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ABSTRACT

Nearly twenty years after the launch of AWS, it remains dif-
ficult for most developers to harness the enormous potential
of the cloud. In this paper we lay out an agenda for a new
generation of cloud programming research aimed at bringing
research ideas to programmers in an evolutionary fashion.
Key to our approach is a separation of distributed programs
into a PACT of four facets: Program semantics, Availablity,
Consistency and Targets of optimization. We propose to mi-
grate developers gradually to PACT programming by lifting
familiar code into our more declarative level of abstraction.
We then propose a multi-stage compiler that emits human-
readable code at each stage that can be hand-tuned by de-
velopers seeking more control. Our agenda raises numerous
research challenges across multiple areas including language
design, query optimization, transactions, distributed consis-
tency, compilers and program synthesis.

1 INTRODUCTION

It is easy to take the public clouds for granted, but we have
barely scratched the surface of their potential. These are
the largest computing platforms ever assembled, and among
the easiest to access. Prior generations of architectural rev-
olutions led to programming models that unlocked their
potential: minicomputers led to C and the UNIX shell, per-
sonal computers to graphical “low-code” programming via
LabView and Hypercard, smartphones to Android and Swift.
To date, the cloud has yet to inspire a programming environ-
ment that exposes the inherent power of the platform.
Initial commercial efforts at a programmable cloud have
started to take wing recently in the form of “serverless”
Functions-as-a-Service. FaaS offerings allow developers to
write sequential code and upload it to the cloud, where it is
executed in an independent, replicated fashion at whatever
scale of workload it attracts. First-generation FaaS systems
have well-documented limitations [46], which are being ad-
dressed by newer prototypes with more advanced FaaS de-
signs (e.g., [8, 81]). But fundamentally, even “FaaS done right”
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is a low-level assembly language for the cloud, a simple in-
frastructure for launching sequential code, a UDF framework
without a programming model to host it.

As cloud programming matures, it seems inevitable that
it will depart from traditional sequential programming. The
cloud is a massive, globe-spanning distributed computer
made up of heterogeneous multicore machines. Parallelism
abounds at all scales, and the distributed systems challenges
of non-deterministic network interleavings and partial fail-
ures exist at most of those scales. Creative programmers are
held back by the need to account for these complexities using
legacy sequential programming models originally designed
for single-processor machines.

We need a programming environment that addresses these
complexities directly, but without requiring programmers to
radically change behavior. The next generation of technology
should evolutionize the way developers program: allow them
to address distributed concerns gradually, working with the
assistance of new automation technologies, but retaining the
ability to manually override automated decisions over time.

1.1 A New PACT for Cloud Programming

Moving forward, we envision decoupling cloud program-
ming into four separate concerns, each with an independent
language facet: Program semantics, Availability, Consistency
and Targets for optimization (PACT).

Program Semantics: Lift and Support. A programmer’s
primary goal is to specify the intended functionality of their
program. Few programmers can correctly write down their
program semantics in a sequential language while also ac-
counting for parallel interleavings, message reordering, par-
tial failures and dynamically autoscaling deployment. This
kind of “hand-crafted” distributed programming is akin to
assembly language for the cloud.

Declarative specifications offer a very different solution,
shielding the programmer from implementation and deploy-
ment details. Declarative programming environments for dis-
tributed computing have emerged in academia and industry
over the past decade [11, 41, 65], but adoption of these “revo-
lutionary” approaches has been limited. Moving forward, we
advocate an evolutionary Lift and Support approach: given a
program specification written in a familiar style, automat-
ically lift as much as possible to a higher-level declarative



Intermediate Representation (IR) used by the compiler, and
encapsulate what remains in UDFs (i.e., FaaS Functions).

Availability Specification. Availability is one of the key
advantages of the cloud. Cloud vendors offer hardware and
networking to deploy services redundantly across multi-
ple relatively independent failure domains. Traditionally,
though, developers have had to craft custom solutions to en-
sure that their code and deployments take advantage of this
redundancy efficiently and correctly. Availability protocols
are frequently interleaved into program logic in ways that
make them tricky to test and evolve. We envision a declar-
ative facet here as well, allowing programmers to specify
the availability they wish to offer independent from their
program semantics. A compiler stage must then synthesize
code to provide that availability guarantee efficiently.

Consistency Guarantees. Many of the hardest challenges
of distributed programming involve consistency guarantees.
“Sophisticated” distributed programs are often salted with
programmer-designed mechanisms to maintain consistency.
We advocate a programming environment that separates
consistency specifications into a first-class program facet,
separated from the basic functionality. A compiler stage can
then generate custom code to guarantee that clients see the
desired consistency subject to availability guarantees. Disen-
tangling consistency invariants from code makes two things
explicit: the desired common-case sequential semantics, and
the relaxations of those semantics that are to be tolerated
in the distributed setting. This faceting makes it easier for
compilers to guarantee correctness and achieve efficiency,
it allows enforcement across compositions of multiple dis-
tributed libraries, and allows developers to easily understand
and modify the consistency guarantees of their code.

