeness (in our parlance, whether snapshots must
correspond to a complete state [2, 15, 24, 48] or whether a causally
consistent [4] snapshot suffices [3, 9, 37, 53]).

Grouping isolation guarantees in this way highlights a clean
hierarchy between these definitions, and suggests that many of
the newly proposed isolation levels proposed are in fact equivalent
to prior guarantees. We summarize the different commit tests in
Table 2 and the resulting hierarchy in Figure 4. As the existence
of the hierarchy follows straightforwardly from the commit tests,
we defer the proof of its soundness to Appendix F, along with
proofs of the corresponding equivalences.

At the top of the hierarchy is Strong SI [24]. It requires that a
transactionT observe the effects of all transactions that have com-
mitted (in real-time) before T (in other words, read from the most
recent database snapshot) and obtain a commit timestamp greater
than any previously committed transaction. We express this
(Table 2, first row) by requiring that the last state in the execution
generated by a transaction that happens beforeT in real time must
be complete (∀T ′ <s T : sT ′

∗−→ s), and that the total order defined
by the execution respects commit order (C-ORD(T ,T ′)≡T .commit <
T ′.commit). We prove that this formulation is equivalent to its
traditional implementation specification in Appendix C.4:
Theorem 7 ∃e :∀T ∈T :CTStronдSI (T,e)≡Stronд SI .

Skipping for a moment one level in the hierarchy, we consider
next ANSI SI [15]. ANSI SI weakens Strong SI’s requirement that
the snapshot from which T reads include all transactions that
precede T in real-time (including those that access objects that T
does not access). This weakening, which improves scalability by
avoiding the coordination needed to generate Strong SI’s snap-
shot, can be expressed in our state-based approach by relaxing
the requirement that the complete state be the most recent in
real-time (Table 2, third line). An attractive consequence of this
new formulation is that it clarifies the relationship between ANSI
SI and generalized snapshot isolation [48], a refinement of ANSI SI
for lazily replicated databases. We prove that these two decade-old
guarantees are actually equivalent in Appendices C.2 and D.2:

Strong SI (CTStronд SI (T,e)) C-ORD(Tsp ,T)∧∃s ∈Se :COMPLETEe,T (s)∧NO-CONFT (s)∧ (Ts <s T)∧ (∀T ′<s T :sT ′
∗−→s)

Strong Session SI/PC-SI (CTSession SI (T,e)) C-ORD(Tsp ,T)∧∃s ∈Se :COMPLETEe,T (s)∧NO-CONFT (s)∧ (Ts <s T)∧ (∀T ′ se−−→T :sT ′
∗−→s)

ANSI SI /GSI (CTANSI S I (T,e)) C-ORD(Tsp ,T)∧∃s ∈Se :COMPLETEe,T (s)∧NO-CONFT (s)∧ (Ts <s T)

Adya SI (CTSI (T,e)) ∃s ∈Se :COMPLETEe,T (s)∧NO-CONFT (s)
PSI/PL-2+ (CTPSI (T,e)) PREREADe (T)∧∀T ′ ▷T :CAUS-VIS(e,T)

Table 2: Commit tests for snapshot-based protocols

Theorem 8 ∃e :∀T ∈T :CTANSI SI (T,e)≡GSI≡ANSI SI.
This is not an isolated case: we find that the two less popular

notions of isolation that occupy the level of the hierarchy between
Strong SI and ANSI SI (Strong Session SI (SSessSI) [48] and Prefix-
Consistent SI (PC-SI) [24]) are also equivalent These guarantees
seek to prevent transaction inversions [24] (a client c1 executes a
transaction T1 followed, in real-time by T2 without T2 observing
the effects ofT1) that can arise when transactions read from a stale
snapshot—but without requiring all transactions to read from the
most recent snapshot. To this effect, they strike a balance between
ANSI SI and Strong SI: they introduce the notion of sessions and re-
quire a transactionT to read from a snapshot more recent than the
commit timestamp of all transactions that precede T in a session
(formally: a session se is a tuple (Tse ,

se−−→) where
se−−→ is a total order

over the transactions in Tse such that T
se−−→ T ′ ⇒ T <s T

′). Our
model straightforwardly captures this definition (Table 2, second
row) by requiring that the complete state fromwhich a transaction
reads follow the commit state of all transactions in a session. We
prove the following theorem in Appendices C.3 and D.3:
Theorem 9 ∃e :∀t ∈T :CTSession SI (t,e)≡SSessSI ≡PC-SI .

Though ANSI SI or Strong Session SI are both more scalable
than Strong SI, their definitions still include several red flags for
efficient large-scale implementations. First, they require a total or-
der on transactions (C-ORD(s,sp)), forcing developers to implement
expensive coordination mechanisms, even as transactions may ac-
cess different objects. Second, they limit a transactionT to reading
only from complete states that do not include transactions that
committed in real time afterT ’s start timestamp. This implementa-
tion choice often forces transactions to read further in the past than
necessary, making them more prone to write-write conflicts with
concurrent transactions. Moreover, it prevents transactions from
reading uncommitted operations, precluding efficient implementa-
tions for high-contentionworkloads [26, 60]. Adya’s reformulation
of SI [2] side-steps many of these baked-in implementation deci-
sions by removing the dependence on real-time, instead allocating
logical timestamps consistent with the transactions’ observations.
Our model can capture this distinction by simply removing the
two aforementioned clauses from the commit test (Table 2, fourth
row), allowing for maximum flexibility for how snapshot isolation
can be implemented without affecting client-side guarantees.

The lowest level of the hierarchy covers snapshot-based
isolation guarantees intended for large-scale geo-replicated
systems. When transactions may be asynchronously replicated
for performance and availability, it is challenging to require that
transactions read a database snapshot that corresponds to a single
moment in time (and hence read from a complete state) as it would
require transactions to become visible atomically across all (possi-
bly distant) datacenters. PSI [53] (introduced in §4) and PL-2+ [2, 3]

consequently weaken Adya’s SI to address these new challenges:
PSI requires that transactions read from a committed snapshot
but allows concurrent transactions to commit in a different order
at different sites, while PL-2+ disallows cycles consisting of either
write-write/write-read dependencies, or containing a single anti-
dependency edge. Unlike what these widely different low-level def-
initions suggest, taking a client-centric view of these guarantees
indicates that PSI and PL-2+ in fact weaken Adya’s snapshot iso-
lation in an identical fashion: they no longer require transactions
to read from a complete state, and instead require that operations
read from a (possibly different) state that includes the effects of all
previously observed transactions. Our model cleanly captures the
shared guarantee provided by PL-2+/PSI: that a transactionT must
observe the effects of all transactions that it is not concurrent with
(Table 2, fifth line). We write: for every transactionT ′ that a trans-
action T depends on: ∀o ∈ΣT :o.k ∈WT ′⇒sT ′

∗−→slo ≡CAUS-VIS(e,T).
From this client-centric formulation, we prove the following
theorem in Appendix E:
Theorem 10 ∃e :∀T ∈T :CTPSI (T,e)≡PSI≡PL-2+.

5.3 Identifying performance opportunities
Beyond improving clients’ understanding, defining isolation
guarantees in terms of client-observable states helps prevent
them from subjecting transactions to stronger requirements than
what these guarantees require end-to-end. Indeed, by removing
all implementation-specific details (timestamps, replicas) present
in system-centric formulations, our model gives full flexibility
to how these guarantees can be implemented. We illustrate this
danger, and highlight the benefits of our approach using the
specific example of PSI/PL-2+.

In its original specification, the definition of parallel snapshot
isolation [53] requires datacenters to enforce snapshot isolation,
even as it globally only offers (as we prove in Theorem 10) the
guarantees of lazy consistency/PL-2+. This baked-in implemen-
tation decision makes the very definition of PSI unsuitable for
large-scale partitioned datacenters as it makes the definition
(and therefore any system that implements it) susceptible to
slowdown cascades. Slowdown cascades (common in large-scale
systems [5]) arise when a slow or failed node/partition delays
operations that do not access that node itself, and have been
identified by industry [5] as the primary barrier to adoption of
stronger consistency guarantees. By enforcing SI on every site,
the history-based definition of PSI creates a total commit order
across all transactions within a datacenter, even as they may
access different keys. Transactions thus become dependent on all
previously committed transactions on that datacenter, and cannot
be replicated to other sites until all these transactions have been
applied. If a single partition is slow, all transactions that artificially

0 50 10
0

15
0

20
0

25
0

30
0

Time (s)

103

104

105

106

D
ep

en
de

nc
ie

s

PSI

Client-Centric

Figure 5: Number of dependencies per transaction as a
function of time. TARDiS [23] runs with three replicas on a
shared local cluster (2.67GHz Intel Xeon CPU X5650, 48GB
memory and 2Gbps network).

depend on transactions on that node will be unnecessarily delayed,
creating a cascading slowdown.

An approach based on client-observable states, in contrast,
makes no such assumptions: the depend-set of a transaction is
computed using client observations and read states only, and thus
consists exclusively of transactions that the application itself can
perceive as ordered with respect to one another. Every dependency
created stems from an actual observation: the number of dependen-
cies that a client-centric definition creates is consequently minimal
(and the fewer dependencies a system creates, the less likely it
will be subject to slowdown cascades). To illustrate this potential
benefit, we simulated the number of transactional dependencies
created at each datacenter by the traditional definition of PSI as
compared to the “true” dependencies generated by the proposed
client-centric definition, using an asynchronously replicated trans-
actional key-value store, TARDiS [23]. On a workload consisting
of read-write transactions (three reads, three writes) accessing
data uniformly over 10,000 objects (Figure 5), we found that a
client-centric approach decreased dependencies, per transaction,
by two orders of magnitude (175×), a reduction that can yield
significant dividends in terms of scalability and robustness.

State-based specifications of isolation guarantees can also
benefit performance, as they abstract away the details of specific
mechanisms used to enforce isolation, and instead focus on how
different flavors of isolation constrain permissible read states. A
case-in-point is Ardekani et al.’s non-monotonic snapshot isola-
tion (NMSI) [9]: NMSI logically moves snapshots forward in time
to minimize the risk of seeing stale data (and consequent aborts
due to write-write conflicts), without violating any consistency
guarantees. This technique is premised on the observation that,
given the values read by the client, the states at the earlier and
later snapshot are indistinguishable.

6 RELATEDWORK
Most past definitions of isolation and consistency [2, 9, 15–
19, 27, 31, 47, 53, 55] refer to specific orderings of low-level
operations and to system properties that cannot be easily ob-
served or understood by applications. To better align these
definitions with what clients perceive, recent work [10, 20, 36, 57]
distinguishes between concrete executions (the nuts-and-bolts
implementations details) and abstract executions (the system
behaviour as perceived by the client). Attiya et al., for instance,
introduce the notion of observable causal consistency [10], a
refinement of causal consistency where causality can be inferred

by client observations. Likewise, Cerone et al. [20, 21] introduce
the dual notions of visibility and arbitration to define, axiomat-
ically, a large number of existing isolation levels. The simplicity
of their formulation, however, relies on restricting their model to
consider only isolation levels that guarantee atomic visibility [13],
which prevents them from expressing guarantees like read-
committed, the default isolation level of most common database
systems [39, 42, 45, 45, 46, 50, 51, 58], and the only supported level
for some [45]5. Shapiro andArdekani [52] adopt a similar approach
to identify three orthogonal dimensions (total order, visibility
and transaction composition) that they use to classify consistency
and isolation guarantees. All continue, however, to characterize
correctness by constraining the ordering of read and write oper-
ations and often let system specific details (e.g., system replicas)
leak through definitions. Our model takes their approach a step
further: it directly defines consistency and isolation in terms of the
observable states that are routinely used by developers to express
application invariants [6, 12, 23]. Finally, several practical systems
have recognized the benefits of taking a client-centric approach to
system specification and development. These systems target very
different concerns, from file I/O [44] to cloud storage [38], and
from Byzantine fault-tolerance [33] to efficient Paxos implementa-
tions [49]. In the specific context of databases and key-value stores,
in addition to Ardekani et al.’s work [9], Mehdi et al. [37] recently
proposed a client-centric implementation of causal consistency
that is both scalable and resilient to slowdown cascades (§5.3).

7 CONCLUSION
We present a new way to reason about isolation based on
application-observable states and prove it to be as expressive
as prior approaches based on histories. We present evidence
suggesting that this approach (i) maps more naturally to what
applications can observe and illuminates the anomalies allowed
by distinct isolation/consistency levels; (ii) makes it easy to
compare isolation guarantees, leading us to prove that distinct,
decade-old guarantees are in fact equivalent; and (iii) facilitates
reasoning end-to-end about isolation guarantees, enabling new
opportunities for performance optimization.

Limitations Nonetheless, our model currently has two main
limitations, which we plan to address as future work. First, it does
not constrain the behavior of ongoing transactions. It thus cannot
express consistency models, like opacity [30] or virtual world con-
sistency [32] designed to prevent STM transactions from accessing
an invalid memory location. This limitation is consistent with
the assumption, made in most isolation and consistency research,
that applications never make externally visible decisions based on
uncommitted data, so that their actions can be rolled back if the
transaction aborts. Second, our model focuses on the traditional
transactional/read/write model, predominant in database theory
and modern distributed storage systems. To support semantically
rich operations, abstract data types, and commutativity, we will
start from Weikum et al’s theory of multi-level serializability [59],
which maps higher-level operations to reads and writes.

Acknowledgements We thank Peter Bailis, Phil Bernstein,
Ittay Eyal, Idit Keidar, Fred Schneider, and Immanuel Trummer
5as of June 2017

for their valuable feedback on earlier drafts of this work. This
work was supported by the National Science Foundation under
grants CNS-1409555 and CNS-1718709, and by a Google Faculty
Research Award. Natacha Crooks was partially funded by a
Google Fellowship in Distributed Computing.

REFERENCES
[1] Facebook. http://www.facebook.com/.
[2] Adya, A. Weak Consistency: A Generalized Theory and Optimistic Implementa-

tions for Distributed Transactions. Ph.D., MIT, Cambridge, MA, USA, Mar. 1999.
Also as Technical Report MIT/LCS/TR-786.

[3] Adya, A., and Liskov, B. Lazy consistency using loosely synchronized
clocks. In Proceedings of the Sixteenth Annual ACM Symposium on Principles of
Distributed Computing (New York, NY, USA, 1997), PODC ’97, ACM, pp. 73–82.

[4] Ahamad, M., Neiger, G., Burns, J. E., Kohli, P., and Hutto, P. Causal
memory: Definitions, implementation and programming. Tech. rep., Georgia
Institute of Technology, 1994.

[5] Ajoux, P., Bronson, N., Kumar, S., Lloyd, W., and Veeraraghavan, K.
Challenges to adopting stronger consistency at scale. In Proceedings of the 15th
USENIX Conference on Hot Topics in Operating Systems (2015), HOTOS’15.

[6] Alvaro, P., Bailis, P., Conway, N., and Hellerstein, J. M. Consistency
without borders. In Proceedings of the 4th ACM Symposium on Cloud Computing
(2013), SOCC ’13, pp. 23:1–23:10.

[7] Amazon elastic compute cloud. http://aws.amazon.com/ec2/.
[8] Apache. Cassandra. http://cassandra.apache.org/.
[9] Ardekani, M. S., Sutra, P., and Shapiro, M. Non-monotonic snapshot isola-

tion: Scalable and strong consistency for geo-replicated transactional systems.
In Proceedings of the 32nd International Symposium on Reliable Distributed
Systems (2013), SRDS ’13, pp. 163–172.

[10] Attiya, H., Ellen, F., and Morrison, A. Limitations of highly-available
eventually-consistent data stores. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing (2015), PODC ’15, ACM, pp. 385–394.

[11] Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J. M., and
Stoica, I. Highly available transactions: Virtues and limitations. PVLDB 7, 3
(2013), 181–192.

[12] Bailis, P., Fekete, A., Franklin, M. J., Ghodsi, A., Hellerstein, J. M., and
Stoica, I. Feral concurrency control: An empirical investigation of modern
application integrity. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (2015), SIGMOD ’15, pp. 1327–1342.

[13] Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J. M., and Stoica, I. Scalable
atomic visibility with ramp transactions. ACM Transactions on Database
Systems 41, 3 (July 2016), 15:1–15:45.

[14] Basho. Riak. http://basho.com/products/.
[15] Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., and O’Neil, P.

A critique of ansi sql isolation levels. SIGMOD Rec. 24, 2 (May 1995), 1–10.
[16] Bernstein, P. A., and Goodman, N. Concurrency control in distributed

database systems. ACM Computing Survey 13, 2 (June 1981), 185–221.
[17] Bernstein, P. A., and Goodman, N. Multiversion concurrency control;theory

and algorithms. ACM Transactions on Database Systems 8, 4 (1983), 465–483.
[18] Bernstein, P. A., Hadzilacos, V., and Goodman, N. Concurrency control and

recovery in database systems. 1987.
[19] Brzezinski, B., Sobaniec, C., and D., W. From session causality to causal

consistency. In Proceedings of the 12th Euromicro Conference on Parallel,
Distributed and Network based Processing (2004), PDP 2004.

[20] Cerone, A., Bernardi, G., and Gotsman, A. A framework for transactional
consistency models with atomic visibility. In 26th International Conference on
Concurrency Theory, CONCUR 2015, (2015).

[21] Cerone, A., and Gotsman, A. Analysing snapshot isolation. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed Computing (2016), PODC
’16, ACM, pp. 55–64.

[22] Cerone, A., Gotsman, A., and Yang, H. Transaction Chopping for Parallel
Snapshot Isolation. DISC’15. 2015, pp. 388–404.

[23] Crooks, N., Pu, Y., Estrada, N., Gupta, T., Alvisi, L., and Clement, A. Tardis:
A branch-and-merge approach to weak consistency. In Proceedings of the 2016
International Conference on Management of Data (2016), SIGMOD ’16, ACM,
pp. 1615–1628.

[24] Daudjee, K., and Salem, K. Lazy database replication with snapshot isolation.
In Proceedings of the 32nd International Conference on Very Large Data Bases
(2006), VLDB ’06, VLDB Endowment, pp. 715–726.

[25] Escriva, R., Wong, B., and Sirer, E. G. Warp: Lightweight multi-key
transactions for key-value stores. CoRR abs/1509.07815 (2015).

[26] Faleiro, J. M., Abadi, D., and Hellerstein, J. M. High performance
transactions via early write visibility. PVLDB 10, 5 (2017), 613–624.

[27] Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., and Shasha, D. Making
snapshot isolation serializable. ACM Transactions on Database Systems 30, 2
(June 2005), 492–528.