Targets for Dynamic Optimization. In the modern cloud,
code is not just compiled; it must be deployed as a well-
configured service across multiple machines. It also must be
able to redeploy itself dynamically—autoscale—to work effi-
ciently as workloads grow and shrink by orders of magnitude,
from a single multicore box to a datacenter to the globe. We
believe cloud frameworks inevitably must lighten this load
for general-purpose developers. We envision an environment
where programmers can specify multi-objective performance
targets for execution, e.g., tradeoffs between billing costs,
latency and availability. From there, a number of implemen-
tation and deployment decisions must be made. This includes
compilation logic like choosing the right data structures and
algorithms for “local,” sequential code fragments, as well as
protocols for message-passing for distributed functionality.
It also includes the partitioning, replication and placement
of code and data across machines with potentially heteroge-
neous resources. Finally, the binary executables we generate

need to include dynamic runtime logic that monitors and
adapts the deployment in the face of shifting workloads.

For all these facets, we envision a gradual approach to
bring programmers on board in an evolutionary manner.
Today’s developers should be able to get initial success by
writing simple familiar programs, and entrusting everything
else to a compiler. In turn, this compiler should generate
human-centric code in well-documented internal languages,
suitable for eventual refinement by programmers. As a start,
we believe an initial compiler should be able to achieve per-
formance and cost at the level of FaaS offerings that users
tolerate today [46], with the full functionality of PACT pro-
gramming. Programmers can then improve the generated
programs incrementally by modifying the lower-level facets
or “hinting” the compiler via constraints.

1.2 Sources of Inspiration and Confidence

Our goals for the next generation of cloud programming
are ambitious, but work over the last decade gives us confi-
dence that we can take significant strides in this direction. A
number of ideas from the past decade inform our approach:

Monotonic Distributed Programming. Monotonicity—the
property that a program’s output grows with its input—
has emerged as a key foundation for efficient, available dis-
tributed programs [45]. The roots of this idea go back to
Helland and Campbell’s crystallization of coordination-free
distributed design patterns as ACID 2.0: Associative, Com-
mutative, Idempotent and Distributed [43]. Subsequently,
CRDTs [78] were proposed as data types with ACI meth-
ods, observing that the ACI properties are those of join-
semilattices: algebraic structures that grow monotonically.
The connection between monotonicity and order-independence
turns out to be fundamental. The CALM Theorem [15, 44]
proved that programs produce deterministic outcomes with-
out coordination if and only if they are monotonic. Hence
monotonic code can run coordination-free without any need
for locking, barriers, commit, consensus, etc. At the same
time, our Bloom language [11, 28] adopted declarative logic
programming for distributed computing, with a focus on a
monotonic core, and coordination only for non-monotone
expressions. Various monotonic distributed language pro-
posals have followed [53, 63, 68]. Monotonic design patterns
have led to clean versions of complex distributed applica-
tions like collaborative editing [83], and high-performance,
consistency-rich autoscaling systems like the Anna KVS [85].

Dataflow and Reactive Programming. Much of the code
in a distributed application involves data that flows between
machines, and event-handling at endpoints. Distributed dataflow
is a notable success story in parallel and distributed comput-
ing, from its roots in 1980s parallel databases [35] through



to recent work on richer models like Timely Dataflow [61]
and efforts to autoscale dataflow in the cloud [51]. For event
handling, reactive programming libraries like React.js [23]
and Rx [62] provide a different dataflow model for handling
events and mutating state. Given these successes and our ex-
perience with dataflow backends for low-latency settings [9,
58, 59] we are optimistic that a combination of dataflow and
reactivity would provide a good general-purpose runtime
target for services and protocols in the cloud. We are also
encouraged by the general popularity of libraries like Spark
and React.js—evidence that advanced programmers will be
willing to customize low-level IR code in that style.

Faceted Languages. The success of LLVM [54] has popular-
ized the idea of multi-stage compilation with explicit internal
representation (IR) languages. We are inspired by the success
of faceted languages and separation of concerns in systems
design, with examples such as the model-view-controller de-
sign pattern for building user interfaces [38], the three-tier ar-
chitecture for web applications [36, 75], and domain-specific
languages such as Halide for image processing pipelines [71].
Dissecting an application into facets enables the compiler de-
signer and runtime developer to choose different algorithms
to translate and execute different parts of the application.
For instance, Halide decouples algorithm specification from
execution strategy, but keeps both as syntactic constructs
for either programmer control or compiler autotuning. This
decoupling has led Halide to outperform expert hand-tuned
code that took far longer to develop, and its outputs are now
used in commercial image processing software. Image pro-
cessing is particularly inspiring, given its requirements for
highly optimized code including parallelism and locality in
combinations of CPUs and GPUs.

Verified Lifting. Program synthesis is one of the most in-
fluential and promising practical breakthroughs in modern
programming systems research [42]. Verified lifting is a tech-
nique we developed that uses program synthesis to formu-
late code translation as code search. We have applied verified
lifting to translate code across different domains, e.g., trans-
lating imperative Java to declarative SQL [26] and functional
Spark [4, 5], translating imperative C to CUDA kernels to
Halide [6] and to hardware description languages [80]. Our
translated Halide code is now shipping in commercial prod-
ucts. Verified Lifting cannot handle arbitrary sequential code,
but our Lift and Support approach should allow us to use it
as a powerful programmer aid.