[28] Google. Bigtable - massively scalable nosql. https://cloud.google.com/bigtable/.
[29] Google. Cloud sql - fully managed sql service. https://cloud.google.com/sql/.
[30] Guerraoui, R., and Kapalka, M. On the correctness of transactional memory.

In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (2008), PPoPP ’08, ACM, pp. 175–184.

[31] Herlihy, M. P., and Wing, J. M. Linearizability: a correctness condition for
concurrent objects. ACM Transactions Programming Language Systems 12, 3
(July 1990), 463–492.

[32] Imbs, D., and Raynal, M. Virtual world consistency: A condition for stm
systems (with a versatile protocol with invisible read operations). Theoretical
Computer Science 444 (July 2012), 113–127.

[33] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., and Wong, E. Zyzzyva:
Speculative Byzantine Fault Tolerance. ACM Transactions on Computer Systems
27, 4 (Jan. 2010), 7:1–7:39.

[34] Kraska, T., Pang, G., Franklin, M. J., Madden, S., and Fekete, A. Mdcc: multi-
data center consistency. In Proceedings of the 8th ACM European Conference on
Computer Systems (2013), EuroSys ’13, pp. 113–126.

[35] Kripke, S. A. Semantical considerations on modal logic. Acta Philosophica
Fennica 16, 1963 (1963), 83–94.

[36] Mahajan, P., Alvisi, L., and Dahlin, M. Consistency, availability, convergence.
Tech. Rep. TR-11-22, Computer Science Department, UT Austin, May 2011.

[37] Mehdi, A., Littley, C., Crooks, N., Alvisi, L., and Lloyd, W. I can’t believe
it’s not causal. In Proceedings of the 15th USENIX Symposium on Networked
Systems Design and Implementation (2017), NSDI ’17.

[38] Mickens, J., Nightingale, E. B., Elson, J., Gehring, D., Fan, B., Kadav, A., Chi-
dambaram, V., Khan, O., and Nareddy, K. Blizzard: Fast, Cloud-Scale Block
Storage for Cloud-Oblivious Applications. In Proceedings of the 11th USENIX
Symposium on Networked Systems Design and Implementation (2014), NSDI’14.

[39] Microsoft. Azure sql database. https://https://azure.microsoft.com/en-us/
services/sql-database/?v=16.50.

[40] Microsoft. Azure storage - secure cloud storage. https://azure.microsoft.com/
en-us/services/storage/.

[41] Microsoft. Documentdb - nosql service for json. https://azure.microsoft.com/
en-us/services/documentdb/.

[42] Microsoft. SQL Server. https://https://www.microsoft.com/en-cy/sql-server/
sql-server-2016.

[43] Mu, S., Cui, Y., Zhang, Y., Lloyd, W., and Li, J. Extracting more concurrency
from distributed transactions. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation (Berkeley, CA, USA, 2014),
OSDI’14, USENIX Association, pp. 479–494.

[44] Nightingale, E. B., Veeraraghavan, K., Chen, P. M., and Flinn, J. Rethink
the Sync. ACM Transactions on Computer Systems 26, 3 (Sept. 2008), 6:1–6:26.

[45] Oracle. MySQL Cluster. https://www.mysql.com/products/cluster/.
[46] Oracle. Oracle 12c. https://docs.oracle.com/database/121/.
[47] Papadimitriou, C. H. The serializability of concurrent database updates. J.

ACM 26, 4 (Oct. 1979), 631–653.
[48] Pedone, F., Zwaenepoel, W., and Elnikety, S. Database replication using

generalized snapshot isolation. 24th IEEE Symposium on Reliable Distributed
Systems (2005), 73–84.

[49] Ports, D. R. K., Li, J., Liu, V., Sharma, N. K., and Krishnamurthy, A. Design-
ing distributed systems using approximate synchrony in data center networks.
In Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation (Berkeley, CA, USA, 2015), NSDI’15, pp. 43–57.

[50] Postgres. Postgresql. http://www.postgresql.org/.
[51] SAP. Hana. https://www.sap.com/products/hana.html.
[52] Shapiro, M., Ardekani, M. S., and Petri, G. Consistency in 3d (invited paper).

In 27th International Conference on Concurrency Theory (CONCUR 2016) (2016).
[53] Sovran, Y., Power, R., Aguilera, M. K., and Li, J. Transactional storage

for geo-replicated systems. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (2011), SOSP ’11, pp. 385–400.

[54] Su, C., Crooks, N., Ding, C., Alvisi, L., and Xie, C. Bringing modular concur-
rency control to the next level. In Proceedings of the 2017 ACM International
Conference on Management of Data (2017), SIGMOD ’17, pp. 283–297.

[55] Terry, D. B., Demers, A. J., Petersen, K., Spreitzer, M. J., Theimer, M. M.,
and Welch, B. B. Session guarantees for weakly consistent replicated data.
In Proceedings of the 3rd International Conference on on Parallel and Distributed
Information Systems (1994), PDIS ’94, pp. 140–150.

[56] Twitter. Twitter. https://www.twitter.com/.
[57] Viotti, P., and Vukolić, M. Consistency in non-transactional distributed

storage systems. ACM Computing Survey 49, 1 (June 2016), 19:1–19:34.
[58] Warszawski, T., and Bailis, P. Acidrain: Concurrency-related attacks on

database-backed web applications. In Proceedings of the 2017 ACM International
Conference on Management of Data (2017), SIGMOD ’17, pp. 5–20.

http://www.facebook.com/
http://aws.amazon.com/ec2/
http://cassandra.apache.org/
http://basho.com/products/
https://cloud.google.com/bigtable/
https://cloud.google.com/sql/
https://https://azure.microsoft.com/en-us/services/sql-database/?v=16.50
https://https://azure.microsoft.com/en-us/services/sql-database/?v=16.50
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/documentdb/
https://azure.microsoft.com/en-us/services/documentdb/
https://https://www.microsoft.com/en-cy/sql-server/sql-server-2016
https://https://www.microsoft.com/en-cy/sql-server/sql-server-2016
https://www.mysql.com/products/cluster/
https://docs.oracle.com/database/121/
http://www.postgresql.org/
https://www.sap.com/products/hana.html
https://www.twitter.com/

[59] Weikum, G. Principles and realization strategies of multilevel transaction
management. ACM Transactions on Database Systems 16, 1 (Mar. 1991), 132–180.

[60] Xie, C., Su, C., Littley, C., Alvisi, L., Kapritsos, M., and Wang, Y. High-
performance acid via modular concurrency control. In Proceedings of the 25th
Symposium on Operating Systems Principles (2015), SOSP ’15, pp. 279–294.

[61] Zhang, I., Sharma, N. K., Szekeres, A., Krishnamurthy, A., and Ports,
D. R. K. Building consistent transactions with inconsistent replication. In
Proceedings of the 25th Symposium on Operating Systems Principles (2015), SOSP
’15, pp. 263–278.

Appendices - Table of Contents
Abstract 1
AEquivalence to Adya et al. 13
A.1 Adya et al. model [2] summary 13
A.2 Serializability 13
A.3 Snapshot Isolation 14
A.4 Read Committed 16
A.5 Read Uncommitted 17
BEquivalence to read-atomic 18
B.1 Bailis et al. [13] model summary 18
B.2 Read Atomic 18
CEquivalence to ANSI, Strong and Session SI 19
C.1 Berenson/Daudjee et al. [15, 24] model summary 19
C.2 ANSI SI 19
C.3 Strong Session SI 20
C.4 Strong SI 21
DEquivalence to PC-SI and GSI 22
D.1 Elnikety et al. [48] model summary 22
D.2 Generalized Snapshot Isolation 22
D.3 Prefix-consistent Snapshot Isolation 23
EEquivalence to PL-2+ and PSI 24
E.1 Cerone et al. [20]’s model summary 24
E.2 PL-2+ 25
E.3 PSI 27
F Hierarchy 29
F.1 Adya SI ⊂ PSI 29
F.2 ANSI SI ⊂ Adya SI 29
F.3 Strong Session SI ⊂ ANSI SI 30
F.4 Strong SI ⊂ Strong Session SI 30

A EQUIVALENCE TO ADYA ET AL.
In this section, we prove the following theorems:

Theorem 1 ∃e :∀T ∈T :CTSER (T,e)≡¬G1∧¬G2 (§A.2).
Theorem 2 ∃e :∀T ∈T :CTSI (T,e)≡¬G1∧¬G-SI (§A.3).
Theorem 3 ∃e :∀t ∈T :CTRC (T,e)≡¬G1 (§A.4).
Theorem 4 ∃e :∀T ∈T :CTRU (T,e)≡¬G0 (§A.5).

A.1 Adya et al. model [2] summary
Adya et al. [2] introduces a cycle-based framework for specifying
weak isolation levels. We summarize its main definitions and
theorems here.

To capture a given system run, Adya uses the notion of history.

Definition A.1. A history H over a set of transactions consists of
two parts: i) a partial order of events E that reflects the operations
(e.g., read, write, abort, commit) of those transactions, and ii) a ver-
sion order, <<, that is a total order on committed object versions.

We note that the version-order associated with a history is im-
plementation specific. As stated in Bernstein et al [17]: as long as
there exists a version order such that the corresponding direct seri-
alization graph satisfies a given isolation level, the history satisfies
that isolation level. The model introduces several types of direct
read/write conflicts, used to specify the direct serialization graph.

Definition A.2. Direct conflicts:
Directly write-depends Ti writes a version of x , and Tj writes
the next version of x , denoted as Ti

ww−−−→Tj
Directly read-depends Ti writes a version of x , and Tj reads
the version of x Ti writes, denoted as Ti

wr−−−→Tj
Directly anti-depends Ti reads a version of x , andTj writes the
next version of x , denoted as Ti

rw−−−→Tj

Definition A.3. Time-Precedes Order. The time-precedes order,
≺t , is a partial order specified for history H such that:
(1) bi ≺t ci , i.e., the start point of a transaction precedes its

commit point.
(2) for all i and j, if the scheduler chooses Tj ’s start point after Ti

’s commit point, we have ci ≺t bj ; otherwise, we have bj ≺t ci .

Definition A.4. Direct Serialization Graph. We define the direct
serialization graph arising from a history H, denoted DSG(H), as
follows. Each node in DSG(H) corresponds to a committed transac-
tion in H and directed edges correspond to different types of direct
conflicts. There is a read/write/anti-dependency edge from transac-
tionTi to transactionTj ifTj directly read/write/antidepends onTi .

The model is augmented with a logical notion of time, used to
define the start-ordered serialization graph.

Definition A.5. Start-Depends. Tj start-depends on Ti if ci ≺t bj
i.e., if it starts after Ti commits. We write Ti

sd−−→Tj

Definition A.6. Start-ordered Serialization Graph or SSG. For a
history H, SSG(H) contains the same nodes and edges as DSG(H)
along with start-dependency edges.

The model introduces several phenomema, of which isolation
levels proscribe a subset.

Definition A.7. Phenomena:
G0: Write Cycles A history H exhibits phenomenon G0
if DSG(H) contains a directed cycle consisting entirely of
write-dependency edges.
G1a: Dirty Reads A history H exhibits phenomenon G1a if it
contains an aborted transaction Ti and a committed transaction
Tj such that Tj has read an object (maybe via a predicate)
modified by Ti .
G1b: Intermediate Reads A history H exhibits phenomenon
G1b if it contains a committed transaction Tj that has read a
version of object x written by transaction Ti that was not Ti ’s
final modification of x.
G1c: Circular Information Flow A history H exhibits phe-
nomenon G1c if DSG(H) contains a directed cycle consisting
entirely of dependency edges.

G2: Anti-dependency Cycles A history H exhibits phenome-
non G2 if DSG(H) contains a directed cycle having one or more
anti-dependency edges.

G-Single: Single Anti-dependency Cycles DSG(H) contains a
directed cycle with exactly one anti-dependency edge.

G-SIa: Interference A history H exhibits phenomenon
G-SIa if SSG(H) contains a read/write-dependency edge from Ti to
Tj without there also being a start-dependency edge from Ti to Tj .
G-SIb: Missed Effects A history H exhibits phenomenon
G-SIb if SSG(H) contains a directed cycle with exactly one
anti-dependency edge.

Definition A.8. Each isolation level is defined as proscribing
one or more of these phenomena
Serializability (PL-3) ¬G1∧¬G2
Read Committed (PL-2) ¬G1
Read Uncommitted (PL-1) ¬G0
Snapshot Isolation ¬G1∧¬G-SI

A.2 Serializability
Theorem 1. ∃e :∀T ∈T .CTSER (T,e)≡¬G1∧¬G2.

Proof. (⇒) We first prove ¬G1 ∧ ¬G2 ⇒ ∃e : ∀T ∈ T :
CTSER (T,e).

LetH define a history over T = {T1,T2,...,Tn } and let DSG (H) be
the corresponding direct serialization graph. Together ¬G1c and
¬G2 state that the DSG (H) must not contain anti-dependency or
dependency cycles: DSG (H) must therefore be acyclic. Let i1,...in
be a permutation of 1,2, ...,n such that Ti1 , ...,Tin is a topological
sort of DSG (H) (DSG (H) is acyclic and can thus be topologically
sorted). We construct an execution e according to the topological
order defined above: e : s0 → sTi1 → sTi2 → ... → sTin and
show that ∀t ∈ T .CTSER (T,e). Specifically, we show that for all
T =Ti j ,COMPLETEe,Tij (sTij−1) where sTij−1 is the parent state of Ti j .

Consider the three possible types of operations in Ti j :
(1) External Reads: an operation reads an object version that

was created by another transaction.
(2) Internal Reads: an operation reads an object version that

it itself created.
(3) Writes: an operation creates a new object version.

We show that the parent state of Ti j is included in the read set of
each of those operation types:
(1) External Reads. Let ri j (xik) read the version for x created by

Tik , where k, j.
We first show that sTik

∗−→ sTij−1 . As Ti j directly read-depends

on Tik , there must exist an edge Tik
wr−−−→ Ti j in DSG (H), and

Tik must therefore be ordered before Ti j in the topological
sort of DSG (H) (k < j). Given e was constructed by applying
every transaction in T in topological order, it follows that
sTik

∗−→sTij−1 .
Next, we argue that the state sTij−1 contains the object-value
pair (x ,xik). Specifically, we show that there does not exists
a sTil , where k < l < j, such that Til writes a different version
of x . We prove this by contradiction. Consider the smallest
such l : Ti j reads the version of x written by Tik and Til
writes a different version of x . Til , in fact, writes the next
version of x as e is constructed according toww dependencies:
if there existed an intermediate version of x , then either
Til was not the smallest transaction, or e does not respect
ww dependencies. Note that Ti j thus directly anti-depends

on Til , i.e. Ti j
rw−−−→ Til . As the topological sort of DSG (H)

from which we constructed e respects anti-dependencies, we
finally have si j

∗−→ sTil
, i.e. j ≤ l , a contradiction. We conclude:

(x ,xik) ∈sTij−1 , and therefore sTij−1 ∈RSe (ri j (xik)).

(2) Internal Reads. Let ri j (xi j) read xi j such that w (xi j)
to−−→r (xi j).

By definition, the read state set of such an operation consists
of ∀s ∈ Se : s

∗−→ sp . Since sTij−1 is Ti j ’s parent state, it trivially
follows that sTij−1 ∈RSe (ri j (xi j)).

(3) Writes. Letwi j (xi j) be a write operation. By definition, its read
state set consists of all the states before sTij in the execution.
Hence it also trivially follows that sTij−1 ∈RSe (wi j (xi j)).

Thus sTij−1 ∈
∩

o∈ΣTij
RSe (o). We have COMPLETEe,Tij (sTij−1) for

any Ti j :∀T ∈T :CTSER (T,e).
(⇐)We next prove ∃e :∀T ∈T :CTSER (T,e)⇒¬G1∧¬G2.
To do so, we prove the contrapositive G1∨G2⇒ ∀e ∃T ∈ T :

¬CTSER (T,e). Let H be a history that displays phenomena G1 or
G2. We generate a contradiction. Consider any execution e such
that ∀T ∈T :CTSER (T,e). We first instantiate the version order for
H , denoted as <<, as follows: given an execution e and an object
x , xi <<x j if and only if x ∈WTi ∩WTj ∧sTi

∗−→sTj . First, we show
that:
Claim 1Ti→Tj in DSG (H)⇒sTi

∗−→sTj in the execution e (i, j).

Proof. Consider the three edge types in DSG (H):
Ti

ww−−−→ Tj There exists an object x s.t. xi << x j (version order).
By construction, we have sTi

∗−→sTj .

Ti
wr−−−→Tj There exists an object x s.t. Tj reads version xi written

by Ti . Let sTk be the parent state of sTj , i.e. sTk → sTj . By
assumption CTSER (e,T) (T =Tj), i.e. COMPLETEe,Tj (sTk), hence we
have (x ,xi) ∈sTk . For the effects ofTi to be visible in sTk ,Ti must
have been applied at an earlier point in the execution. Hence we
have: sTi

∗−→sTk →sTj .

Ti
rw−−−→ Tj There exist an object x s.t. Ti reads version xm

written by Tm , Tj writes x j and xm << x j . By construction,
xm << x j implies sTm

∗−→ sTj . Let sTk be the parent state of sTj ,
i.e. sTk →sTi . As CTSER (e,T), where t =Tj , holds by assumption,
i.e. COMPLETEe,Ti (sTk), the key-value pair (x , xm) ∈ sTk , hence
sTm

∗−→ sTk as before. In contrast, sTi
∗−→ sTj : indeed,(x ,xm) ∈ sTk

and xm <<x j . Hence, Tj has not yet been applied. We thus have
sTk −→sTi

∗−→sTj .
□

We now derive a contradiction in all cases of the disjunction
G1∨G2:
• Let us assume that H exhibits phenomenon G1a (aborted

reads). There must exists events wi (xi),r j (xi) in H such that
Ti subsequently aborted. T and any corresponding execution
e , however, consists only of committed transactions. Hence
∀e :∄s ∈Se , s.t. s ∈RSe (r j (xi)): no complete state can exists for
Tj . There thus exists a transaction for which the commit test
cannot be satisfied, for any e . We have a contradiction.

• Let us assume that H exhibits phenomenon G1b (intermediate
reads). In an execution e , only the final writes of a transaction
are applied. Hence, ∄s ∈ Se , s.t. s ∈ RSe (r (xintermediate)).
There thus exists a transaction, which for all e , will not satisfy
the commit test. We once again have a contradiction.

• Finally, let us assume that the history H displays one or both
phenomena G1c or G2. Any history that displays G1c or G2
will contain a cycle in the DSG . Hence, there must exist a chain
of transactions Ti →Ti+1→ ...→Tj such that i = j in DSG (H).
By Claim 1, we thus have sTi

∗−→ sTi+1
∗−→ ... ∗−→ sTj for any e . By

definition however, a valid execution must be totally ordered.
We have our final contradiction.