Client-Centric and Mixed Consistency. Within the enor-
mous literature on consistency and isolation, two recent
thrusts are of particular note here. Our recent work on client-
centric consistency steps away from traditional low-level
histories to offer guarantees about what could be observed
by a calling client. This has led to a new understanding of the
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Figure 1: The Hypro stack.

connections between transactional isolation and distributed
consistency guarantees [29]. Another theme across a number
of our recent results is the composition of services that offer
different consistency guarantees [31, 67, 68]. The composi-
tion of multiple services with different consistency guaran-
tees is a signature of modern cloud computing that needs to
be brought more explicitly into programming frameworks.

1.3 Outline

In this paper we elaborate on our vision for cloud-centric pro-
gramming technologies. We are exploring our ideas by build-
ing a new language stack called Hypro that we introduce
next. The development of HyDRo is part of our methodol-
ogy, but we believe that the problems we are addressing can
inform other efforts towards a more programmable cloud.
In Section 2 we provide a high-level overview of the Hy-
DRo stack and a scenario that we use as a running example
in the paper. In Section 3 we present our ideas for Hybro-
LogicC’s program semantics facet, and in Section 4 we back up
and explore the challenge of lifting from multiple distributed
programming paradigms into HyproLogic. Section 5 dis-
cusses the data model of HyproLogic and our ability to use
program synthesis to automatically choose data representa-
tions to meet performance goals. Section 6 sketches our first
explicitly distributed language facet: control over Availabil-
ity, while Section 7 covers the challenges in the correlated
facet of Consistency. In Section 8 we discuss lowering Hy-
DROLOGIC to the corresponding HyproFLOW algebra on a
single node. Finally, in Section 9 we address the distributed
aspects of optimizing and deploying HYyDROFLOW, subject to
multi-objective goals for cost and performance.



2 HYDRO’S LANGUAGES

HypRo consists of a faceted, three-stage compiler that takes
programs in one or more distributed DSLs and compiles them
to run on a low-level, autoscaling distributed deployment of
local programs in the HyDROFLOW runtime.

To bring a distributed library or DSL to the Hypro plat-
form, we need to lift it to HYDRO’s declarative Intermediate
Representation (IR) language—HyproLogic. Hence our first
stage is the HyDrRAULIC Verified Lifting facility (Section 4),
which automates that lifting as much as it can, encapsulating
whatever logic remains in UDFs.

2.1 The Declarative Layer: HyprROLOGIC

The HyproLogic IR (Section 3) is itself multifaceted as seen
in Figure 1. The core of the IR allows Program Semantics ()
to be captured in a declarative fashion, without recourse to
implementation details regarding deployment or other phys-
ical optimizations. For fragments of program logic that fail
to lift to HyproLogIc, the language supports legacy sequen-
tial code via UDFs executed inline or asynchronously in a
FaaS style. The Availability facet (U) allows a programmer to
ensure that each network endpoint in the application can re-
main available in the face of f failures across specified failure
domains (VMs, data centers, availability zones, etc.) In the
Consistency facet () we allow users to specify their desires
for replica consistency and transactional properties; we use
the term “consistency” to cover both. Specifically, we allow
service endpoints to specify the consistency semantics that
senders can expect to see. The final high-level Targets for Op-
timization facet () allows the developer to specify multiple
objectives for performance, including latency distributions,
billing costs, downtime tolerance, etc.

Given a specification of the above facets, we have enough
information to compile an executable cloud deployment. Hy-
DROLOGIC’s first three facets identify a finite space of satis-
fying distributed programs, and the fourth provides perfor-
mance objectives for optimization in that space.

2.2 Compilation of HyproLogIc

The next challenge is to compile a HyproLogic specification
into an executable program deployable in the cloud. Rather
than generating binaries to be deployed directly on different
cloud platforms, we will instead compile HyproLogic speci-
fications into programs written against APIs exposed by the
Hyprorrow runtime (to be discussed in Section 2.3). Doing
so allows experienced developers to fine-tune different as-
pects of a deployment while simplifying code generation.
We are currently designing the HyprorLow APIs; we envi-
sion them to cover different primitives that can be used to
implement the HyproLogIc facets, such as:

e The choice of data structures for collection types and
concrete physical implementations (e.g., join algorithm)
to implement the semantics facet running as a local
data flow on a single node.

e Partitioning (“sharding”) strategies for data and flows
among multiple nodes, based on the data model facet.

e Mechanisms that together form the isolation and replica
consistency protocols specific to the application.

e Scheduling and coordination primitives to execute data
flows across multiple nodes, such as spawning and
terminating HyprRoFLOW threads on VMs.

e Monitoring hooks inserted into each local data flow
to trigger adaptive reoptimization as needed during
execution.

These primitives cover a lot of design ground, and we
are still exploring their design. A natural initial approach is
to provide a finite set of choices as different API calls, and
combine API calls into libraries that provide similar function-
alities for the compiler or developer to invoke (e.g., different
data partitioning mechanisms). We imagine that the Hyprot-
ysIs compiler will analyze multiple facets to determine which
APIs to invoke for a given application, for instance combining
the program semantics and targets for optimization facets to
determine which data structures and physical implementa-
tions to use. In subsequent sections we illustrate one or more
choices for each. Readers familiar with these areas will hope-
fully begin to see the larger optimization space we envision,
by substituting in prior work in databases, dataflow systems,
and distributed storage. Note also that many of these features
can be bootstrapped in HyproLogIc, e.g., by adapting prior
work on distributed logic for transaction and consensus pro-
tocols [9, 10], query compilation [27], and distributed data
structures [59].