All cases generate a contradiction. We have G1∨G2⇒∀e :∃T ∈T :
¬CTSER (e,T). This completes the proof. □

A.3 Snapshot Isolation
Theorem 2. ∃e :∀T ∈T .CTSI (T,e)≡¬G1∧¬G-SI

Proof. (⇒) We first prove ¬G1 ∧ ¬G-SI ⇒ ∃e : ∀T ∈ T :
CTSI (T,e).

Commit TestWe can construct an execution e such that every
committed transaction satisfies the commit test CTSI (e,T). Let
i0,...in be a permutation of 1,2,...,n such that Ti1 ,...,Tin are sorted
according to their commit point. We construct an execution e
according to the topological order defined above: e : s0 → sTi1 →
sTi2 → ...→sTin and show that ∀T ∈T .CTSI (T,e). Specifically, we

prove the following: consider the largest k such thatTik
sd−−→Ti j , i.e.

cTik
≺t bTij then COMPLETEe,Tij (sTik

)∧ (∆(sTik ,sTij−1)∩WsTij
=∅).

Complete State We first prove that COMPLETEe,Tij (sTik
).

Consider the three possible types of operations in Ti j :
(1) External Reads: an operation reads an object version that

was created by another transaction.
(2) Internal Reads: an operation reads an object version that

itself created.
(3) Writes: an operation creates a new object version.

We show that the sTik is included in the read set of each of those
operation types:
(1) External Reads. Let ri j (xiq) read the version for x created by

Tiq , where q, j.

We first show that sTiq
∗−→sTik

. AsTi j directly read-depends on

Tiq , there must exist an edgeTiq
wr−−−→Ti j in SSG (H). Given that

H disallows phenomenon G-SIa by assumption, there must

therefore exist a start-dependency edge Tiq
sd−−→Ti j in SSG (H).

Therefore we have cTiq ≺t bTij . By definition of time-precedes
order, bTij ≺t cTij . By transitivity of the partial order cTiq ≺t
cTij . Given e was constructed by applying every transaction T
in topological order of c , and that we select the largest k such

that Tik
sd−−→Ti j , it follows that q≤k < j and sTiq

∗−→sTik
+−→sTij .

Next, we argue that the state sTik
contains the object value

pair (x ,xiq). Specifically, we argue that there does not exist a
sTim , where q<m≤k , such thatTim writes a new version of x .
We prove this by contradiction. Consider the smallest suchm:
Tik reads the version of x written by Tiq and Tim writes the
next version of x . Ti j thus directly anti-depends on Tim— i.e.,

Ti j
rw−−−→ Tim . Given that in time-precedes order, for any two

transactions, the start point of one is always comparable to the
commit point of the other, we necessarily have bTij ≺t cTim .
Otherwise we would have cTij ≺t bTim ≺t cTim , i.e. cTij ≺t cTim ,
which is inconsistent with the order defined by the execution.

In addition, it holds by assumption that Tik
sd−−→ Ti j . We can

conclude that cTik ≺t bTij . Combined with bTij ≺t cTim , we
will have cTik ≺t cTim . However, we constructed the execution
respecting the time-precedes order of commit point. We
have a contradiction. Hence we conclude: (x ,xiq) ∈ sTik and
therefore sTik ∈RSe (ri j (xiq)).

(2) Internal Reads. Let ri j (xi j) read xi j such that wi j (xi j)
to−−→

ri j (xi j). By definition, the read state set of such an operation

consists of ∀s ∈ Se : s
∗−→ sp . Since sTik

precedes sTij in the

topological order (Tik
sd−−→Ti j , therefore cTik ≺t bTij . Combined

with bTij ≺t cTij , we have cTik ≺t cTij . and e respects time-
precedes order) , it trivially follows that sTik ∈RSe (ri j (xi j)).

(3) Writes. Letwi j (xi j) be a write operation. By definition, its read
state set consists of all the states before sTij in the execution.
Hence it also trivially follows that sTik ∈RSe (wi j (xi j)).

Thus sTik ∈
∩

o∈ΣTij
RSe (o).

Distinct Write Sets We now prove the second half of the
commit test: (∆(sTik

, sTij−1) ∩ WsTij
= ∅) We prove this by

contradiction. Consider the largest m, where k <m < j such that
WsTim

∩WsTij
, ∅. Tim thus directly write-depends on Ti j , i.e.

Tim
ww−−−→ Ti j . By assumption, H proscribes phenomenon G-SIa.

Hence, there must exist an edge Tim
sd−−→Ti j in SSG (H). Similarly,

we have cTik ≺t bTij ≺t cTij , i.e. cTik ≺t cTij As e respects time-

precedes order of commit points, it follows that sim
+−→ si j (m < j).

By assumption however,Tik is the latest transaction in e such that

Tik
sd−−→Ti j , som≤k . Since we had assumed that k <m< j, we have

a contradiction. Thus, ∀m,k <m < j,WsTim
∩WsTij

= ∅. We con-
clude that ∆(sTik ,sTij−1)∩WsTij

=∅We have COMPLETEe,Tij (sTik
)∧

(∆(sTik
,sTij−1)∩WsTij

=∅) for any Ti j : ∀T ∈T :CTSI (T,e).

(⇐) We next prove ∃e :∀T ∈T :CTSI (T,e)⇒¬G1∧¬G-SI.
Let e be an execution such that ∀T ∈ T : CTSI (T,e), and H be

a history for committed transactions T . We first instantiate the
version order for H , denoted as <<, as follows: given an execution
e and an object x , xi <<x j if and only if x ∈WTi ∩WTj ∧sTi

∗−→sTj .
It follows that, for any two states such that (x ,xi) ∈Tim ∧ (x ,x j) ∈
Tin ⇒ sTm

+−→ sTn . We next assign the start and commit points
of each transaction. We assume the existence of a monotonically
increasing timestamp counter: if a transaction Ti requests a times-
tamp ts , and a transaction Tj subsequently requests a timestamp
ts ′, then ts < ts ′. Writing e as s0 → sT1 → sT2 → ··· → sTn , our
timestamp assignment logic is then the following:
(1) Let i=0.
(2) Set s=sTi ; if i=0, s=s0.
(3) Assign a commit timestamp to Tsi if i,0.
(4) Assign a start timestamp to all transactions Tk such that Tk

satisfies
COMPLETEe,Tk (s) ∧ (∆(s,sp (Tk)) ∩WsTk = ∅) and Tk does not
already have a start timestamp.

(5) Let i=i+1. Repeat 1-4 until the final state in e is reached.
We can relate the history’s start-dependency order and

execution order as follows:

Claim 2 ∀Ti ,Tj ∈T :sTj
∗−→sTi⇒¬Ti

sd−−→Tj

Proof. We have Ti
sd−−→ Tj ⇒ ci ≺t bj by definition. More-

over, the start point of a transaction Ti is always assigned
before its commit point. Hence: ci ≺t bj ≺t c j . It follows from
our timestamp assignment logic that sTi

+−→ sTj . We conclude:

Ti
sd−−→Tj⇒sTi

+−→sTj . Taking the contrapositive of this implication
completes the proof. □

G1 We first prove that: ∀T ∈T :CTSI (T,e)⇒¬G1. We do so by
contradiction for each of G1a, G1b, G1c.

G1a Let us assume that H exhibits phenomenon G1a (aborted
reads). There must exist events wi (xi), r j (xi) in H such that
Ti subsequently aborted. T and any corresponding execution
e , however, consists only of committed transactions. Hence
∀e : ∄s ∈ Se : s ∈ RSe (r j (xi)): no complete state can exists for Tj .
There thus exists a transaction for which the commit test cannot
be satisfied, for any e . We have a contradiction.

G1b Let us assume that H exhibits phenomenon G1b (in-
termediate reads). In an execution e , only the final writes of a
transaction are applied. Hence,∄s ∈Se :s ∈RSe (r (xintermediate)).
There thus exists a transaction, which for all e , will not satisfy the
commit test. We once again have a contradiction.

G1c Finally, let us assume that H exhibits phenomenon G1c:
SSG(H) must contain a cycle of read/write dependencies. We
consider each possible edge in the cycle in turn:

• Ti
ww−−−→Tj There must exist an object x such that xi <<x j

(version order). By construction, version inH is consistent
with the execution order e: we have sTi

∗−→sTj .

• Ti
wr−−−→Tj There must exist a read r j (xi) ∈ΣTj such that Tj

reads version xi written byTi . By assumption, CTSI (e,Tj)
holds. There must therefore exists a state sTk ∈ Se such
that COMPLETEe,Tj (sTk). If sTk is a complete state for Tj ,
sTk ∈ RSe (r j (xi)) and (x , xi) ∈ sTk . For the effects of
Ti to be visible in sTk , Ti must have been applied at an
earlier point in the execution. Hence we have: sTi

∗−→ sTk .
Moreover, by definition of the candidate read states,
sTk

∗−→sp (Tj)−→sTj (Definition 2). It follows that sTi
∗−→sTj .

If a history H displays phenomenon G1c, there must exist a chain
of transactionsTi→Ti+1→ ...→Tj such that i= j. A corresponding
cycle must thus exist in the execution e sTi

∗−→sTi+1
∗−→ ... ∗−→sTj . By

definition however, a valid execution must be totally ordered. We
once again have a contradiction.

We generate a contradiction in all cases of the disjunction: we
conclude that the history H cannot display phenomenon G1.

G-SI We now prove that ∀T ∈T :CTSI (T,e)⇒¬G-SI.
G-SIa We first show that G-SIa cannot happen for both

write-write dependencies and write-read dependencies:

• Ti
wr−−−→ Tj There must exist an object x such that Tj reads

version xi written by Ti . Let sTk be the first state in e such
that COMPLETEe,Tj (sTk) ∧ (∆(sTk , sp (Tj)) ∩ WsTj = ∅). Such a
state must exist since CTSI (e,Tj) holds by assumption. As sTk
is complete, we have (x ,xi) ∈ sTk . For the effects of Ti to be
visible in sTk , Ti must have been applied at an earlier point in
the execution. Hence we have: sTi

∗−→ sTk
∗−→ sTj . It follows from

our timestamp assignment logic that ci ⪯t ck . Similarly, the
start point of Tj must have been assigned after Tk ’s commit
point (as sTk is Tj ’s earliest complete state), hence ck ≺t sj .
Combining the two inequalities results in ci ≺t sj : there will

exist a start-dependency edge Ti
sd−−→ Tj . H will not display

G-SIa for write-read dependencies.

• Ti
ww−−−→ Tj There must exist an object x such that Tj writes

the version x j that follows xi . By construction, it follows that
sTi

∗−→ sTj . Let sTk be the first state in the execution such that
COMPLETEe,Tj (sTk) ∧ (∆(sTk , sp (Tj)) ∩WTj = ∅). We first show

that: sTi
∗−→sTk . Assume by way of contradiction that sTk

+−→sTi .
The existence of awrite-write dependency betweenTi andTj im-
plies thatWTi ∩WTj ,∅, and consequently, that ∆(sTk ,sp (Tj))∩
WTj ,∅, contradicting our assumption that CTSI (e,Tj). We con-

clude that: sTi
∗−→sTk . It follows from our timestamp assignment

logic that ci ⪯t ck . Similarly, the start point ofTj must have been
assigned afterTk ’s commit point (as sTk isTj ’s earliest complete
state), hence ck ≺t sj . Combining the two inequalities results in

ci ≺t sj : there will exist a start-dependency edge Ti
sd−−→ Tj . H

will not display G-SIa for write-write dependencies.

The history H will thus not display phenomenon G-SIa.

G-SIb We next prove that H will not display phenomenon
G-SIb. Our previous result states that H proscribes G-SIa: all read-
write dependency edges between two transactions implies the ex-
istence of a start dependency edge between those same trans-
actions. We prove by contradiction that H proscribes G-SIb. As-
sume that SSG(H) consists of a directed cycle cyc1 with exactly
one anti-dependency edge (it displays G-SIb) but proscribes G-SIa.
All other dependencies will therefore be write/write dependencies,
write/read dependencies, or start-depend edges. By G-SIa, there
must exist an equivalent cycle cyc2 consisting of a directed cy-
cle with exactly one anti-dependency edge and start-depend edges
only. Start-edges are transitive (consider three transactions T1,T2
and T3: if c1 ≺t b2 and c2 ≺t b3 then c1 ≺t b3 as b2 ≺t c2
by definition), hence there must exist a cycle cyc3 with exactly
one anti-dependency edge and one start-depend edge. We write

Ti
rw−−−→ Tj

sd−−→ Ti . Given Ti
rw−−−→ Tj , there must exist an object x

and transaction Tm such that Tm writes xm , Ti reads xm and Tj
writes the next version of x , x j (xm << x j). Let sTk be the ear-
liest complete state of Ti . Such a state must exist as CTSI (e,Ti)
by assumption. Hence, by definition of read state (x ,xm) ∈ sTk .
Similarly, (x ,x j) ∈ sTj by the definition of state transition (Defini-

tion 1). By construction, we have sTk
+−→ sTj . Our timestamp as-

signment logic maintains the following invariant: given a state sT ,
∀Tk : COMPLETEe,Tk (sT) : ∀sTn : sT

+−→ sTn ⇒ bk ≺t cn . Intuitively,
the start timestamp of all transactions associated with a particu-
lar complete state sT is smaller than the commit timestamp of any
transaction that follows sT in the execution.We previously showed
that sTk

+−→ sTj . Given sTk is a complete state for Ti , we conclude

bi ≺t c j . However, the edge Tj
sd−−→Ti implies that c j ≺t bi . We have

a contradiction: no such cycle can exist andH will not display phe-
nomenon G-SI. We generate a contradiction in all cases of the con-
junction, hence ∀T ∈ T : CTSI (T,e)⇒¬G-SI holds. We conclude
∀T ∈T :CTSI (T,e)⇒¬G-SI∧¬G1. This completes the proof. □

A.4 Read Committed
Theorem 3. ∃e :∀T ∈T .CTRC (T,e)≡¬G1.

Proof. We first prove ¬G1⇒∃e :∀T ∈T :CTRC (T,e).
Let H define a history over T = {T1,T2, ...,Tn } and let DSG (H)

be the corresponding direct serialization graph. ¬G1c states that
the DSG (H) must not contain dependency cycles: the subgraph of
DSG (H), SDSG (H) containing the same nodes but including only
dependency edges, must be acyclic. Let i1, ...in be a permutation
of 1,2, ...,n such that Ti1 , ...,Tin is a topological sort of SDSG (H)
(SDSG (H) is acyclic and can thus be topologically sorted). We
construct an execution e according to the topological order
defined above: e : s0→ sTi1 → sTi2 → ...→ sTin and show that ∀T ∈
T .CTRC (T,e). Specifically, we show that for allT =Ti j ,PREREADe (T).
Consider the three possible types of operations in Ti j :

(1) External Reads: an operation reads an object version that
was created by another transaction.

(2) Internal Reads: an operation reads an object version that
itself created.

(3) Writes: an operation creates a new object version.
We show that the read set for each of operation type is not empty:

(1) External Reads. Let ri j (xik) read the version for x created by

Tik , where k , j. We first show that sTik
∗−→sTij . As Ti j directly

read-depends on Tik , there must exist an edge Tik
wr−−−→ Ti j

in SDSG (H), and Tik must therefore be ordered before Ti j
in the topological sort of SDSG (H) (k < j), it follows that
sTik

+−→ sTij . As (x ,xik) ∈ sTik , we have sTik ∈ RSe (ri j (xik)),
and consequently RSe (ri j (xik)),∅.

(2) Internal Reads. Let ri j (xi j) read xi j such that w (xi j)
to−−→r (xi j).

By definition, the read state set of such an operation consists
of ∀s ∈ Se : s

∗−→ sp . s0
∗−→ s trivially holds. We conclude

s0 ∈RSe (ri j (xi j)), i.e. RSe (ri j (xi j)),∅.
(3) Writes. Letwi j (xi j) be a write operation. By definition, its read

state set consists of all the states before sTij in the execution.
Hence s0 ∈RSe (ri j (xi j)), i.e. RSe (ri j (xi j)),∅.

Thus ∀o ∈ ΣT : RSe (o) , ∅. We have PREREADe (Ti j) for any
Ti j :∀T ∈T :CTRC (T,e).

(⇐)We next prove ∃e :∀T ∈T :CTRC (T,e)⇒¬G1.
To do so, we prove the contrapositive G1 ⇒ ∀e ∃T ∈ T :

¬CTRC (T,e). Let H be a history that displays phenomena G1. We
generate a contradiction. Assume that there exists an execution
e such that ∀T ∈ T : CTRC (T,e). We first instantiate the version
order for H , denoted as <<, as follows: given an execution e and
an object x , xi <<x j if and only if x ∈WTi ∩WTj ∧sTi

+−→sTj . First,
we show that:
Claim 3Ti→Tj in SDSG (H)⇒sTi

+−→sTj in the execution e (i, j).

Proof. Consider the two edge types in SDSG (H):

Ti
ww−−−→ Tj There exists an object x s.t. xi << x j (version order).

By construction, we have sTi
+−→sTj .

Ti
wr−−−→Tj There exists an object x s.t. Tj reads version xi written

by Ti , i.e. r j (x ,xi) ∈ ΣTj . By assumption CTRC (e,T) (T =Tj), i.e.
PREREADe (Tj), RSe (o),∅. Let s ∈RSe (o), by definition of RSe (o),
we have (x ,xi) ∈ s∧s

+−→ sTj , therefore Ti must be applied before

or on state s , hence we have sTi
∗−→s
+−→sTj , i.e. sTi

+−→sTj .
□

We now derive a contradiction in all cases of G1:
• Let us assume that H exhibits phenomenon G1a (aborted

reads). There must exists events wi (xi),r j (xi) in H such
that Ti subsequently aborted. T and any corresponding
execution e , however, consists only of committed transac-
tions. Hence ∀e :∄s ∈Se ,s .t . s ∈RSe (r j (xi)): no complete
state can exists for Tj . There thus exists a transaction for
which the commit test cannot be satisfied, for any e. We
have a contradiction.

• Let us assume that H exhibits phenomenon G1b (inter-
mediate reads). In an execution e , only the final writes
of a transaction are applied. Hence,∄s ∈ Se , s .t . s ∈
RSe (r (xintermediate)). There thus exists a transaction,
which for all e, will not satisfy the commit test. We once
again have a contradiction.