We are designing a compiler called HyDroLYSIS to take
a HyproLogic specification and generate programs to be
executed on the HyDROFLOW runtime. As mentioned, our
initial goal for HYDROLYSIS is to guarantee correctness while
meeting the performance of deployments on commercial
FaaS pipelines. Our next goal is to explore different compila-
tion strategies for HYDROLYSIS, ranging from syntax-directed,
cost-driven translation (similar to a typical SQL optimizer),
to utilizing program synthesis and machine learning for com-
pilation. The faceted design of HyproLoGIc makes it easy
to explore this space: each facet can be compiled indepen-
dently using (a combination of) different strategies, and the
generated code can then be combined and further optimized
with low-level, whole program transformation passes.

2.3 The Executable Layer: HYyDROFLOW

The HyproFLOW runtime (Section 8) is a strongly-typed
single-node flow runtime implemented in Rust. It subsumes



Simple COVID-19 Tracker Pseudocode =

1 | table people(pid, country, contacts, covid, vaccinated)
2 | var vaccine_count

4 | def add_person(pid):
5 people.add(pid, {3}, false, false)

7 | def add_contact(idl, id2):
8 people[id1].contacts.add(people[id2])
9 people[id2].contacts.add(people[id1])

11 | # transitive closure of contacts
2 | def trace(start_id):
3 return people.contacts*

15 | def diagnosed(pid):
people[pid].covid = true
17 alert(p for p in trace(pid))

9 | def likelihood(pid):
Do return covid_predict(people[pid])

P2 | def vaccinate(pid):
D3 people[pid].vaccinated = True
P4 vaccine_count--

Figure 2: A simple COVID-19 tracking application.

ideas from both the dataflow engines common in data pro-
cessing, and the reactive programming engines more com-
monly used in event-driven Ul programming. HYDROFLOW
provides an event-driven, flow-based execution model, with
operators that produce and consume various types including
collections (sets, relations, tensors, etc.), lattices (counters,
vector clocks, etc.) and traditional mutable scalar variables.
HybprOFLOW executes within a transducer network [15]
(Section 3.1). This event model allows for very high efficiency:
as in the high-performance Anna KVS [85], all state is thread
local and HyproFLow does not require any locks, atomics, or
other coordination for its own execution. Another advantage
of the transducer model is the clean temporal semantics. As
discussed in Section 3.1, all state updates are deferred to
end-of-tick and applied atomically, so that handlers do not
experience race conditions within a tick. Non-deterministic
ordering arises only via explicit asynchronous messages.

2.4 A Running Example

As a running example, we start with a simplified backend
for a COVID-19 tracking app. We assume a front-end appli-
cation that generates pairwise contact traces, allows medical
organizations to report positive diagnoses, and alerts users
to the risk of infection. Sequential pseudocode is in Figure 2.

The application logic starts with basic code to add an
entry to the set people. The add_contact function records
the arrival of a new contact pair in the contacts list of
both people involved. The utility function trace returns

the transitive closure of a person’s contacts. Upon diagnosis,
the diagnosed function updates the state and sends an alert
to the app for every person transitively in contact. Next up
is the likelihood function, which allows recipients of an
alert to synchronously invoke an imported black-box ML
model covid_predict, which returns a likelihood that the
virus propagated to them through the contact graph.

Our final function allocates a vaccine from inventory to a
particular person. We will revisit this example shortly, lifted
into HyproLogIc.

3 THE PROGRAM SEMANTICS FACET

In HYDRO, our “evolutionary” approach is to accept programs
written in sequential code or legacy distributed frameworks
like actors and futures. In a best-effort fashion, we lift these
programs into a higher-level Internal Representation (IR)
language called HyproLogic. Over time we envision a de-
sire among some programmers for a more “revolutionary”
approach involving user-friendly syntax that maps fairly
directly to HyproLogic or HyDROFLOW and their more opti-
mizable constructs. The IR syntax we present here is prelim-
inary and designed for exposition; we leave the full design
of HyproLogIc syntax for future work.

We want our IR to be a target that is optimizable, gen-
eral and programmer-friendly. In the next few sections we
introduce the IR and the ways in which it is amenable to
distributed optimizations. In Appendix A we demonstrate
generality by showing how various distributed computing
models can compile to HyproLoGIc.

Figure 3 shows our running example in a Pythonic ver-
sion of HyproLogIc. The data model is presented in lines 1
through 5, discussed further in Section 5. The program se-
mantics (Section 3.1) are specified in lines 7 through 35, with
the consistency facet (Section 7) declared inline for the han-
dler at Line 31 that does not use the default of eventual.
Availability (Section 6) and Target facets (Section 9) appear
at the end of the example.

3.1 HybproLoacic Semantics

HyproLogic’s program semantics begin with its event loop,
which is based on the transducer model in Bloom [11]. Hy-
DROLOGIC’s event loop considers the current snapshot of
program state, which includes any new inbound messages
to be handled. Each iteration (“tick”) of the loop uses the
developer’s program specification to compute new results
from the snapshot, and atomically updates state at the end of
the tick. All computation within the tick is done to fixpoint.
The snapshot and fixpoint semantics together ensure that
the results of a tick are independent of the order in which
statements appear in the program.



— Simple COVID-19 Tracker App in Pythonic HypRoLoGIC =

class Person: (pid: int, country: string,
contacts: Set(&Person), covid: bool, vaccinated: bool
key=pid, partition=country)

table people: Person

var vaccine_count: int

g s w N =

7 | on add_person(pid: int):
8 people.merge(Person(pid)) # monotonic mutation
9 return OK

11 | on add_contact(p: Person, pl: Person):

2 p.contacts.merge(p1) # monotonic mutation
3 pl.contacts.merge(p) # monotonic mutation
14 return OK

6 | query transitive(p: Person, pl1: Person): # monotonic query
7 {(p, p1) for p in people for p1 in p.contacts}
8 {(p, p2) for (p, p1) in transitive for p2 in pl.contacts}

D0 | on trace(p: Person):
al return (p2 for (p, p2) in transitive(p, _)

P3 | on diagnosed(pid: int):
P4 people[pid].covid.merge(true) # monotonic mutation
D5 send alert(p: Person) {p for p in trace(pid)}

D7 | from covid_xmission_model import covid_predict
P38 | on likelihood(pid: int):
9 return covid_predict(people[pid])

B1 | on vaccinate(pid: int, consistency={serializable;

2 vaccine_count >= @; people.has_key(pid)}):
33 people[pid].vaccinated.merge(True) # monotonic mutation
34 vaccine_count := vaccine_count - 1 # NON-monotonic mutation

5 return OK

7 | availability:

8 default: { domain = AZ, failures = 2 }
B9 likelihood: { domain = AZ, failures =1 }
W1 | target:
2 default: { latency = 100ms, cost = 0.0lunits }
3 likelihood: { processor = GPU, cost = @.lunits }

Figure 3: A simple COVID-19 tracking application in a Pythonic
HyproLogic syntax. Each on handler has faceted specifications of
consistency, availability and deployment either in the definition (as
is done here with consistency specs) or defined in a separate block.

The notion of endpoints and events should be familiar to
developers of microservices or actors. Unlike microservices,
actors or Bloom, HyDRoLoGIC’s application semantics pro-
vide a simple “single-node” model—a global view of state, and
a single event loop providing a single sequence (clock) of iter-
ations (ticks). This single-node metaphor is part of the facet’s
declarative nature—it ignores issues of data placement, repli-
cation, message passing, distributed time and consistency,
deferring them to separable facets of the stack.

Basic statements in HyproLoGIC’s program semantics
facet come in a few forms:

1
2
3

— Queries derive information from the current snapshot.
Queries are named and referenceable, like SQL views, and
defined over various lattice types, including relational tables.
Line 17 represents a simple query returning pairs of Persons,
the second of whom is a contact in the first. As in Datalog,
multiple queries can have the same name, implicitly defining
a merge of results across them. Lines 17 and 18 are an exam-
ple, defining the base case and inductive case, respectively,
for graph transitive closure!. A query g may have the same
name as a data variable g, in which case the contents of data
variable g are implicitly included in the query result.

— Mutations are requests to modify data variables based on
the current contents of the snapshot. Following the trans-
ducer model, mutations are deferred until the end of a clock
“tick”—they become visible together, atomically, once the
tick completes. Mutations take three forms. A lattice merge
mutation as in lines 8,12,13, or 33 monotonically “merges
in” the lattice value of its argument. The traditional bare
assignment operator :=, as in line 34 represents an arbitrary,
likely non-monotonic update. A query g with the same name
as a data variable q implicitly replaces (mutates) g at end of
tick; this mutation is monotonic iff the query is monotonic.

— Handlers begin with the keyword on, and model reactions
to messages. Seen within the confines of a tick, though, a han-
dler is simply syntactic sugar for HyDRo statements mapped
over a mailbox of messages corresponding to the handler’s
name. The body of a handler is a collection of HyproLogIc
statements, each quantified by the particular message being
mapped. For example, the add_person handler on Line 7 is
syntactic sugar for the HyproLogic statements:
\people.merge(Person(a.pid) for a in add_person)

\send add_person<response>(message_id: int, payload: Status):
\ {(a.message_id, OK) for a in add_person}

The implicit mailbox add_person<response> is used to send
results to the caller of an add_purpose API—e.g., to send the
HTTP status response to a REST call.

— UDFs are black-box functions, and may keep internal state
across invocations. An example UDF, covid_predict, can
be seen in the likelihood handler of line 28. UDFs cannot
access HyDRoLoGIc variables and should avoid any other
external, globally-visible data storage. Because UDFs can be
stateful and non-idempotent, each UDF is invoked once per
input per tick (memoized by the runtime), in arbitrary order.