• Finally, let us assume that the history H displays G1c.
Any history that displays G1c will contain a cycle in the
SDSG(H). Hence, there must exist a chain of transactions
Ti → Tk → ...→ Tj such that i = j. By Claim 3, we thus
have sTi

+−→ sTk
+−→ ... +−→ sTj , i = j for any e . By definition

however, a valid execution must be totally ordered. We
have our final contradiction.

All cases generate a contradiction. We have G1 ⇒ ∀e : ∃T ∈ T :
¬CTRC (e,T). This completes the proof. □

A.5 Read Uncommitted
Theorem 4.∃e :∀t ∈T .CTRU (t,e)≡¬G0.

Proof. We first prove ¬G0⇒∃e :∀T ∈T :CTRU (T,e).
Let H define a history over T = {T1,T2, ...,Tn } and let DSG (H)

be the corresponding direct serialization graph. ¬G0 implies that
the DSG(H) must not contain write-write dependency cycles.
Let i1, ...in be a permutation of 1,2, ...,n such that Ti1 , ...,Tin is a
topological sort of the DSG(H) according to the write-write edges
(the projection of DSG(H) that considers write-write edges only is
acyclic and can thus be topologically sorted). We construct an ex-
ecution e according to the topological order defined above: e :s0→
sTi1 → sTi2 → ...→ sTin . As CTRU (t,e) =True , every transaction T
in e trivially satisfies the commit test. This completes the proof.

(⇐)Wenext prove ∃e :∀T ∈T :CTRU (T,e)⇒¬G0 To do so, we
prove the contrapositive G0⇒∀e ∃T ∈T :¬CTRU (T,e). Let H be a
history that displays phenomena G0. We generate a contradiction.
Consider any execution e such that∀T ∈T :CTRU (T,e). We first in-
stantiate the version order for H , denoted as <<, as follows: given
an execution e and an object x , xi << x j if and only if x ∈WTi ∩
WTj ∧sTi

∗−→sTj . First, we show that Ti
ww−−−→Tj in DSG (H)⇒sTi

∗−→
sTj in the execution e (i, j). The presence of aww edge implies the
existence of an object x s.t. xi << x j (version order). It follows by
construction that sTi

∗−→sTj . Any history that displays G0 will con-
tain a cycle consisting of ww edges in the DSG (H). Hence, there
must exist a chain of transactionsTi

ww−−−→Ti+1
ww−−−→ ... ww−−−→Tj such

that i = j in DSG (H). As shown above, this sequence of ww edges
implies that sTi

∗−→sTi+1
∗−→ ... ∗−→sTj for any e . By definition however,

a valid execution must be totally ordered. We have a contradiction.
We have G0⇒∀e :∃T ∈T :¬CTRU (e,T). This completes the proof.

□

B EQUIVALENCE TO READ-ATOMIC
Read atomic [13], like PSI, was introduced a scalable alternative to
snapshot isolation. Read atomic preserves atomic visibility (trans-
actions observe either all or none of a committed transaction’s
effects) but does not preclude write-write conflicts nor guarantee
that transactions will read from a causally consistent prefix of the
execution. These weaker guarantees allow for efficient implemen-
tations in which one client’s transactions cannot cause another
client’s transactions to fail (synchronization independence). We
can express read atomic in our state-based model as follows:

Definition B.1. CTRA (T,e)≡ PREREADe (T)∧∀r1 (k1,v1),r2 (k2,v2) ∈
ΣT ∧k2 ∈WTsfr1

⇒sfr1
∗−→sfr2

Intuitively, this definition states that, if an operation o1 observes
a transactionTi ’s writes, all subsequent operations that read a key
included in Ti ’s write-set must read from a state that includes Ti ’s
effects. In this section, we prove the following theorem:

Theorem B.2. ∃e :∀T ∈T :CTRA (T,e)≡Read Atomic (§B.2).

B.1 Bailis et al. [13] model summary
We summarize the key definitions of themodel here (an alternative
formalization was given by Cerone et al. [20]).

A history H consists of a set of reads/writes where each write
creates a version of an item x , xi , where i is a unique timestamp
taken from a totally ordered set such that timestamps induce a
total order on versions of each item (and a partial order across
versions of different items). We write xi <<H x j if i < j.

A history is read-atomic iff it prevents the following anomalies:
• uncommitted, aborted, or intermediate reads (G0,

G1 anomalies)
• fractured reads. A transaction Tj exhibits fractured reads

if transaction Ti writes versions xm and yn (where x and
y can be equal), Tj reads version xm and version yk and
k <n.

B.2 Read Atomic
We now prove the following theorem: ∃e : ∀T ∈ T : CTRA (T,e) ≡
Read Atomic .

(⇐) First, we prove: ∃e : ∀T ∈ T : CTRA (T,e)⇐ Read Atomic.
We show that a history H consisting of the set of trans-
actions T exhibiting no fractured reads and intermedi-
ate/aborted/uncommitted reads, implies the existence of an
execution e that contains T such that every T ∈ T satisfies the
commit test: CTRA (T,e) ≡ PREREADe (T) ∧ ∀r1 (k1,v1),r2 (k2,v2) ∈
ΣT ∧k2 ∈WTsfr1

⇒sfr1
∗−→sfr2

The set of transactions T defines a partial order <T such
that: if r j (xi) ∈ ΣTj then Ti <T Tj (read dependency edges) and if
xi <<H x j thenTi <T Tj , whereTi writes xi andTj writes x j (write
dependency edges).. Such a partial order must exist as read atomic
proscribes cycles consisting exclusively of read dependency edges
and write dependency edges (it precludes G1). We construct this
execution e to be a linearization of this partial order. Consider an
arbitrary transaction T in e and consider two operations r1 (x ,xi)
and r2 (y,yj) such that y ∈WTsfr1

For simplicity, let us refer to Ti

forTsfr1 , toTj forTsfr2 . These are the transactions that created the
versions xi and yj . Finally, let us refer to Ti ’s write of y as yi .

Considering an arbitrary transaction T , we prove that
PREREADe (T) holds. Let us assume by contradiction that there
exists an operation o executed by an operation T for which
RSe (o) = ∅. There are two possibilities: either o = r (k,v) read
from a state that succeeds T in the execution (let that state be
sTv), or ∄s ∈ Se : (k,v) ∈ s . In the first case, we have that o reads
from Tv and hence that Tv precedes T in the partial order. But
our execution e is a linearization of that partial order, hence we
cannot have s

+−→sTv . We have a contradiction. In the second case,
∄s ∈Se : (k,v) ∈ s . There are two sub-scenarios: either the transac-
tion that wrote v does not exist in the execution, in which caseTv
aborted (a contradiction as read atomic disallows aborted reads),
or the state that Tv created has (k,v ′) ∈sTv where v,v ′, in which
casev was not the final write ofTv (a contradiction as read atomic
disallows intermediate reads). In all cases, we have a contradiction,
hence RSe (o) , ∅ and PREREADe (T) holds for all T . Moreover, as
PREREADe (T) holds, ∀o ∈ΣT .RSo ,∅ so sfr1 and sfr2 exist.

Assume by contradiction that sTj
+−→sTi .Tj andTi both write to

object y and are therefore ordered according to <T (Tj <T Ti and
therefore yj <<H yi). By assumption, H does not exhibit fractured
reads: if Ti writes xi and yi and T reads version xi and version yj
, then yi <<H yj or yi =yj . But we just argued that yj <<H yi . We
have a contradiction: sTi

∗−→sTj .
(⇒) Next, we prove: (∃e : ∀T ∈ T : CTRA (T,e)) We show that,

given an execution e and associated set of transactions T such that
everyT ∈T satisfies the commit test, the historyH does not exhibit
fractured reads, and intermediate/aborted/uncommitted reads.

By PREREADe (T), the object versions observed by all transactions
stem from a state that existed in the execution: that is, were
generated by the final write of a committed transaction. It follows
that the corresponding history does not exhibit uncommitted,
aborted or intermediate reads anomaly.

Next, we show that the history H does not exhibit fractured
reads. We assign a monotonically increasing timestamp to each
transaction in e (we write Ti for a transaction with timestamp i)
such that sTi

+−→ sTj ≡ i ≤ j and the version order on each object
is consistent with timestamps and execution order. Let us assume
by way of contradiction that H exhibits fractured reads: there
exists a transaction Ti that writes versions xi and yi of objects x
and y such that a transaction Tj reads version xi and version yk
and yk << yi . Tj satisfies the commit test by definition. That is,
∀r1 (k1,v1),r2 (k2,v2) ∈ ΣT ∧k2 ∈Wtsfr1

⇒ sfr1
∗−→ sfr2 Letting r1 be

Tj ’s read of x and r2 Tj ’s read of y, we have that sfr1
∗−→ sfr2 or

equivalently that si
∗−→sk . By construction, it follows that yi <<yk .

However, we have just argued that yk << yi or i = k . We have a
contradiction, so H does not exhibit fractured reads.

C EQUIVALENCE
TO ANSI, STRONG AND SESSION SI

In this section, we prove the following theorems:
Theorem 8 (a) ∃e :∀t ∈T :CTANSI SI (T,e)≡ANSI SI (§C.2).
Theorem 9 (b) ∃e :∀T ∈T :CTSession SI (T,e)≡SSessSI (§C.3).
Theorem 7 ∃e :∀T ∈T :CTStronд SI (T,e)≡Stronд SI (§C.4).

C.1 Berenson/Daudjee
et al. [15, 24] model summary

Every transaction T in this model has a logical start times-
tamp, written start(T) and a logical commit timestamp, written
commit(T). We write δ to be the smallest unit by which two
timestamps differ.

Definition C.1. ANSI SI A history H , consisting of the set
of transactions T , satisfies ANSI Snapshot Isolation (or weak
snapshot isolation) iff, for every T :

• T ’s start timestamp is less than or equal to the actual start
time of T : ∀T ,T ′ :start(T)≤T .start (R1).

• T ’s commit timestamp is more recent than any start
or commit timestamp previously assigned: ∀T , T ′ :
T ′.commit <T .commit ≡ commit(T ′) < commit(T) (R2a),
∀T ,T ′ : T .commit > T ′.start ⇒ commit(T) > start(T ′)
(R2b) and start(T)< commit(T) (R2c)

• T observes the effects of all transactions T ′ with
commit(T ′) ≤ start(T) and does not observe the writes of
transactions T ′ with commit(T)≥ start(T) (R3).

• T commits only if no other committed transactionT ′ with
lifespan [start(T ′), commit(T ′)] that overlaps with T ’s
lifespan of [start(T),commit(T)] (R4) has an intersecting
writeset.

Definition C.2. Strong Session SI (R5) A transaction execu-
tion history H is strong session SI under labeling LH iff it is ANSI
SI, and if, for every pair of committed transactions Ti and Tj in
H such that LH (Ti) = LH (Tj) and Ti ’s commit precedes the first
operation of Tj , Ti <s Tj⇒commit(Ti)≤ start(Tj).

Definition C.3. Strong SI (R6) A transaction execute history
H is strong SI iff it is weak SI and if, for every pair of committed
transactionTi andTj in H such thatTi ’s commit precedes the first
operation of Tj , Ti <s Tj⇒commit(Ti)≤ start(Tj)

C.2 ANSI SI
We now prove the following theorem:
Theorem 8 (a) ∃e :∀T ∈T :CTANSI SI (T,e)≡ANSI SI .

Proof. (⇐) First, we prove: ∃e : ∀T ∈ T : CTANSI SI (T,e)⇐
ANSI SI . We show that a history H consisting of the set of trans-
actions T implies the existence of an execution e that contains T
such that every T ∈T satisfies the commit test: CTANSI SI (T,e)=
C-ORD(Tsp ,T)∧∃s ∈Se :COMPLETEe,T (s)∧NO-CONFT (s)∧Ts <s T

To do so, we consider the execution resulting from applying
every transaction in T in the order of their commit times-
tamps. More precisely, we have that ∀T ,T ′ ∈ T : commit(T) <
commit(T ′)≡sT

+−→sT ′ .

C-ORD(Tsp ,T) First, we show that C-ORD(Tsp ,T) holds. As
any parent state sp must precede T in the execution, we
have that sp −→ sT , ie: commit(Tsp) < commit(T) By (R2a),
∀T ,T ′ ∈ T :T .commit <T ′.commit ≡ commit(T) < commit(T ′). It
follows that Tsp .commit <T .commit or C-ORD(Tsp ,T) holds.

Complete State Second, we show that there exists a complete
state s , where s is the the state resulting from applying the
transaction Ts with the highest commit timestamp that is smaller
than start(T). There exists a single such transactions as commit
timestamps are unique (R2). We show that s is a candidate read
state for every operation o ∈ ΣT . If o is a write, then s ∈ RSe (o)
trivially. If o is a read and returns a value v for object k (written
by a transaction Tv), we show by contradiction that (k,v) ∈ s .
Assume that (k,v ′) ∈ s with v , v ′, consider the last transaction
Tv ′ , Tv that writes v ′, where either sTv

+−→ sTv′
∗−→ s (1) or

sTv′
∗−→s
+−→sTv in e (2). In the first case, commit(Tv)≤ commit(Tv ′)

by construction and commit(T ′v) ≤ commit(Ts) ≤ start(T) by
definition of Ts . By (R3), T should therefore observe the effects of
Tv ′ , but it does not as it reads v , a contradiction so (k,v) ∈s . In the
second case, commit(Tv ′) ≤ commit(Ts) ≤ commit(Tv). By (R3),
commit(Tv) ≤ start(T) as T observes the effect of Tv . Tv ’s commit
timetamp is greater thanTs ’s but smaller thanT ’s start timestamp.
Yet, we defined Ts to be the transaction with the highest commit
timestamp that is smaller than the start timestamp of T . We have
a contradiction, so (k,v) ∈ s . It follows that s is a candidate read
state for every o ∈ΣT : it is a complete state.

Time Order Third, we show that Ts <s T holds. By con-
struction commit(Ts) ≤ start(T). By (R2b) we have that
Ts .commit > T .start ⇒ commit(Ts) > start(T). Taking the
contrapositive, commit(Ts) ≤ start(T)⇒Ts .commit ≤ T .start . By
assumption, real-time values of start and commit are distinct, so
we can strengthen the inequality toTs .commit ≤T .start , and there-
fore: Ts <s T . NO-CONFT (s) Finally, we show that NO-CONFT (s). First,
we show that any transaction corresponding to states between
s and sp (included) must overlap with T . Let that set be Tc . By
construction of e , s andTs , every transactionTc ∈Tc has a commit
timestamp greater than commit(Ts) and smaller than commit(T)
so commit(Ts) ≤ commit(Tc) ≤ commit(T). By construction of
Ts , we know that it is the transaction with the highest commit
timestamp that is smaller or equal to start(T). Any higher commit
timestamp must be greater than start(T). It follows that start(T)≤
commit(Tc) ≤ commit(T) and that Tc necessarily overlaps with T .
By R4, its write-set cannot intersect T ’s. As such, no transaction
in Tc has a write-set that overlaps with T ’s. Hence NO-CONFT (s).

This concludes the proof.
(⇒) Next, we prove: (∃e :∀T ∈T :CTANSI SI (T,e)⇒ANSI SI)

We show that, given an execution e and associated set of transac-
tions T such that every T ∈ T satisfies the commit test, we can
assign to every transaction a start and commit timestamp such
that (R1),(R2),(R3) and (R4) hold.

First, we denote the latest complete state that satisfies
NO-CONFT (s)∧Ts <s T for transactionT as the selected read state (for-
mally ∃s : (COMPLETEe,T (s)∧s

∗−→sT)∧ (∀s ′.COMPLETEe,T (s
′)⇒s ′

∗−→s)).
That state must exist as every T ∈ T satisfies the commit test (by
assumption).

We then assign commit timestamps using the following algo-
rithm: let slatest the last state in e (such that ∄s : slatest −→ s)
, let COMMIT_MAX be the maximum assignable value of any
commit(T), let selected(T) be T ’s selected read state, and finally,
let ts be an array indexed by transaction id that stores the
maximum candidate commit timestamp for every transaction. An
entry in ts[T] represent an upper bound on the final timestamp
commit(T) of a transaction T .

(1) ts[]= {COMMIT_MAX, ... , COMMIT_MAX}
(2) scurr =slatest
(3) Tcurr = Tlatest (where Tlatest) the transaction that

created slatest
(4) max-commit=COMMIT_MAX
(5) do{

(a) commit(Tcurr)=min(max-commit,ts[Tcurr])
(b) max−commit =commit(Tcurr)−δ
(c) sc =selected (Tcurr)

(d) ts[Tc]=min(Tcurr .start ,ts[Tc])
(e) scurr =s for s−→scurr
(f) }

(6) while (scurr exists)
Intuitively, this algorithm assigns a logical commit timestamp

commit(T) to every transaction T that is 1) smaller than the
real-time start timestamp of every transaction that has sT (the
state that T creates) as selected read state 2) smaller than all the
commit timestamps of states that succede sT in the execution.

We can then assign the start timestamp of every transaction
T ∈T to be the commit timestamp of the transactionTc associated
with T ’s selected complete state sc = selected (T) +ϵ where ϵ is a
small constant that is smaller than a timestamp time unit.

We first prove the following lemma:

Lemma C.4. ∀T ,T ′.commit(T)≤ commit(T ′)≡sT
+−→sT ′

Assuming first that sT
+−→ sT ′ : by construction, we as-

sign the commit timestamp of a transaction Ti to be
min(max-commit, ts[Ti]), where max-commit = commit(Tj) − δ
where sTj −→ sTi and hence commit(Ti) ≤ commit(Tj). By transi-

tivity, ∀T ,T ′ ∈ T .sT
+−→ sT ′⇒ commit(T) ≤ commit(T ′). Assuming

instead that commit(T)≤ commit(T ′) and, assuming by contradic-
tion that sT ′

∗−→sT . If T =T ′, it directly follows that T and T ′ must
have the same commit timestamp, which gives us a contradiction.
Otherwise, we have by construction that, given two transactions
Ti and Tj we assign the commit timestamp of a transaction Ti to
bemin(max-commit,ts[Ti]), where max-commit= commit(Tj)−δ
where sTj −→ sTi and hence commit(Ti) ≤ commit(Tj). By transitiv-

ity, sT
+−→ sT ′⇒ commit(T) ≤ commit(T ′), which again gives us a

contradiction.
R1 First, we prove that (R1) holds. Consider an arbitratry trans-

action T in e and let sc be its selected read state. By construction,
start(T) = commit(Tc) where commit(Tc) is defined to be the
minimum T ′.start of all transactions T ′ that have it as selected
read state, including T . It follows trivially that start(T) ≤ T .start
(for T ′=T)

R2 Second, we prove that R2 holds. To prove R2a, consider an
arbitrary transactionT in e and let sc be its selected complete state.

By assumption, we have that C-ORD(Tsp ,T). By induction, one can

easily prove that ∀T ,T ′ ∈ T :T .commit < T ′.commit ⇔ sT
+−→ sT ′

(1). Combined with Lemma C.4, we have ∀T ,T ′ ∈ T :T .commit <

T ′.commit ⇒ sT
+−→ sT ′ ⇒ commit(T) < commit(T ′) so (R2a)

holds. Moreover, as start(T) = commit(Tc) and the selected
read state of T necessarily precedes T in e , it also follows that
start(T)< commit(T). Hence R2c also holds. Finally, we show that
R2b holds by contradiction. Assume that commit(T ′) ≤ start(T)
and that T .start < T ′.commit . As start(T) is equal (modulo ϵ)
to the timestamp of the selected commit state of T , sc we have
commit(T ′) ≤ commit(Tc) By Lemma C.4 and the aforementioned
property (1), it follows that T ′.commit ≤ Tc .commit . By assump-
tion, we have Tc <s T , ak Tc .commit < T .start , and consequently
T ′.commit ≤Tc .commit ≤T .start . But we had T .start <T ′.commit .
We have a contradiction and thus R2b holds.

R3 Third, we prove that R3 holds. We first show that a
transaction T observes the effects of all transactions with
commit(T ′) < start(T) by contradiction. Consider this transaction
T which generates state s when committing. Let sc and Tc be the
selected read state forT . Assume that there exists a transactionT ′
with timestamp commit(T ′) < start(T) whose effects T does not
observe: there exists a key k that is written by two transactions
T ′ (WRITE(k,v’)) and Tv (WRITE(k,v)) such that sTv

+−→ sT ′
∗−→ s

in e and T reads value v . By construction, we know that
start(T)=commit(Tc) so commit(T ′)≤ commit(Tc). It follows that
sT ′
∗−→sc by Lemma C.4 and sT ′

∗−→sc
+−→s (as the selected read state

necessarily precedes s). As T misses the effect of T ′ by reading v ,
we can extend this to sTv

+−→sT ′
∗−→sc

+−→s We know, however, that
(k,v) ∈ sc as sc is a complete read state for T so k <∆(sTv ,sc). Yet,
we hadT ′ write k . We have a contradiction:T observes the effects
of all transactions T ′ with commit(T ′)< start(T).

Next, we show that T does not observe the writes of transac-
tions T ′ with commit(T ′) > start(T). Assume that T observes the
effect of transaction T ′ with commit(T ′) > start(T). As before,
let sc and Tc be the selected read state for T . By construction,
start(T) = commit(Tc) + ϵ , hence commit(Tc) ≤ commit(T ′) and
consequently sTc

+−→ sT ′ by Lemma C.4. We know by assumption
that sTc is the latest complete state such that NO-CONFT (s)∧Ts <s T .
Let o =WRITE(k,v) be the write from T ′ that T observes. As T ′

created version v and sTc
+−→sT ′ holds, (k,v)<sc , so sc cannot be a

read state for o, and as such cannot be a complete state for T . We
have a contradiction. R3 holds.

R4 Fourth, we prove that R4 holds. Consider an arbitratry
transactionT in e and let sc be its selected complete state. A trans-
action T overlaps with committed T ′ if start(T) ≤ commit(T ′) and
commit(T ′) ≤ commit(T). By construction, start(T) = commit(Tc),
so we have commit(Tc) ≤ commit(T ′). By Lemma C.4,
commit(Tc) ≤ commit(T ′) ≤ commit(T) ⇒ sTc

∗−→ sT ′
∗−→ sT .

By NO-CONFT (s) it follows that the writeset of T ′ does not intersect
the writeset of T , so R4 holds.

□

C.3 Strong Session SI
We now prove the following theorem: Theorem 9 (a):
∃e :∀T ∈T :CTSession SI (T,e)≡SSessSI .

Proof. (⇐) First, we prove: ∃e :∀T ∈T :CTSession SI (T,e)⇐
Session SI. We show that a history H consisting of the set
of transactions T implies the existence of an execution
e that contains T such that every T ∈ T satisfies the
commit test: CTSession SI (T,e) = C-ORD(Tsp ,T) ∧ ∃s ∈ Se :

COMPLETEe,T (s)∧NO-CONFT (s)∧ (Ts <s T)∧ (∀T ′
se−−→T :sT ′

∗−→s)

C-ORD(Tsp ,T) ∧ ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s)
holds by an identical proof to that of Theorem 8(a)(⇐).
We do not repeat the proof here and simply show that
(∀T ′ se−−→ T : sT ′

∗−→ s) To do so, we consider, as in C.2, the
execution resulting from applying every transaction in T in the
order of their commit timestamps. More precisely, we have that
∀T ,T ′ ∈ T : commit(T) < commit(T ′) ≡ sT

+−→ sT ′ . Let us consider
a transaction T and let s be the state resulting from applying the
transaction Ts with the highest commit timestamp that is smaller
or equal to start(T). This state is a complete state (as shown in C.2).

Assume by contradiction that there exists a transaction T ′

such that T ′
se−−→ T and s

+−→ sT ′ . By construction, we have that
commit(Ts) ≤ commit(T ′). As s is the state associated with the
transaction with highest commit timestamp that is smaller or
equal to start(T), it follows that commit(T ′) > start(T). But, by as-
sumption (R5)T ′

se−−→T⇒commit(T ′)≤ start(T). We have a contra-
diction, hence (∀T ′ se−−→T :sT ′

∗−→s) holds. This completes the proof.
(⇒) Next, we prove: (∃e : ∀T ∈ T : CTSession SI (T,e) ⇒

Session SI). (R1), (R2), (R3), (R4) hold by an identical proof to
that of Theorem 8(a)(⇒). We consider the same execution e for
which the start/commit timestamps are assigned according to
the algorithm described in the proof. We do not repeat the proof
here and simply show that (R5) holds. To do so, we consider
two transactions T and T ′ such that T ′

se−−→ T and show that
commit(T ′) ≤ start(T). As T and T ′ both satisfy the commit test,
we have that ∀T ′ se−−→ T : sT ′

∗−→ sc where sc is the selected read
state for T . By Lemma C.4, sT ′

∗−→ sc ⇒ commit(T ′) ≤ commit(Tc).
Moreover, we have by construction that start(T)= commit(Tc)+ϵ .
Hence commit(T ′)≤ start(T). This completes the proof.

□

C.4 Strong SI
Proof. We now prove the following theorem: Theorem 7 :

∃e :∀T ∈T :CTStronд SI (T,e)≡Stronд SI .
(⇐) First, we prove: ∃e :∀T ∈T :CTStronд SI (T,e)⇐Stronд SI .

We show that a history H consisting of the set of trans-
actions T implies the existence of an execution e that
contains T such that every T ∈ T satisfies the com-
mit test: CTStronд SI (T,e) = C-ORD(Tsp ,T) ∧ ∃s ∈ Se :

COMPLETEe,T (s)∧NO-CONFT (s)∧ (Ts <s T)∧ (∀T ′<sT :sT ′
∗−→s).

C-ORD(Tsp ,T) ∧ ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) holds by
an identical proof to that of Theorem 8(a)(⇐). We do not repeat
the proof here and simply show that (∀T ′ <s T : sT ′

∗−→ s)
To do so, we consider, as in § C.2, the execution result-
ing from applying every transaction in T in the order
of their commit timestamps. More precisely, we have that
∀T ,T ′ ∈ T : commit(T) < commit(T ′) ≡ sT

∗−→ sT ′ . Let us consider a

transaction T and let s the state resulting from applying the trans-
action Ts with the highest commit timestamp that is smaller or
equal to start(T). This state is a complete state (as shown in § C.2).

Assume by contradiction that there exists a transaction T ′

such that T ′ <s T and s
∗−→ sT ′ . By construction, we have that

commit(Ts) ≤ commit(T ′). As s is the state associated with the
transactionwith highest commit timestamp that is smaller or equal
to start(T), it follows that commit(T ′) > start(T). But, by assump-
tion (R6)T ′<s T⇒commit(T ′)≤ start(T).We have a contradiction,
hence (∀T ′<s T :sT ′

∗−→s) holds. This completes the proof.
(⇒) Next, we prove: (∃e : ∀T ∈ T : CTStronд SI (T,e) ⇒

Stronд SI). (R1), (R2), (R3), (R4) hold by an identical proof to
that of Theorem 8(a)(⇒). We consider the same execution e
for which the start/commit timestamps are assigned according
to the algorithm described in the proof. We do not repeat the
proof here and simply show that R6 holds. To do so, we consider
two transactions T and T ′ such that T ′ <s T and show that
commit(T ′) ≤ start(T). As T and T ′ both satisfy the commit test,
we have that ∀T ′ <s T : sT ′

∗−→ sc where sc is the selected read
state for T . By Lemma C.4, sT ′

∗−→ sc ⇒ commit(T ′) ≤ commit(Tc).
Moreover, we have by construction that start(T)= commit(Tc)+ϵ .
Hence commit(T ′)≤ start(T). This completes the proof.

□

D EQUIVALENCE TO PC-SI AND GSI
In this section, we prove the following theorems:

Theorem 8 (b) ∃e :∀T ∈T :CTANSI SI (T,e)≡GSI (§D.2)
Theorem 9 (b) ∃e :∀T ∈T :CTSession SI (T,e)≡PC-SI (§D.3)

D.1 Elnikety et al. [48] model summary
Every transaction T in this model has a real-time start timestamp,
written start(T) and a real-time commit timestamp, written
commit(T). All the timestamps are distinct.

• snapshot (Ti): the time at which Ti ’s snapshot is taken.
• start (Ti): the time of the first operation of Ti .
• commit (Ti): the time of Ci , if Ti commits.
• abort (Ti): the time of Ai , if Ti aborts.
• end (Ti): the time of either Ci or Ai .
• Tj impacts Ti : writeset (Ti) ∧ writeset (Tj) , ∅ and

snapshot (Ti)≤commit (Tj)<commit (Ti)

Note that start (Ti) and commit (Ti) have the same definition as
Ti .start and Ti .commit , they will be used interchangeably in the
proof.

Definition D.1. Generalized Snapshot Isolation (GSI) For
any history H created by GSI, the following two properties hold
(where i, j, and k are distinct)
D1. (GSI Read Rule) ∀Ti ,X j such that Ri (X j) ∈h :
1-Wj (X j) ∈h and Cj ∈h;
2- commit (Tj)<snapshot (Ti);
3- ∀Tk such thatWk (Xk),Ck ∈ h : [commit (Tk) < commit (Tj) or
snapshot (Ti)<commit (Tk)]
D2. (GSI Commit Rule) ∀Ti ,Tj such that Ci ,Cj ∈h :
4- ¬(Tj impacts Ti).

Definition D.2. Prefix-consistent Snapshot Isolation (PC-
SI) For any history H created by PC-SI, the following two
properties hold (where i,j,k are distinct)
P1. (PC-SI Read Rule) ∀Ti ,X j such that Ri (X j) ∈h :
1-Wj (X j) ∈h and Cj ∈h;
2- commit (Tj)<snapshot (Ti);
3- ∀Tk such thatWk (Xk),Ck ∈ h : [commit (Tk) < commit (Tj) or
snapshot (Ti)<commit (Tk)]
4- Ti ∼Tj and commit (Tj)<start (Ti): commit (Tj)<snapshot (Ti)
P2. (PC-SI Commit Rule) ∀Ti ,Tj such that Ci ,Cj ∈h :
5- ¬(Tj impacts Ti).

D.2 Generalized Snapshot Isolation
We now prove Theorem 8 ∃e : ∀T ∈ T : CTANSISI (T,e) ≡GSI i.e.
C-ORD(Tsp ,T) ∧∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ (Ts <s T) ≡
D1∧D2.

Proof. (⇐) We first prove D1 ∧ D2 ⇒ ∃e : ∀T ∈ T :
CTANSI SI (e,T).

Commit TestWe can construct an execution e such that every
committed transaction satisfies the commit test CTANSI SI (e,T).
By definition, all operations are assigned distinct timestamps
(including start and commit operations). Let i1, ...in be a permu-
tation of 1,2, ...,n such that committed transactions Ti1 , ...,Tin are

totally ordered by their commit time. We construct an execution
e according to the topological order defined above: e : s0→ sTi1 →
sTi2 → ... → sTin and show that ∀Ti j ∈ T : CTANSI SI (e ,Ti j).
Specifically, we prove the following: consider the largest k such
that commit (Tik) < snapshot (Ti j), D1 ∧ D2 ⇒ C-ORD(Tsp (Tj) ,Tj) ∧
COMPLETEe,Tij (sTik

)∧NO-CONFTij (sTik
)∧ (Tik <sTi j) .

Commit Order We first prove that C-ORD(Tsp (Tj) ,Tj) is true. In
the execution, we ordered the transactions by their commit time,
it therefore directly follows that Tsp (Tj) .commit <Tj .commit .

Complete State Next, we prove that COMPLETEe,Tij (sTik
).

Consider the three possible types of operations in Ti j :
(1) External Reads: an operation reads an object version that

was created by another transaction.
(2) Internal Reads: an operation reads an object version that

itself created.
(3) Writes: an operation creates a new object version.

We show that the sTik is included in the read set of each of those
operation types:
(1) External Reads. Let ri j (xiq) read the version for x created by

Tiq where q, j, i.e. Ri j (Xiq) ∈h in the definition of GSI.

We first show that sTiq
∗−→ sTik

. By rule D1-2, we have
commit (Tiq) < snapshot (Ti j). Since k is the largest number
such that commit (Tik) < snapshot (Ti j), we have q ≤ k , and

consequently sTiq
∗−→ sTik

. Next, we argue that the state sTik
contains the object value pair (x ,xiq). Specifically, we argue
that there does not exist a sTim , where q < m ≤ k , such that
Tim writes a new version of x . We prove this by contradiction.
Consider any such m (and note that the execution contains
only committed transactions), we haveWim (Xim) andCim ∈h.
By D1-3, we have either (i) commit (Tim) < commit (Tiq)
or (ii) snapshot (Ti j) < commit (Tim). By assumption,
we have q ≤ m ≤ k . By construction, it follows that
commit (Tim) > commit (Tiq), a contradiction with (i). There-
fore (ii) should hold. However, since m ≤ k , we have
commit (Tim) ≤ commit (Tik). Given that commit (Tik) <
snapshot (Ti j), we have commit (Tim) < commit (Ti j), a con-
tradiction with snapshot (Ti j) < commit (Tim). Neither (i) nor
(ii) holds, we conclude that such m does not exist. Hence we
conclude: (x ,xiq) ∈sTik and therefore sTik ∈RSe (ri j (xiq)).

(2) Internal Reads. Let ri j (xi j) read xi j such that wi j (xi j)
to−−→

ri j (xi j). By definition, the read state set of such an

operation consists of ∀s ∈ Se : s
+−→ sTij . Since

commit (Tik) < snapshot (Ti j) < commit (Ti j), sTik
+−→ sTij

by construction. It trivially follows that sTik ∈RSe (ri j (xi j)).
(3) Writes. Letwi j (xi j) be a write operation. By definition, its read

state set consists of all the states before sTij in the execution.
Hence it also trivially follows that sTik ∈RSe (wi j (xi j)).

Thus sTik ∈
∩

o∈ΣTij
RSe (o), i.e. COMPLETEe,Tij (sTik

).

Distinct Write Sets We now prove the third part of the com-
mit test: NO-CONFTij (sTik

), i.e. (∆(sTik , sTij−1) ∩ WTij = ∅). We
prove this by contradiction. Consider any m, where k < m <

j such that WTim ∩ WTij , ∅. Since k is the largest index
such that commit (Tik) < snapshot (Ti j), we have commit (Tim) ≥
snapshot (Ti j). Furthermore, we have commit (Tim) < commit (Ti j)
by construction. Combining the two inequalities, we have
snapshot (Ti j) ≤ commit (Tim) < commit (Ti j) and consequently
writeset (Tim) ∩ writeset (Ti j) = ∅ by D2(4). Yet, we assumed
WTim ∩WTij , ∅. We have a contradiction. Thus, ∀m,k < m <

j,WTim ∩WTij =∅. We conclude that ∆(sTik ,sTij−1)∩WTij =∅.
Time Order Finally, we prove that Tik <s Ti j . Since

commit (Tik) < snapshot (Ti j) and snapshot (Ti j) ≤ start (Ti j) by
definition, we have commit (Tik) < start (Ti j), i.e. Tik <s Ti j .
We have consequently proved that C-ORD(Tsp (Tij)

,Ti j) ∧
COMPLETEe,Tij (sTik

) ∧ NO-CONFTij (sTik
) ∧ (Tik <s Ti j), and con-

sequently that D1∧D2⇒∃e :∀T ∈T :CTANSI SI (e,T).
(⇒) We next prove ∃e : ∀T ∈ T : CTANSI SI (e,T)⇒ D1∧D2.

Let e be an execution such that ∀T ∈ T : CTANSI SI (T,e), and
H be a history for committed transactions T . Note that since e
satisfies C-ORD(Tsp (T) ,T), the order of transactions in e is the same

as ordering by time, i.e. sT
∗−→sT ′ ≡T .commit <T ′.commit . Now we

assign a snapshot time to each transaction. For any Ti , let sTk be
the state such that COMPLETEe,Ti (sTk) ∧ NO-CONFTi (sTk) ∧ (Tk <s Ti)
(by CTANSI SI (T,e)) and set snapshot (Ti) = commit (Tk) + ϵ ,
where ϵ is a small constant that is smaller than a time unit. The
assigned snapshot time satisfies snapshot (t) ≤ start (t): since
Tk <s Ti , we have commit (Tk)<start (Ti), therefore snapshot (Ti)=
commit (Tk)+ϵ <start (Ti) as ϵ is smaller than a time unit.

D1 First, we prove that D1 is satisfied. Consider x j such
that Ri (x j) ∈ h. Since COMPLETEe,Ti (sTk), we have (x , x j) ∈ sTk ,
therefore the transaction executing Wj (x j) has been applied in
the execution, i.e. sTj

∗−→sTk . Moreover e contains only committed
transactions. HenceWj (x j) ∈ h and Cj ∈ h and consequently that
D1-1 holds. Moreover, since sTj

∗−→sTk , by C-ORD(Tsp (T) ,T), we have
commit (Tj) ≤ commit (Tk) < snapshot (Ti), hence D1-2 is also satis-
fied. We now consider D1-3. For any Tq such thatWq (xq),Cq ∈h,
there can be only two cases: (i) commit (Tq) < commit (Tj), for
which D1-3 is directly satisfied ; (ii) commit (Tq) ≥ commit (Tj):
since (x , x j) ∈ sTk , Tq must be applied after Tk , it follows that
commit (Tq) > commit (Tk)+ϵ = snapshot (Ti). In either case, D1-3
is satisfied. Combining all previous results, we conclude that D1
is satisfied.