— Send is an asynchronous merge into a mailbox. As with
mutations, sends are not visible during the current tick. Un-
like mutations, sends might not appear atomically—each
individual object sent from a given tick may be “delayed” an

'HyproLoaIc supports recursion and non-monotonic operations (with
stratified negation) for both relations and lattices. These features are based
on Bloom! and the interested reader is referred to [28] for details.



unbounded number of ticks, appearing non-deterministically
in the specified mailbox at any later tick. Sends capture the
semantics of unbounded network delay. Line 25 provides an
internal example, letting the compiler know that we expect
alerts to be delivered asynchronously. As another example,
we can rewrite the likelihood handler of line 28 to use a
remote Faa$ service. This requires sending a request to the
service and handling a response:

on async_likelihood(pid:int, isolation=snapshot)
send FaaS((covid_predict, handler.message_id, find_person(pid)))

send async_likelihood<response>((handler.message_id,

‘on covid_predict<response>(al_message_id: int, result: bool):
| al_message_id, result))

HyproLogIc statements can be bundled into blocks of
multiple statements, as in the bodies of the add_contact
and vaccinate handlers. Blocks can be declared as object-
like modules with methods to scope naming and allow reuse.
Blocks and modules are purely syntactic sugar and we do
not describe them further here.

4 LIFTING TO HYDROLOGIC

We aim for HyproLoGIc to be an evolutionary, general-
purpose IR that can be targeted from a range of legacy design
patterns and languages, while pointing the way toward cod-
ing styles that take advantage of more recent research.

Our goal in the near term is not to convert any arbitrary
piece of code into an elegant, easily-optimized HyproLoGIc
program. In particular, we do not focus on lifting existing
“hand-crafted” distributed programs to HyproLogIic. We
have a fair bit of experience (and humility!) about such a
general goal. Instead we focus on two scenarios for lifting:

Lifting single-threaded applications to the cloud: Many
applications consist largely of single-threaded logic, but
would benefit from scaling—and autoscaling—in the cloud. In
our earlier work, we have had success using verified lifting
to convert sequential imperative code of this sort into declar-
ative frameworks like SQL [26], Spark [4, 5] and Halide [6].
One advantage of sequential programs—as opposed to hand-
coded multi-threaded or distributed “assembly code”—is that
we do not have to reverse-engineer consistency semantics
from ad hoc patterns of messaging or concurrency control
in shared memory. Some interesting corpora of applications
are already written in opinionated frameworks that assist
our goals. For example, applications that are built on top of
object-relational mapping (ORM) libraries such as Rails [75]
and Django [36] are essentially built on top of data defini-
tion languages (e.g., ActiveRecord [1]), which makes it easy
to lift the data model, and sometimes explicit transactional
semantics as well. ORM-based applications also often serve

as backends for multiple clients and need to scale over time—
Twitter is a notorious example of a Rails app that had to be
rewritten for scalability and availability.

Evolving a breadth of distributed programming frame-
works: There are existing distributed programming frame-
works that are fairly popular, and our near-term goal is to
embrace these programming styles. Simple examples include
Faa$ interfaces and big-data style functional dataflow like
Spark. Other popular examples for asynchronous distributed
systems include actor libraries (e.g., Erlang [37], Akka [7],
Orleans [22]), libraries for distributed promises/futures (e.g.,
Ray [69] and Dask [32] for Python), and collective communi-
cation libraries like that of MPI [70]. Programs written with
these libraries adhere to fairly stylized uses of distributed
state and computation, which we believe we can lift rela-
tively cleanly to HyproLogIc. In Appendix A we share our
inijtial thoughts and examples in this direction.

Our goals for lifting also offer validation baselines for the
rest of our research. If we can lift code from popular frame-
works, we can auto-generate a corpus of test cases. HYybro
should aim to compete with the native runtimes for these
test cases. In addition, lifting to HyproLogic will hopefully
illustrate the additional flexibility HYypro offers via faceted
re-specification of consistency, availability and performance
goals. And finally, success here across different styles of
frameworks will demonstrate the viability of our stack as
a common cloud runtime for multiple styles of distributed
programming, old and new.

5 HYDROLOGIC’S DATA MODELING

HyproLogic data models consist of four components: 1) a
class hierarchy that describes how persistent data is struc-
tured, 2) relational constraints, such as functional depen-
dencies, 3) persistent collection abstractions like relations,
ordered lists, sets, and associative arrays, and 4) declarations
for data placement across nodes in distributed deployments.
For instance, Lines 1-5 in Figure 3 show an example of
persistent data specification for our Covid application. The
data is structured as Person objects, each storing an integer
pid that serves as a unique id (key), along with a set of refer-
ences to other Persons that they have been in contact with.
Line 3 illustrates an optional partition value to suggest
how Person objects should be partitioned across multiple
nodes. (HyproLogic uses the class’s unique id to partition
by default). Line 4 then prescribes that the Persons are to
be collectively stored in a table keyed on each person’s pid
that is publicly accessible by all functions in the program.
Partitioning allows developers to hint at ways to scatter
data; a similar syntax for locality hints is available. These
hints are not required, however: HybROLOGIC programmers
can define their data model without needing to know how



their data will be stored in the cloud. The goal of Hybro
is to take such user-provided specifications and generate a
concrete implementation afterwards.

5.1 Design Space

As part of compilation, we need to choose an implemen-
tation of the data model facet. For example in our Covid
tracker we might store Person objects in memory using an
associative array indexed on each person’s pid, with each
person’s contacts field stored as a list with only the pids
of the Person objects. Obviously this particular implemen-
tation choice has tradeoffs with more normalized choices,
depending on workload.

In general, a concrete data structure implementation con-
sists of two components: choosing the container(s) to store
persistent data (e.g., a B+-tree indexed on a field declared
in one of the persistent classes), and determining the access
path(s) given the choices for containers (e.g., an index or full
container scan) when looking up a specific object.