D2 Now, we prove that D2 is satisfied. Consider any Tj , there
can only be two cases: writeset (Ti) ∩ writeset (Tj) = ∅ (1) and
writeset (Ti)∩writeset (Tj) , ∅ (2). The first case trivially satisfies
¬(Tj impacts Ti). In the second case, as NO-CONFTi (sTk) holds, we
have either sTj

∗−→ sTk or sTi
∗−→ sTj . If sTj

∗−→ sTk , commit (Tj) ≤
commit (Tk) < snapshot (Ti), and hence that ¬(Tj impacts Ti)

holds. If sTi
∗−→ sTj , we have commit (Ti) ≤ commit (Tj), therefore

¬(Tj impacts Ti) is true. In both cases, D2 holds.
We conclude ∀T ∈ T : CTANSI SI (T,e) ⇒ D1 ∧ D2. This

completes the proof. □

D.3 Prefix-consistent Snapshot Isolation
We now prove Theorem 9 ∃e :∀T ∈T :CTSession SI (T,e)≡PC-SI
i.e. C-ORD(Tsp ,T)∧∃s ∈Se : COMPLETEe,T (s)∧NO-CONFT (s)∧ (∀T ′

se−−→T :

sT ′
∗−→s)≡P1∧P2.

Proof. (⇐)We first prove P1 ∧ P2 ⇒ ∃e : ∀T ∈ T :
CTSession SI (e,T).

Commit TestWe can construct an execution e such that every
committed transaction satisfies the commit test CTSession SI (e,T).
By definition, we assign distinct timestamps to all operations
(including start, commit operations). Let i1,...in be a permutation
of 1,2,...,n such that committed transactions Ti1 ,...,Tin are totally
ordered by their commit time. We construct an execution e
according to the topological order defined above: e : s0 → sTi1 →
sTi2 → ... → sTin and show that ∀Ti j ∈ T : CTSession SI (e ,Ti j).
Specifically, we prove the following: consider the largest k such
that commit (Tik) < snapshot (Ti j), P1 ∧ P2 ⇒ C-ORD(Tsp (Tj) ,Tj) ∧
COMPLETEe,Tij (sTik

)∧NO-CONFTij (sTik
)∧ (∀T ′ se−−→t :sT ′

∗−→sTik
).

Note that since PC-SI rules are strictly stronger than GSI rules
and we construct the execution the same as the proof in §D.2, the
proof of C-ORD(Tsp (Tj) ,Tj) ∧ COMPLETEe,Tij (sTik

) ∧ NO-CONFTij (sTik
)

is identical to the proof in §D.2. We therefore simply prove
that ∀t ′ se−−→ t : st ′

∗−→ sTik
. Consider any Tim

se−−→ Ti j , i.e.
Tim ∼ Ti j and Tim .commit < Ti j .start . By D4, we have that
commit (Tim) < snapshot (Ti j). Since Tik is the largest transaction
whose commit (Tik) < snapshot (Ti j), we have commit (Tim) ≤
commit (Tik). By the execution construction, we have sTim

∗−→sTik
.

(⇒)We next prove ∃e : ∀T ∈ T : CTSession SI (e,T)⇒ P1∧P2.
Let e be an execution such that ∀T ∈ T : CTGSI (T,e), and H
be a history for committed transactions T . Since e satisfies
C-ORD(Tsp (T) ,T), the order of transactions in e is the same as order-

ing by time, i.e. sT
∗−→sT ′ ≡T .commit <T ′.commit . Nowwe assign a

snapshot time to transactions. For any Ti , let sTk be the state such
that COMPLETEe,Ti (sTk)∧NO-CONFTi (sTk)∧ (Tk <s Ti) (by CTGSI (T,e)),
then snapshot (Ti) = commit (Tk) + ϵ , where ϵ is a small constant
that is smaller than a time unit; otherwise, snapshot (Ti) = 0.
The snapshot time assigned satisfies snapshot (T) ≤ start (T):
since Tk <s Ti , we have commit (Tk) < start (Ti), therefore
snapshot (Ti) = commit (Tk) + ϵ < start (Ti). P1-1, P1-2, P1-3
holds by an identical proof to proving D1-1, D1-2, D1-3 of
Theorem 8(b)(⇒). Now we prove P1-4. IfTi ∼Tj and commit (Tj)<

start (Ti), we have Tj
se−−→ Ti , therefore by (∀t ′ se−−→ t : st ′

∗−→ sTik
),

we have sTj
∗−→ sTk . By st

∗−→ st ′ ≡ t .commit < t ′.commit , we have
commit (Tj) < commit (Tk) < snapshot (Ti). Combining all previous
results, we conclude that P1 is satisfied

P2 Now, we prove that P2 is satisfied. Consider any Tj , there
can only be two cases: writeset (Ti) ∩ writeset (Tj) = ∅ (1) and
writeset (Ti)∩writeset (Tj) , ∅ (2). The first case trivially satisfies
¬(Tj impacts Ti). In the second case, as NO-CONFTi (sTk) holds, we
have either sTj

∗−→ sTk or sTi
∗−→ sTj . If sTj

∗−→ sTk , commit (Tj) ≤
commit (Tk) < snapshot (Ti), and hence that ¬(Tj impacts Ti)

holds. If sTi
∗−→ sTj , we have commit (Ti) ≤ commit (Tj), therefore

¬(Tj impacts Ti) is true. In both cases, P2 holds.
We conclude ∀T ∈ T : CTSession SI (T,e) ⇒ P1 ∧ P2. This

completes the proof. □

E EQUIVALENCE TO PL-2+ AND PSI
In this section, we prove that our state-based definition of PSI is
equivalent to the axiomatic formulation of PSI (PSIA) by Cerone et
al. [20] and to the cycle-based specification of PL-2+. Specifically,
we prove the following theorems:

Theorem 10 (a) ∃e :∀T ∈T :CTPSI (T,e)≡¬G1∧¬G-single.
Theorem 10 (b) ∃e :∀T ∈T :CTPSI (T,e)≡PSIA.
Before beginning, we first prove a useful lemma: if an execu-

tion e , written s0 → sT1 → sT2 → ··· → sTn satisfies the predicate
PREREADe (T), then any transactionT that depends on a transaction
T ′ (T ∈ PRECe (T

′)) will always commit after T ′ and all its depen-
dents in the execution. We do so in two steps: we first prove that
T will commit after the transactions that it directly reads from
(Lemma E.1), and then extend that result to all the transaction’s
transitive dependencies (Lemma E.2). Formally

Lemma E.1. PREREADe (T)⇒∀T̂ ∈T :∀T ∈D-PRECe (T̂),sT
+−→sT̂

Proof. Consider any T̂ ∈ T and any T ∈ D-PRECe (T̂). T is
included in D-PRECe (T̂) if one of two cases hold: if ∃o ∈ ΣT̂ ,T =Tsfo
(T̂ reads the value created by T) or sT

+−→sT̂ ∧WT̂ ∩WT ,∅ (t and
T̂ write the same objects and T commits before T̂).
(1) T ∈ {T |∃o ∈ ΣT̂ : T = Tsfo } Let oi be the operation such that

T =Tsfoi . By assumption, we have PREREADe (T). It follows that

∀o,sfo
+−→sT̂ . and consequently that sfoi

+−→sT̂ and sT
+−→sT̂ .

(2) T ∈ {T |sT
+−→sT̂ ∧WT̂ ∩WT ,∅}, trivially we have sT

+−→sT̂ .
□

We now generalize the result to hold transitively.

Lemma E.2. PREREADe (T)⇒∀T ′ ∈ PRECe (T) :sT ′
+−→sT .

Proof. We prove this implication by induction.
BaseCaseConsider the first transactionT1 in the execution.We

want to prove that for all transactionsT that precedeT1 in the exe-
cution sT

∗−→sT1 :∀T ′ ∈ PRECe (T) :sT ′
∗−→sT . As T1 is the first transac-

tion in the execution, D-PRECe (T1)=∅ and consequently PRECe (T)=∅.
We see this by contradiction: assume there exists a transaction
T ∈ D-PRECe (T1), by implication sT

+−→ sT1 (Lemma E.1), which vio-
lates our assumption thatT1 is the first transaction in the execution.
Hence the desired result trivially holds.

Induction Step Consider the i-th transaction in the execution.
We assume that ∀T s.t. sT

∗−→ si the property ∀T ′ ∈ PRECe (T) : sT ′
∗−→

sT holds. In other words, we assume that the property holds for the
first i transactions. We now prove that the property holds for the
first i+1 transactions, specifically, we show that ∀T ′ ∈ PRECe (Ti+1) :
sT ′

∗−→ sTi+1 . A transaction T ′ belongs to PRECe (Ti+1) if one of two
conditions holds: either T ′ ∈ D-PRECe (Ti+1), or ∃tk ∈ T : t ′ ∈
PRECe (Tk)∧tk ∈D-PRECe (Ti+1). We consider each in turn:

• If T ′ ∈D-PRECe (Ti+1): by Lemma E.1, we have sT ′
+−→sTi+1 .

• If ∃tk ∈ D-PRECe (Ti+1) :T ′ ∈ PRECe (Tk): As Tk ∈ D-PRECe (Ti+1), by
Lemma E.1, we have sTk

+−→ sTi+1 , i.e. sTk
∗−→ sTi (sTi directly

precedes sTi+1 in e by construction). The induction hypothesis
holds for every transaction that strictly precedes Ti+1 in e ,

hence ∀tk ′ ∈ PRECe (Tk) : sTk′
+−→ sTk . As T

′ ∈ PRECe (Tk) by con-

struction, it follows that sT ′
+−→sTk . Putting everything together,

we have sT ′
+−→ sTk

+−→ sTi+1 , and consequently sT ′
+−→ sTi+1 . This

completes the induction step of the proof.
Combining the base case, and induction step, we conclude:
PREREADe (T)⇒∀T ′ ∈ PRECe (T) :sT ′

+−→sT . □

E.1 Cerone et al. [20]’s model summary
We note that this axiomatic specification, defined by Cerone et
al. [20?] is proven to be equivalent to the operational specification
of Sovran et al. [53], modulo an additional assumption: that each
replica executes each transaction sequentially. The authors state
that this is for syntactic elegance only, and does not change the
essence of the proof. We provide a brief summary and explanation
of the main terminology introduced in Cerone et al.’s framework.
We refer the reader to [20] for the full set of definitions. The
authors consider a database storing a set of objects Obj = {x ,y,...},
with operations Op = {read (x ,n),write (x ,n) |x ∈ Obj,n ∈ Z}. For
simplicity, the authors assume the value space to be Z.

Definition E.3. History events are tuples of the form (ι, op),
where ι is an identifier from a countably infinite set EventId and
op ∈ Op. Let WEventx = {(ι,write (x , n)) |ι ∈ EventId, n ∈ Z},
REventx = {(ι, read (x)) |ι ∈ EventId, n ∈ Z}, and
HEventx =REventx ∩WEventx .

Definition E.4. A transaction T is a pair (E, po), where
E ⊆HEvent is an non-empty set of events with distinct identifiers,
and the program order po is a total order over E. A history H is
a set of transactions with disjoint sets of event identifiers.

Definition E.5. An abstract execution is a tripleA= (H ,V IS,AR)
where visibilityV IS ⊆H×H is an acyclic relation; and arbitration
AR⊆H×H is a total order such that AR⊇V IS .

For simplicity, we summarize the model’s main notation
specificities:

• Denotes a value that is irrelevant and implicitly existen-
tially quantified.

• maxR (A) Given a total order R and a setA,maxR (A) is the
element u ∈A such that ∀v ∈A.v=u∨ (v,u) ∈R.

• R−1 (u) For a relation R ⊆A×A and an element u ∈A, we
let R−1 (u)= {v |(v,u) ∈R}.

• T ⊢Write x :n T writes to x and the last value written is
n: maxpo (E∩WEventx)= (_,write (x ,n)).

• T ⊢ Read x :n T makes an external read from x , i.e., one
before writing to x , and n is the value returned by the first
such read: minpo (E∩HEventx)= (_,read (x ,n)).

A consistency model specification is a set of consistency axioms
Φ constraining executions. The model allow those histories for
which there exists an execution that satisfies the axioms.

Definition E.6. HistΦ= {H |∃Vis,AR.(H ,AR)⊨Φ}
The authors define the axioms in Table E1. PSIA is then defined

with the following set of consistency axioms.

Definition E.7. PSIA allows histories for which there exists an
execution that satisfies INT, EXT, TRANSVIS and NOCONFLICT:
HistPSI = {H |∃V IS, AR.(H ,V IS, AR) |= INT, EXT, TRANSVIS,
NOCONFLICT}.

INT ∀(E,po) ∈H .∀event ∈E .∀x,n .(event = (_,read (x,n))∧ (po−1 (event)∩HEventx ,∅))⇒maxpo (po−1 (event)∩HEventx)= (_,_(x,n))
EXT ∀T ∈H .∀x,n .T ⊢Read x :n⇒ ((V IS−1 (T)∩{S |S ⊢Write x :_}=∅∧n=0)∨maxAR ((V IS−1 (T)∩{S |S ⊢Write x :_}) ⊢Write x :n)

TRANSVIS VIS is transitive

NOCONFLICT ∀T ,S ∈H .(T ,S∧T ⊢Write x :_∧S ⊢Write x :_)⇒ (T
V IS−−−−→S∨S V IS−−−−→T)

Table E1: PSI Axioms

E.2 PL-2+
Before beginning, we first prove a useful lemma. Let us consider
a history H that contains the same set of transactions T as an ex-
ecution e . The version order for H , denoted as <<, is instantiated
as follows: given an execution e and an object x , xi << x j if and
only if x ∈WTi ∩WTj ∧sTi

∗−→sTj . We show that, if a transactionT ′

is in the depend set of a transaction T (T ′ ∈ PRECe (T)), then there
exists a path of write-read/write-write dependencies from T ′ to T
in the DSG (H). Formally:

Lemma E.8. PREREADe (T) ⇒ ∀T ′ ∈ PRECe (T) : T ′
ww/wr−−−−−−−→

+

T in
DSG (H).

Proof. We improve this implication by induction.
Base Case Consider the first transaction T1 in the execution.

We want to prove that for all transactions T that precede T1 in
the execution ∀T ∈ T such that sT

∗−→ sT1 , the following holds:

∀T ′ ∈ PRECe (T) : T ′
ww/wr−−−−−−−→

+

T in DSG (H). As T1 is the first
transaction in the execution, D-PRECe (T1) = ∅ and consequently
PRECe (T) = ∅. We see this by contradiction: assume there exists a
transaction T ∈ D-PRECe (T1), by implication sT

+−→ sT1 (Lemma E.1),
violating our assumption that T1 is the first transaction in the
execution. ence the implication trivially holds.

Induction Step Consider the i-th transaction in the execution.

We assume that ∀T , s.t. sT
∗−→ sTi , ∀T ′ ∈ PRECe (T) :T ′

ww/wr−−−−−−−→
+

T .
In other words, we assume that the property holds for the first i
transactions. We now prove that the property holds for the first
i + 1 transactions, specifically, we show that ∀T ′ ∈ PRECe (Ti+1) :

T ′
ww/wr−−−−−−−→

+

Ti+1. A transaction T ′ belongs to PRECe (Ti+1) if one
of two conditions holds: either T ′ ∈ D-PRECe (Ti+1), or ∃Tk ∈T :T ′ ∈
PRECe (Tk)∧Tk ∈D-PRECe (Ti+1). We consider each in turn:
• If T ′ ∈ D-PRECe (Ti+1): There are two cases: T ′ ∈ {T |∃o ∈ ΣTi+1 :

t = Tsfo } or, T ′ ∈ {T |sT
+−→ sTi+1 ∧ WTi+1 ∩ WT , ∅}. If

T ′ ∈ {T |∃o ∈ ΣTi+1 : t =Tsfo }, Ti+1 reads the version of an object

that T ′ wrote, hence Ti+1 read-depends on T ′, i.e. T ′
wr−−−→T .

IfT ′ ∈ {T |sT
+−→sTi+1∧WTi+1∩WT ,∅}: trivially, sT ′

+−→sTi+1 . Let
x be the key that is written by T and Ti+1: x ∈WTi+1 ∩WT . By
construction, the history H ’s version order for x is xT ′ <<xTi+1 .
By definition of version order, there must therefore a chain of
ww edges between T ′ and Ti+1 in DSG (H), where all of the
transactions in the chain write the next version of x . Thus:
T ′

ww−−−→
+
Ti+1 holds.

• If ∃Tk :T ′ ∈ PRECe (Tk)∧Tk ∈ D-PRECe (Ti+1). As Tk ∈ D-PRECe (Ti+1),

we conclude , as above that Tk
ww/wr−−−−−−−→

+

Ti+1. Moreover, by
Lemma E.1, we have sTk

+−→ sTi+1 , i.e. sTk
∗−→ sTi (sTi directly

precedes sTi+1 in e by construction). The induction hypothesis

holds for every transaction that precedes Ti+1 in e , hence

∀Tk ′ ∈ PRECe (Tk): Tk ′
ww/wr−−−−−−−→

+

Tk . Noting T ′ ∈ PRECe (Tk), we

see that T ′
ww/wr−−−−−−−→

+

Tk . Putting everything together, we

obtain T ′
ww/wr−−−−−−−→

+

Tk
ww/wr−−−−−−−→

+

Ti+1, i.e. T ′
ww/wr−−−−−−−→

+

Ti+1 by
transitivity.

Combining the base case, and induction step, we conclude:

∀t :∀T ′ ∈ PRECe (T) :T ′
ww/wr−−−−−−−→

+

T . □

Now, we prove Theorem 10 (a) Let I be PSI. Then
∃e :∀T ∈T :CTPSI (T,e)≡¬G1∧¬G-Single

Proof. Let us recall the definition of PSI’s commit test:
PREREADe (T)∧∀o ∈ΣT :∀T ′ ∈ PRECe (T) :o.k ∈WT ′⇒sT ′

∗−→slo

(⇒) First we prove ∃e :∀T ∈T :CTPSI (T,e)⇒¬G1∧¬G-Single.
Let e be an execution that ∀T ∈ T : CTPSI (T,e), and H
be a history for committed transactions T . We first instan-
tiate the version order for H, denoted as <<, as follows:
given an execution e and an object x , xi << x j if and only if
x ∈WTi ∩WTj ∧sTi

∗−→ sTj . It follows that, for any two states such

that (x ,xi) ∈Tm∧ (x ,x j) ∈Tn⇒sTm
+−→sTn .

G1We next prove that ∀T ∈T :CTPSI (T,e)⇒¬G1:
G1a Let us assume that H exhibits phenomenon G1a (aborted

reads). There must exist events wi (xi), r j (xi) in H such that
Ti subsequently aborted. T and any corresponding execution
e , however, consists only of committed transactions. Hence
∀e : ∄s ∈ Se , s .t . s ∈ RSe (r j (xi)): i.e. ¬PREREADe (Tj), there-
fore ¬PREREADe (T). There thus exists a transaction for which the
commit test cannot be satisfied, for any e . We have a contradiction.

G1b Let us assume that H exhibits phenomenon G1b (interme-
diate reads). In an execution e , only the final writes of a transaction
are applied. Hence,∀e : ∄s ∈ Se ,s .t . s ∈ RSe (r (xintermediate)),
i.e. ¬PREREADe (T), therefore ¬PREREADe (T). There thus exists a
transaction T , which for all e , will not satisfy the commit test. We
once again have a contradiction.

G1c Finally, let us assume that H exhibits phenomenon G1c:
DSG (H) must contain a cycle of read/write dependencies. We
consider each possible edge in the cycle in turn:

• Ti
ww−−−→ Tj There must exist an object x such that xi << x j

(version order). By construction, version order inH is consistent
with the execution order e: we have sTi

∗−→sTj .

• Ti
wr−−−→ Tj There must exist a read o = r j (xi) ∈ ΣTj such that

Tj reads version xi written by Ti . By assumption, CTPSI (e,Tj)
holds. By PREREADe (T), we have sfo

+−→ sTj ; and since sfo exists,

sfo =sTi . It follows that sTi
+−→sTj .

If a history H displays phenomena G1c there must exist a chain of
transactions Ti →Ti+1→ ...→Tj such that i = j. A corresponding
cycle must thus exist in the execution e: sTi

∗−→sTi+1
∗−→ ... ∗−→sTj . By

definition however, a valid execution must be totally ordered. We
once again have a contradiction.

G-Single We now prove that ∀T ∈T :CTPSI (T,e)⇒¬G-Single
By way of contradiction, let us assume that H exhibits phenom-

enon G-Single: DSG (H) must contain a directed cycle with exactly

one anti-dependency edge. Let T1
ww/wr−−−−−−−→T2

ww/wr−−−−−−−→ ... ww/wr−−−−−−−→
Tk

rw−−−→ T1 be the cycle in DSG (H). We first prove by induction
that T1 ∈ PRECe (Tk), where Tk denotes the k − th transaction that
succedes T1. We then show that there exist a T ′ ∈ PRECe (Tk) such
that o.k ∈WT ′⇒sT ′

∗−→slo does not hold.
Base caseWe prove thatT1 ∈ PRECe (T2). We distinguish between

two cases T1
ww−−−→T2, and T1

wr−−−→T2.
• If T1

ww−−−→ T2, there must exist an object k that T1 and T2 both
write: k ∈ WT1 and k ∈ WT2 , therefore WT1 ∩WT2 , ∅. By
construction, Ti

ww−−−→Tj ⇔ sTi
∗−→ sTj . Hence we have sT1

∗−→ sT2 .
By definition of D-PRECe (T), it follows that T1 ∈D-PRECe (T2).

• If T1
wr−−−→T2, there must exist an object k such that T2 reads the

version of the object created by transactionT1: o=r (k1). We pre-
viously proved that Ti

wr−−−→Tj⇒sTi
+−→sTj . It follows that sT1

+−→
sT2 and sfo =sT1 , i.e. T1=Tsfo . By definition, T1 ∈D-PRECe (T2).

Since D-PRECe (T2)⊆ PRECe (T2), it follows that T1 ∈ PRECe (T2).
Induction step Assume T1 ∈ PRECe (Ti), we prove that

T1 ∈ PRECe (Ti+1). To do so, we first prove thatTi ∈D-PRECe (Ti+1). We
distinguish between two cases: Ti

ww−−−→Ti+1, and Ti
wr−−−→Ti+1.

• IfTi
ww−−−→Ti+1, there must exist an object k thatTi andTi+1 both

write: k ∈ WTi and k ∈ WTi+1 , thereforeWTi ∩WTi+1 , ∅. By
construction, Ti

ww−−−→Tj⇔sTi
∗−→sTj . Hence we have sTi

∗−→sTi+1 .
By definition of D-PRECe (T), it follows that Ti ∈D-PRECe (Ti+1).

• If Ti
wr−−−→Ti+1, there must exist an object k such that Ti+1 reads

the version of the object created by transaction Ti : o = r (ki).
We previously proved that Ti

wr−−−→ Tj ⇒ sTi
+−→ sTj . It follows

that sTi
+−→ sTi+1 and sfo = sTi , i.e. Ti = Tsfo . By definition,

Ti ∈D-PRECe (Ti+1).
Hence, Ti ∈ D-PRECe (Ti+1). The depends set includes the depend
set of every transaction that it directly depends on: consequently
PRECe (Ti) ⊆ PRECe (Ti+1). We conclude: T1 ∈ PRECe (Ti+1). Combin-
ing the base step and the induction step, we have proved that
T1 ∈ PRECe (Tk).

We now derive a contradiction. Consider the edge Tk
rw−−−→T1 in

the G-Single cycle:Tk reads the version of an object x that precedes
the version written by T1. Specifically, there exists a version xm
written by transactionTm such that rk (xm) ∈ΣTk ,w1 (x1) ∈ΣT1 and
xm << x1. By definition of the PSI commit test for transaction Tk ,
ifT1 ∈ PRECe (Tk) andT1’s write set intersect withTk ’s read set, then
sT1
∗−→slrk (xm) . However, from xm <<x1, we have∀s,s ′,s .t .(x ,xm) ∈

s ∧ (x ,x1) ∈ s ′ ⇒ s
+−→ s ′. Since (x ,xm) ∈ slrk (xm) ∧ (x ,x1) ∈ sT1 ,

we have slrk (xm)
+−→ sT1 . But, we previously proved that T sT1

∗−→
slrk (xm) . We have a contradiction:H does not exhibit phenomenon
G-Single, i.e. ∃e :∀T ∈T :CTPSI (T,e)⇒¬G1∧¬G-Single.

(⇐) We now prove the other direction ¬G1∧¬G-Single⇒∃e :
∀T ∈ T : CTPSI (T,e). We construct e as follows: Consider only
dependency edges in the DSG(H), by ¬G1, there exist no cycle
consisting of only dependency edges, therefore the transactions
can be topologically sorted respecting only dependency edges.
Let i1, ...in be a permutation of 1, 2, ..., n such that Ti1 , ...,Tin
is a topological sort of DSG(H) with only dependency edges.
We construct an execution e according to the topological order
defined above: e :s0→sTi1→sTi2→ ...→sTin .

First we show that PREREADe (T) is true: consider any transaction
T , for any operation o ∈ ΣT . If o is a internal read operation or o
is a write operation, by definition s0 ∈ RSe (o) hence RSe (o) , ∅
follows trivially. Consider the case now where o is a read op-
eration that reads a value written by another transaction T ′.
Since the topological order includes wr edges and e respects the
topological order, T ′

wr−−−→T in DSG (H) implies sT ′
∗−→ sT , then for

any o=r (x ,xT ′) ∈ΣT , sT ′ ∈RSe (o). It follows that RSe (o),∅ and
PREREADe (T) is true. In conclusion: PREREADe (T) holds.

Next, we prove that ∀o ∈ ΣT : ∀T ′ ∈ PRECe (T) : o.k ∈
WT ′ ⇒ sT ′

∗−→ slo holds. For any T ′ ∈ PRECe (T), by Lemma E.2,
sT ′

+−→ sT . Consider any o ∈ ΣT , let T ′ be a transaction such that
T ′ ∈ PRECe (T)∧o.k ∈WT ′ , we now prove that sT ′

∗−→ slo . Consider
the three possible types of operations in T :

(1) External Reads: an operation reads an object version that
was created by another transaction.

(2) Internal Reads: an operation reads an object version that
itself created.

(3) Writes: an operation creates a new object version.
We show that sT ′

∗−→slo for each of those operation types:
(1) External Reads. Let o = r (x ,xT̂) ∈ ΣT read the version for x

created by T̂ , where T̂ ,T . Since PREREADe (T) is true, we have
RSe (o) , ∅, therefore sT̂

+−→ sT and T̂ = Tsfo . From T̂ = Tsfo ,
we have T̂ ∈ D-PRECe (T). Now consider T ′ and T̂ , we have that
sT ′
+−→sT and sT̂

+−→sT . There are two cases:

• sT ′
∗−→ sT̂ : Consequently sT ′

∗−→ sT̂ = sfo
∗−→ slo It follows that

sT ′
∗−→slo .

• sT̂
+−→ sT ′ : We prove that this cannot happen by con-

tradiction. Since o.k ∈ WT ′ , T ′ also writes key xT ′ . By
construction, , sT̂

+−→ sT ′ in e implies xT̂ << xT ′ . There
must consequently exist a chain of ww edges between
T̂ and T ′ in DSG (H), where all the transactions on the
chain writes a new version of key x . Now consider the
transaction in the chain directly after to T̂ , denoted as T̂+1,
where T̂

ww−−−→ T̂+1
ww−−−→

∗
T ′. T̂+1 overwrites the version of x

T reads. Consequently, T directly anti-depends on T̂+1, i.e.
T

rw−−−→T̂+1. Moreover T ′ ∈ PRECe (T), by Lemma E.8, we have

T ′
ww/wr−−−−−−−→

+

T . There thus exists a cycle consists of only one

anti dependency edges as T
rw−−−→ T̂+1

ww−−−→
∗
T ′

ww/wr−−−−−−−→
+

T ,
in contradiction with G-Single. sT ′

∗−→sT̂ holds.

sT ′
∗−→ sT̂ holds in all cases. Noting that sT̂ = slo , we conclude

sT ′
∗−→slo .

(2) Internal Reads. Let o = r (x , xT) read xT such that
w (x , xT)

to−−→ r (x , xT). By definition of RSe (o), we have
slo = sp . Since we have proved that sT ′

+−→ sT , therefore we
have sT ′

∗−→sp =slo (as sp→sT).
(3) Writes. Let o =w (x ,xT) be a write operation. By definition of
RSe (o), we have slo =sp . We previously proved that sT ′

+−→sT .
Consequently we have sT ′

∗−→sp =slo (as sp→sT).
We conclude that, in all cases, CTPSI (T,e)≡ PREREADe (T)∧∀o ∈ ΣT :
∀T ′ ∈ PRECe (T) :o.k ∈WT ′⇒sT ′

∗−→slo . □

E.3 PSI
We now prove the following theorem:

Theorem 10 (b) ∃e :∀T ∈T :CTPSI (T,e)≡PSIA.
We first relate Cerone et al.’s notion of transactions to transac-

tions in our model: Cerone defines transactions as a tuple (E,po)
where E is a set of events and po is a program order over E. Our
model similalry defines transactions as a tuple (ΣT ,

to−−→), where
ΣT is a set of operations, and

to−−→ is the total order on ΣT . These
definitions are equivalent: events defined in Cerone are extensions
of operations in our model (events include a unique identifier),
while the partial order in Cerone maps to the program order in our
model. Finally, we relate our notion of versions to Cerone’s values.

(⇒)We first prove ∃e :∀T ∈T :CTPSI (T,e)⇒PSIA.
Construction Let e be an execution such that ∀T ∈ T :

CTPSI (T,e). We construct AR and V IS as follows: AR is de-
fined as Ti

AR−−−→ Tj ⇔ sTi −→ sTj while V IS order is defined as

Ti
V IS−−−−→Tj ⇔Ti ∈ PRECe (Tj). By definition, our execution is a total

order, hence our constructed AR is also a total order. V IS defines
an acyclic partial order that is a subset of AR (by PREREADe (T) and
Lemma E.2). We now prove that each consistency axiom holds:

INT ∀(E,po) ∈ H .∀event ∈ E.∀x ,n.(event = (_,read (x ,n)) ∧
(po−1 (event)∩HEventx , ∅))⇒maxpo (po−1 (event)∩HEventx) =
(_,_(x ,n)) Intuitively, the consistency axiom INT ensures that the
read of an object returns the value of the transaction’s last write to
that object (if it exists). For any (E,po) ∈H , we consider any event
and x such that (event = (_,read (x ,n))∧ (po−1 (event)∩HEventx ,
∅)). We prove that maxpo (po−1 (event)∩HEventx)= (_,_(x ,n)). By
assumption, (po−1 (event)∩HEventx , ∅)) holds, there must exist
an event such that maxpo (po−1 (event) ∩HEventx). This event is
either a read operation, or a write operation:
(1) If op = maxpo (po−1 (event) ∩ HEventx) is a write operation:

given event = (_,read (x ,n)) and op
po
−−→ event , the equivalent

statement in our model is w (x ,vop)
to−−→ r (x ,n). By definition,

our model enforces that w (k,v ′)
to−−→ r (k,v) ⇒ v = v ′. Hence

vop = n, i.e. op = (_,write (x ,n)), therefore op = (_, _(x ,n)).
Hence INT holds.

(2) If op =maxpo (po−1 (event)∩HEventx) is a read operation, We
write op = (_, read (x ,vop)). The equivalent formulation in
our model is as follows. For event = (_,read (x ,n)), we write
o1 = r (x ,n), and for op, we write o2 = r (x ,vop) with o2

to−−→ o1
where o1,o2 ∈ΣT . Now we consider the following two cases.

First, let us assume that there exists an operation w (k,v) such
that w (k,v)

to−−→ o2
to−−→ o1 (all three operations belong to the

same transaction). Given that
to−−→ is a total order, we have

w (k,v)
to−−→ o1 and w (k,v)

to−−→ o2. It follows by definition of
candidate read state that w (k,v ′)

to−−→ r (k,v)⇒ v = v ′, where
v = n ∧v = vop , i.e. vop = n. Hence op = (_,_(x ,n)) and INT
holds. Second, let us next assume that there does not exist
an operation w (k,v)

to−−→ o2
to−−→ o1. We prove by contradiction

that vop = n nonetheless. Assume that vop , n, and consider
transactions T1 that writes (x ,n), and T2 that writes (x ,vop),
by PREREADe (T) , we know that sfo1 , sfo2 exist. We have
T1 = Tsfo1 and T2 = Tsfo2 . By definition of PRECe (T), we have
T1,T2 ∈ D-PRECe (T) ⊆ PRECe (T), i.e. T1,T2 ∈ PRECe (T). We note that
the sequence of states containing (x ,n) is disjoint from states
containing (x , vop): in otherwords, the sequence of states
bounded by sfo1 and slo1 and sfo2 and slo2 are disjoint. Hence,
we have either sT1

∗−→ slo1
+−→ sT2

∗−→ slo2 , or sT2
∗−→ slo2

+−→ sT1
∗−→

slo1 . Equivalently either T2 ∈ PRECe (T)∧o1.k ∈WT2∧slo1
+−→sT2 ,

or T1 ∈ PRECe (T)∧o2.k ∈WT1 ∧ slo2
+−→ sT1 . In both cases, this

violates CTPSI (T,e), a contradiction. We conclude vop =n, i.e.
op= (_,read (x ,n)), therefore op= (_,_(x ,n)).

We proved that maxpo (po−1 (event)∩HEventx)= (_,_(x ,n)), hence
INT holds.

EXT We now prove that EXT holds for H . Specifically, ∀T ∈
H .∀x ,n.T ⊢ Read x :n⇒ ((V IS−1 (T)∩{S |S ⊢Write x : _} = ∅∧n =
0)∨maxAR ((V IS−1 (T)∩{S |S ⊢Write x :_}) ⊢Write x :n)

We proceed in two steps, we first show that there exist a transac-
tionT that wrote (x ,n), and next we show thatT is the most recent
such transaction. Consider any T ∈H .∀x ,n.T ⊢Read x :n (a exter-
nal read). Equivalently, we consider a transaction T in our model
such that r (x ,n) ∈ ΣT . Let Tn be the transaction that writes (x ,n).
By assumption, PREREADe (T) holds hence sfo exists and sfo = sTn ,
i.e. Tn =Tsfo , as Tn created the first state from which o could read
from. By definition of PRECe (T), we have Tn ∈D-PRECe (T)⊆ PRECe (T),

i.e. Tn ∈ PRECe (T). Moreover, we defined V IS as Ti
V IS−−−−→ Tj ⇔

Ti ∈ PRECe (Tj). Hence, we have Tn
V IS−−−−→ T , and consequently

Tn ∈V IS−1 (T). Sincewrite (x ,n) ∈ΣTn , Tn ⊢Write x :n.
Next, we show that Tn is larger than any other transaction T ′

in AR: T ′
V IS−−−−→T ∧T ′ ⊢Write x : _. Consider the equivalent trans-

action T ′ in our model, we know that T ′ ∈ PRECe (T) (T ′
V IS−−−−→ T)

and x ∈ WT ′ . As o = r (x ,n) ∈ ΣT and T ′ ∈ PRECe (T) ∧o.k ∈ WT ′ ,
CTPSI (T,e) implies that sT ′

∗−→ slo . We note that the sequence of
states containing (x ,n) is disjoint from states containing (x ,xT ′). It
follows that sT ′

∗−→ sfo = sTn . We can strengthen this to say sT ′
+−→

sfo = sTn as T ′ ,Tn . By construction, we have T ′
AR−−−→Tn , i.e. Tn =

maxAR ((V IS−1 (T)∩{S |S ⊢Write x :_}). We conclude, EXT holds.

TRANSVIS IfTi
V IS−−−−→Tj∧Tj

V IS−−−−→Tk , by construction we have
Ti ∈ PRECe (Tj)∧Tj ∈ PRECe (Tk). From Tj ∈ PRECe (Tk), we know, since
precede-set is maintained transitively, that PRECe (Tj) ⊆ PRECe (Tk),
and consequently that Ti ∈ PRECe (Tk). By construction, we have

Ti
V IS−−−−→Tk ., hence we conclude: V IS is transitive.