We envision that there will be multiple algorithms to gen-
erate concrete implementations. These can range from a
rule-driven approach that directly matches on specific forms
of queries and determines the corresponding implementa-
tion (e.g., for programs with many lookup queries based
on id, use an associative array to store Person objects), to
a synthesis-driven approach that enumerates different im-
plementations based on a grammar of basic data structure
implementations [48] and a cost model. Access paths can
then be determined based on how the containers are selected.

5.2 Promise and Challenges

We have designed a data structure synthesizer called Chest-
nut in our earlier work [76, 88], focusing on database-backed
web applications that are built using ORM libraries. Similar to
HyproLogic, Chestnut takes in a user-provided data model
and workload specification, and synthesizes data structures
to store persistent data once it is loaded into memory. Syn-
thesis is done using an enumeration-based approach based
on a set of provided primitives. For example, if a persistently
stored class contains N attributes, Chestnut would consider
storing all objects in an ordered list, or in an associative ar-
ray keyed on any of the N unique attributes, or split the N
attributes into a subset that is stored in a list, and the rest
stored in a B+-tree index. The corresponding access path
is generated for each implementation. Choosing among the
different options is guided by a cost model that estimates the
cost of each query that can potentially be issued by the ap-
plication. Evaluations using open-source web apps showed
that Chestnut can improve query execution by up to 42Xx.
Searching for the optimal data representation is reminis-
cent of the physical design problem in data management

research, and there has been a long line of work on that
front [3] that we can leverage. There has also been work done
on data structure synthesis in the programming systems re-
search community [55, 57] that focuses on the single-node
setting, with the goal to organize program state as relations
and persistently store them as such.

Synthesizing data structures based on HybroLoGIC spec-
ifications will raise new challenges. First, we will need to
design a data structure programming interface that is ex-
pressive enough for the program specifications that users
will write. Next, we will need a set of data structure “build-
ing blocks” that the synthesizer can utilize to implement
program specifications. Such building blocks must be com-
posable such that new structures can be designed, yet not too
low-level that makes it difficult to verify if the synthesized
implementation satisfies the provided specifications.

In addition, synthesizing distributed data structures will re-
quire new innovations in devising cost models for data trans-
fer and storage costs, and reasoning about data placement
and lookup mechanisms. New synthesis and verification al-
gorithms will need to be devised in order to handle both
aspects efficiently. Finally, workload changes (both client re-
quest rates and cloud service pricing) motivate incremental
synthesis, where initial data structures are generated when
the program is deployed, and gradually refined or converted
to other implementations based on runtime properties.

6 THE AVAILABILITY FACET

The availability facet starts with a simple programmer con-
tract: ensure that each application endpoint remains available
in the face of f independent failures. In this discussion we
assume that failures are non-Byzantine. The definition of
independence here is tied to a user-selected notion of failure
domains: two failures are considered independent if they
are in different failure domains. Typical choices for failure
domains include virtual machines, racks, data centers, or
availability zones (AZs). In line 38 of Figure 3 we specify that
our handlers should tolerate faults across 2 AZs. In line 39
we override that spec for the case of the 1ikelihood handler,
an ML routine that requires expensive GPU reservations, for
which we trade off availability to save cost.

6.1 Design Space

The natural methodology for availability is to replicate ser-
vice endpoints—execution and state—across failure domains.
This goes back to the idea of process pairs in the Tandem com-
puting systems, followed by the Borg and Lamport notions
of state machine replication, and many distributed systems
built thereafter. For example, when compiling the handler
for the add_contact endpoint in line 11 of Figure 3, we can
interpose HyproLoaic implementing a load-balancing client



proxy module that tracks replicas of the endpoint, forwards
requests on to f + 1 of them, and makes sure that a response
gets to the client.

Another standard approach is for backend logic to repli-
cate its internal state—often by generating logs or lineage
of state mutation events for subsequent replay. We could
do this naively in our example by matching each mutation
statement with a log statement.

6.2 Promise and Challenges

Whether using replication or replay, availability is funda-
mentally achieved by redundancy of state and computation.
The design of that redundancy is typically complicated by
two issues. The first is cost. In the absence of failure, redun-
dancy logic can increase latency. Worse, running an identical
replica of a massive service could be massively expensive. As
a result, some replication schemes reduce the cost of replicas
by having them perform logic that is different from—but
semantically equivalent to—state change at the main service.
A standard example is to do logical logging at the storage
level, without redundantly performing application behavior.
In general, it would of course be challenging to synthesize
sophisticated database logging and recovery protocols from
scratch. But simpler uses of activity logs for state replication
are an increasingly common design pattern for distributed
architectures [20, 39, 50], and use of these basic log-shipping
patterns and services could offer a point in the optimization
space of latency, throughput and resource consumption that
differs from application-level redundancy.

The second complication that arises immediately from
availability is the issue of consistency across redundant state
and computation, which we address next with its own facet.

7 THE CONSISTENCY FACET

The majority of distributed systems work has relegated con-
sistency issues to the storage or memory layer. But the past
decade has seen a variety of clever applications (shopping
carts [33], collaborative editing systems [83], gradiant de-
scent [72], etc.) that have demonstrated massive performance
and availability benefits by customizing consistency at the
application layer. In HyprO we aim to take full programs—
including compositions of multiple independent modules—
and automatically generate similarly clever, “just right” code
to meet application-specific consistency specifications.