NOCONFLICT Recall that this axiom is defined as: ∀T , S ∈
H .(T ,S∧T ⊢Write x : _∧S ⊢Write x : _)⇒ (T

V IS−−−−→S∨S V IS−−−−→T)
Consider any T ,S ∈H .(T , S∧T ⊢Write x : _∧S ⊢Writex : _) and
let Ti ,Tj be the equivalent transactions in our model such that
w (x ,xi) ∈ ΣTi and w (x ,x j) ∈ ΣTj and consequently x ∈WTi ∩WTj .
Since e totally orders all the committed transactions, we have
either sTi

+−→ sTj or sTj
+−→ sTi . If sTi

+−→ sTj , it follows from

sTi
+−→ sTj ∧ WTi ∩ WTj , ∅ that Ti ∈ D-PRECe (Tj) ⊆ PRECe (Tj),

i.e. Ti ∈ PRECe (Tj), and consequently T
V IS−−−−→ S . Similarly, if

sTj
+−→ sTi , it follows from sTj

+−→ sTi ∧ WTi ∩ WTj , ∅ that
Tj ∈ D-PRECe (Ti) ⊆ PRECe (Ti), i.e. Tj ∈ PRECe (Ti), and consequently

S
V IS−−−−→T . We conclude: T

V IS−−−−→S∨S V IS−−−−→T , NOCONFLICT is true.
(⇐) Now we prove that PSIA⇒∃e :∀T ∈T :CTPSI (T,e).
By assumption, AR is a total order over T . We construct an

execution e by applying transactions in the same order as AR,

i.e. sTi
+−→ sTj ⇔Ti

AR−−−→Tj and subsequently prove that e satisfies
∀T ∈T :CTPSI (T,e).

Preread First we show that PREREADe (T) is true: consider any
transactionT , for any operation o ∈ΣT . If o is a internal read oper-
ation or o is a write operation, by definition sfo =s0 hence sfo

∗−→sT
follows trivially. On the other hand, consider the case where o is a
read operation that reads a valuewritten by another transactionT ′:
let T and T ′ be the corresponding transactions in Cerone’s model.
We have T ⊢Read x :n and T ′ ⊢Write x :n. Assuming that values
are uniquely identifiable, we have T ′ =maxAR (V IS−1 (T)∩ {S |S ⊢
Write x :_}) by EXT, and consequentlyT ′ ∈V IS−1 (T). AsV IS ⊆AR,
T ′

V IS−−−−→T and consequently T ′
AR−−−→T . Recall that we apply trans-

actions in the same order asAR, hence we have sT ′
+−→sT . Since we

have (x ,n) ∈ sT ′ and sT ′
+−→ sT , it follows that sT ′ ∈ RSe (o), hence

RSe (o),∅. We conclude: for any transactionT , for any operation
o ∈ ΣT , RSe (o) , ∅, hence PREREADe (T) is true. Now consider any
T ∈T , we want to prove that ∀o ∈ΣT :∀T ′ ∈ PRECe (T) :o.k ∈WT ′⇒
sT ′

∗−→ slo . First we prove that ∀T ′ ∈ PRECe (T)⇒T ′
V IS−−−−→T . We pre-

viously proved that PREREADe (T) is true. Hence, by Lemma E.8 we

know that there is a chain T ′
wr /ww−−−−−−−→

+

T . Consider any edge on

the chain: Ti
ww/wr−−−−−−−→Tj :

(1) Ti
ww−−−→ Tj : We have Ti ,Tj ∈ H and (Ti , Tj ∧Ti ⊢Write x :

_ ∧ Tj ⊢ Write x : _), therefore by NOCONFLICT, we have

Ti
V IS−−−−→ Tj ∨Tj

V IS−−−−→ Ti . Note that sTi
∗−→ sTj , we know that

Ti
AR−−−→Tj , and since V IS ⊆AR, we have Ti

V IS−−−−→Tj .

(2) Ti
wr−−−→ Tj . We map the initial values in Cerone et al from

0 to ⊥. Let n be the value that Ti writes and Tj reads.
A transaction cannot write the empty value, i.e. ⊥, to a
key. It follows that Tj ⊢ Read x : n and n , 0. By EXT,
maxAR (V IS−1 (Tj) ∩ {S |S ⊢Write x : _}) ⊢Write x : n. Since
Ti ⊢Write x : n, Ti = maxAR (V IS−1 (Tj) ∩ {S |S ⊢Write x : _})
hold, and consequently Ti ∈V IS−1 (Tj), i.e. Ti

V IS−−−−→Tj .

Now we consider the chain T ′
wr /ww−−−−−−−→

+

t , and we have that

T ′
V IS−−−−→

+

T , by TRANSVIS, we have T ′
V IS−−−−→ T . Now, consider

any o ∈ ΣT such that o.k ∈ WT ′ , let o.k = x , therefore T ′ ⊢
Write x : _. We previously proved that T ′

V IS−−−−→T . Hence we have
T ′ ∈V IS−1 (T)∩{S |S ⊢Write x :_}. Now we consider the following
two cases. If o is an external read, and reads the value (x ,x̂) written
by T̂ . As transactions cannot write an empty value, i.e. ⊥, to a key,
we haveT ⊢Read x : x̂ and x̂ ,0. By EXT,maxAR (V IS−1 (Tj)∩{S |S ⊢
Write x : _}) ⊢ Write x : x̂ . Since T̂ ⊢ Write x : n, we have
T̂ = maxAR (V IS−1 (Tj) ∩ {S |S ⊢Write x : _}) , therefore T ′ AR−−−→ T̂

or T ′ = T̂ . Note that we apply transactions in the same order as
AR, therefore we have sT ′

+−→ sT̂ or sT ′ = sT̂ , i.e. sT ′
∗−→ sT̂ . Since

we proved that PREREADe (T) is true, we have sfo exists and sT̂ =sfo ,

note that by definition sfo
∗−→slo . Nowwe have sT ′

∗−→sT̂ =sfo
∗−→slo ,

therefore sT ′
∗−→slo . If o is an internal read operation or write oper-

ation, then slo =sp (T). SinceT ′ ∈ PRECe (T), by Lemma E.2, we have

sT ′
+−→sT , therefore sT ′

∗−→sp (T)=slo , i.e. sT ′
∗−→slo .

☰

 ⊂

☰

 ⊂
 ⊂

 ⊂

☰
Figure F1: Snapshot-based isolation guarantees hierarchy.
Equivalences are new results (ANSI SI [15], Adya SI [2],
Weak SI [24], Strong SI [24], generalized snapshot isolation
(GSI) [48], parallel snapshot isolation (PSI) [53], Strong Ses-
sion SI [24], PL-2+ (Lazy Consistency) [3], prefix-consistent
SI (PC-SI) [24])

F HIERARCHY
In this section, we prove the existence of the strict hierarchy
described in Figure F1. Specifically, we prove:

Theorem F.1. Adya SI⊂PSI.

Theorem F.2. ANSI SI⊂Adya SI.

Theorem F.3. Strong Session SI⊂ANSI SI.

Theorem F.4. Strong SI⊂ Strong Session SI.

The equivalence results derived from previous appendices
complete the proof.

F.1 Adya SI ⊂ PSI
Theorem F.1 Adya SI⊂PSI.

Proof. Adya SI ⊆ PSI First we prove that Adya SI ⊆ PSI. Specif-
ically, we prove that, if there exists an e such that ∀T ∈ T :
CTAdyaSI (T,e), that same e also satisfies ∀T ∈ T : CTPSI (T,e)
where CTPSI (T,e) = PREREADe (T) ∧ ∀T ′ ▷ T : ∀o ∈ ΣT : o.k ∈
WT ′ ⇒ sT ′

∗−→ slo Consider any T that satisfies the commit test
CTAdyaSI (T,e) = ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) and let
sc be the state that satisfies COMPLETEe,T (s) ∧ NO-CONFT (s). Since
COMPLETEe,t (sc), we have sc ∈

∩
o∈ΣT

RSe (o). It follows that ∀o ∈

ΣT : RSe (o) , ∅ and consequently that PREREADe (T) is satisfied.
Now we consider any T ′ such that T ′ ▶ T , or equivalently,
T ′ ∈ D-PRECe (T) where D-PRECe (T̂) = {T |∃o ∈ ΣT̂ :T =Tsfo }∪{T |sT

+−→
sT̂ ∧WT̂ ∩WT , ∅}. Let us first assume that T ′ ∈ {T̂ |∃o ∈ ΣT :

T̂ = Tsfo } such that ∃o ∈ ΣT : T ′ = sfo . Since T ′ = sfo , we have

that sT ′ ∈RSe (o) and consequently that sT ′
∗−→sc

∗−→slo Assuming
instead that T ′ ∈ {T̂ |sT̂

+−→ sT ∧WT ∩WT̂ , ∅}. As NO-CONFT (sc),

i.e. ∆(sc ,spT)∩WT = ∅ implies that either sT ′
∗−→ s or sT

∗−→ sT ′ is
true, we can conclude that sT ′

∗−→ sc holds, and consequently that
sT ′

∗−→ slo . Combining these two results, we can conclude that if
T ′ ▶ T , sT ′

∗−→ sc . Strengthening this result using the definition
of read state, we have T ′ ▶T ⇒ sT ′

+−→ sT . Taking the transitive
closure, we have that T ′ ▷T ⇒ sT ′

+−→ sT . Now, considering the
definition of ▷: for any T ′ ▷T , either T ′ ▶T , or ∃T̂ :T ′ ▷T̂∧T̂ ▶T .
If T ′ ▶ T , we already proved that sT ′

∗−→ sc . Now considering
∃T̂ :T ′ ▷T̂ ∧T̂ ▶T . We previously proved that T ′ ▷T̂ ⇒ sT ′

+−→ sT̂
and that T̂ ▶T⇒ sT̂

∗−→ sc . Combining these two implications, we

have ∃T̂ :T ′ ▷T̂∧T̂ ▶T⇒sT ′
∗−→sc , and consequently thatT ′ ▷T⇒

sT ′
∗−→ sc . Since sc ∈

∩
o∈ΣT

RSe (o), we have ∀o ∈ ΣT : sc
∗−→ slo . We

have proved ∀T ′ ▷T : ∀o ∈ Σt : sT ′
∗−→ slo , which trivially implies

∀T ′ ▷T :∀o ∈Σt :o.k ∈WT ′⇒sT ′
∗−→slo , i.e. CAUS-VIS(e,T) is satisfied.

Combining all previous results, we have Adya SI ⊆ PSI.
Adya SI , PSI Second, we prove Adya SI , PSI by describing a

set of transactions that satisfy PSI but not Adya SI Consider the five
following transactions T1,T2,T3,T4,T5, where T1 :w (x ,x1)w (y,y1),
T2 : r (x , x1)w (x , x2), T3 : r (y, y1)w (y, y2), T4 : r (x , x2)r (y, y1),
T5 : r (x ,x1)r (y,y2). This set of transactions satisfies PSI as it ad-
mits the following execution e such that all transactions satisfy the

commit test: s0
T1−−→s1

T2−−→s2
T3−−→s3

T4−−→s4
T5−−→s5. In contrast, the afore-

mentioned transactions do not satisfy Adya SI as there does not ex-
ist an execution such that their commit tests are satisfied. Indeed,
to satisfy the commit test of all these transactions, there should
exist complete states s and s ′ for T4 and T5 respectively, where s
should contain values (x ,x2) and (y,y1) , and s ′ values (x ,x1) and
(y,y2). Generating s requires applying transactions T1 and T2 be-
fore applying transactionT3, while generating s ′ requires applying
T1 andT3 before applyingT2. As the execution e is totally ordered,
satisfying both these constraints is impossible, hence there cannot
exist complete states for both T4 and T5. This set of transactions
thus satisfies PSI but not Adya SI. We conclude: Adya SI⊂PSI □

F.2 ANSI SI ⊂ Adya SI
Theorem F.2 ANSI SI⊂Adya SI.

ANSI SI ⊆ Adya SI First we prove that ANSI SI ⊆ Adya
SI. The result follows trivially from the definition of the defini-
tions’ commit tests: ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) =⇒
C-ORD(Tsp ,T)∧∃s ∈Se :COMPLETEe,T (s)∧NO-CONFT (s)∧ (Ts <s T).

ANSI SI ,Adya SINowwe prove that ANSI SI ,Adya SI. Con-
sider the set of transactions:T1 :w (x ,x1),T1 starts at real time 1 and
commits at real time 4;T2 :r (x ,x1),T2 starts at real time 2 and com-
mits at real time 3. The set of transactions satisfy Adya SI as there
exists an execution for which the commit test of all transactions
is satisfied: s0

T1−−→ sT1
T2−−→ sT2 , with s0 being the selected complete

state for T1 and s1 being the selected complete state for T2. How-
ever, it does not satisfy ANSI SI. Given that C-ORD(Tsp ,T) must hold,

the only possible execution is s0
T2−−→ sT2

T1−−→ sT1 . But s0 is not a
valid complete state for T2. As this is the only possible execution,
the aforementioned set of transactions does not satisfy ANSI SI, i.e.
ANSI SI ,Adya SI. Therefore, we conclude that ANSI SI ⊂ Adya SI.

F.3 Strong Session SI ⊂ ANSI SI
Theorem F.3 Strong Session SI⊂ANSI SI.

First, we prove that Strong Session SI ⊆ ANSI SI. The result
follows trivially from the definition of the definitions’ commit
tests: C-ORD(Tsp ,T)∧∃s ∈Se :COMPLETEe,T (s)∧NO-CONFT (s)∧ (Ts <s T)
=⇒ C-ORD(Tsp ,T) ∧ ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ (Ts <s

T)∧ (∀T ′ se−−→T : sT ′
∗−→ s) . Next, we prove that Strong Session SI

, ANSI SI. Consider the set of transactions: T1 :w (x ,x1), T1 starts
at real time 1 and commits at real time 2; T2 : r (x ,x1)w (x ,x2), T2
starts at real time 3 and commits at real time 4; T3 : r (x ,x1), T3
starts at real time 5 and commits at real time 6.T2 andT3 are in the
same session. These transactions satisfy ANSI SI as there exists an
execution e such that the commit test of all transactions is satisfied:
s0

T1−−→ sT1
T2−−→ sT2

T3−−→ sT3 . The execution satisfies C-ORD(Tsp ,T) with
s0 being the satisfying state for T1, s1 being the satisfying state
for T2, s1 being the satisfying state for T3. Due to C-ORD(Tsp ,T),
this is the only possible execution. This execution, however, does
not satisfy Strong Session SI. In this execution, the only possible
complete state for T3 is sT1 . Since T2

se−−→ T3, satisfying Strong
Session SI would require that sT2

∗−→ sT1 , contradicting the order
of state transitions in the execution. Since no other execution
satisfies the commit test for all transactions, the aforementioned
set of transactions does not satisfy Strong Session SI, i.e. Strong
Session SI , ANSI SI. We conclude: Strong Session SI ⊂ ANSI SI.

F.4 Strong SI ⊂ Strong Session SI
Theorem F.4 Strong SI ⊂ Strong Session SI.

First we prove that Strong SI ⊆ Strong Session SI. Specif-
ically, we prove that if there exists an execution e such that
C-ORD(Tsp ,T) ∧∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ (Ts <s T) ∧
(∀T ′ <s T : sT ′

∗−→ s) , that same e also satisfies C-ORD(Tsp ,T)∧∃s ∈
Se : COMPLETEe,T (s)∧NO-CONFT (s)∧ (Ts <s T)∧ (∀T ′

se−−→T : sT ′
∗−→ s).

Let T denote a set of transactions satisfying Strong SI. Consider
an execution e that satisfy CTStronдSI (T,e) (such e must exist by
definition). For each transaction T , consider the state s that satis-
fies COMPLETEe,T (s)∧NO-CONFT (s)∧ (Ts <s T)∧ (∀T ′ <s T : sT ′

∗−→ s),
we prove that s also satisfies ∀T ′ se−−→ T : sT ′

∗−→ s . We know by
assumption that ∀T ′ <s T : sT ′

∗−→ s for every T in e as it is Strong
SI. Moreover, by definition, T ′

se−−→ T ⇒ T ′.commit < T .start , i.e.
T ′ <s T . It thus trivially follows that ∀T ′ se−−→T : sT ′

∗−→ s and con-
sequently that every transaction in e satisfies CTSession SI (T,e),
so Strong SI ⊆ Strong Session SI. Now, we prove that Strong SI ,
Strong Session SI. Consider the set of transactions: T1 :w (x ,x1), T1
starts at real time 1 and commits at real time 2;T2 :r (x ,x1)w (x ,x2),
T2 starts at real time 3 and commits at real time 4; T3 : r (x ,x1), T3
starts at real time 5 and commits at real time 6. No two transac-
tions belong to the same session. These transactions satisfy Strong
Session SI as there exist an execution e such that the commit test of

all transactions is satisfied: s0
T1−−→sT1

T2−−→sT2
T3−−→sT3 . The execution

satisfies C-ORD(Tsp ,T), with s0 being the selected complete state
for T1, s1 the selected complete state for T2 and T3. However, the
set of transactions does not satisfy Strong SI: as C-ORD(Tsp ,T) must

hold, the only possible execution is s0
T1−−→ sT1

T2−−→ sT2
T3−−→ sT3 . The

only possible complete state forT3 is sT1 . SinceT2<s T3, satisfying
Strong SI would require sT2

∗−→sT1 , contradicting the order of state
transitions in the execution. Since no other execution satisfies
the commit test for all transactions, the aforementioned set of
transactions does not satisfy Strong SI, i.e. Strong Session SI ,
ANSI SI. We conclude: Strong SI ⊂ Strong Session SI.

	Abstract
	1 Introduction
	2 Background
	3 A State-based Model
	4 Isolation
	5 Benefits of a state-based approach
	5.1 Minimizing the intuition gap
	5.2 Removing implementation artefacts
	5.3 Identifying performance opportunities

	6 Related work
	7 Conclusion
	References
	A Equivalence to Adya et al.
	A.1 Adya et al. model adya99weakconsis summary
	A.2 Serializability
	A.3 Snapshot Isolation
	A.4 Read Committed
	A.5 Read Uncommitted

	B Equivalence to read-atomic
	B.1 Bailis et al. bailis2014ramp model summary
	B.2 Read Atomic

	C Equivalence to ANSI, Strong and Session SI
	C.1 Berenson/Daudjee et al. berenson1995ansi,daudjee06lazy model summary
	C.2 ANSI SI
	C.3 Strong Session SI
	C.4 Strong SI

	D Equivalence to PC-SI and GSI
	D.1 Elnikety et al. pedone06gsi model summary
	D.2 Generalized Snapshot Isolation
	D.3 Prefix-consistent Snapshot Isolation

	E Equivalence to PL-2+ and PSI
	E.1 Cerone et al. cerone2015framework's model summary
	E.2 PL-2+
	E.3 PSI

	F Hierarchy
	F.1 Adya SI PSI
	F.2 ANSI SI Adya SI
	F.3 Strong Session SI ANSI SI
	F.4 Strong SI Strong Session SI