The idea of raising transactional consistency from storage
to the programming language level is familiar from object
databases [16] and distributed object systems. Liskov’s Argus
language [56] is a canonical example, with each distributed
method invoked as an isolated (nested) transaction, strictly
enforced via locking and two-phase commit. This provides
strong correctness properties—unnecessarily strong, since

not every method call in a distributed application requires
strong consistency or perfect isolation. From our perspective
today, Argus and its peers passed up the biggest question they
raised: if all the application code is available, how little en-
forcement can the compiler use to provide those semantics?
And what if those semantics are weaker than serializability?

As seen in the example of Figure 3, HyproLogIc allows
consistency to be specified at the level of the client API
handlers. Like all our facets, consistency can be specified
inline with the handler definition (as in Figure 3), or in a
separate consistency block. In practice, applications are
built from code written by different parties for potentially
different purposes. As a result the original consistency specs
provided for different handlers may be heterogeneous within
a single application. What matters in the end is to respect
the (possibly heterogeneous) consistency that clients of the
application can observe from its public interfaces.

In Figure 3, the add_person handler uses default eventual
consistency. This ensures that if the two people in the argu-
ments are not physically co-located, then each person (and
each replica) can be updated without waiting for any others.

As a different example, the vaccinate handler specifies
serializability and a non-negative vaccine_count con-
straint. We might be concerned that serializability for this
handler will require strong consistency from other handlers.
Close analysis shows this is not the case: vaccinate is the
only handler that references vaccine_count, and all ref-
erences to people are monotonic and hence reorderable—
including the mutation in vaccinate. Hence if vaccinate
completes for some pid in any history, there is an equivalent
serial history in which vaccinate(pid) runs successfully
with the same initial value of vaccine_count and the same
resulting value of both vaccine_count and people.

7.1 Design Space

In HyproLogIc we enable two different types of consis-
tency specifications: traditional history-based guarantees,
and application-centric invariants. History-based guaran-
tees are prevalent today, with widely agreed-upon semantics.
For example, serializability, linearizability, sequential consis-
tency, causal consistency, and others specifically constrain
the ordering of conflicting operations and in turn define
“anomalies” that applications can observe. The second type
of consistency annotation we allow is application-centric,
and makes use of Hydrologic’s declarative formulation. Past
work has demonstrated that invariants are a powerful way
for developers to precisely specify what guarantees are neces-
sary at application level [18, 21, 30, 45, 60, 74, 79, 84]. These
include motonicity invariants that guarantee convergent
outcomes, or isolation invariants for predicates on visible
states—e.g., positive bank accounts or referential integrity.



7.2 Promise and Challenges

Many challenges fall out from an agenda of compiling ar-
bitrary distributed code to efficiently enforce consistency
invariants. Based on work to date, we believe the field is ripe
for innovation. Here we highlight some key challenges and
our reasons for optimism.

Metaconsistency Analysis: Servicing a single public API
call may require crossing multiple internal endpoints with
different consistency specifications. This entails two chal-
lenges: identifying the possible composition paths, and ensur-
ing metaconsistency: the consistency of heterogeneous con-
sistency specs along each path. The first problem amounts to
dataflow analysis across HyproLogic handlers; this is easy
to do conservatively in a static analysis of a HyproLogic
program, though we may desire more nuanced conditional
solutions enforced at runtime. The question of metaconsis-
tency is related to our prior work on mixed consistency of
black-box services [31, 67, 68]. In the HYDRO context we may
use third-party services, but we also expect to have plenty of
white-box HyproLogIc code, where we have the flexibility
to change the consistency specs across modules to make
them consistent with the consistency of endpoint specifica-
tions. Our recent work on client-centric consistency offers a
unified framework for reasoning about both transactional
isolation and distributed consistency guarantees [29].

Consistency Mechanisms: Given a consistency require-
ment, we need to synthesize code to enforce it. There are
three broad approaches to choose from. The first is to rec-
ognize when no enforcement is required for a particular
code block—examples include the monotonicity and invari-
ant confluence analyses mentioned above. Another is for the
compiler to wrap or “encapsulate” state with lattice meta-
data that allows for local (coordination-free) consistency
enforcement at each endpoint—this is the approach in our
work on the Cloudburst FaaS [81] and Hydrocache [86]. The
third approach is the traditional “heavyweight” use of coor-
dination protocols, including barriers, transaction protocols,
consensus-based logs for state-machine replication and so
on. The space of enforcement mechanisms is wide, but there
are well-known building blocks in the literature that we can
use to start on our software synthesis agenda here.

Consistency Placement: Understanding consistency specs
and mechanisms is not enough—we can also reason about
where to invoke the mechanism in the program, and how
the spec is kept invariant downstream. This flexibility arises
when we consider consistency at an application level rather
than as a storage guarantee. As a canonical example, the
original work on Dynamo’s shopping carts was coordination-
free except for “sealing” the final cart contents for checkout
[11, 33, 43]. Conway [28] shifted the sealing to the end-user’s
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browser code where it is decided unilaterally (for “free”) in an
unreplicated stage of the application. When shopping ends,
the browser ships a compressed manifest summarizing the
final content of the cart. Maintaining the final cart state at the
replicas then becomes coordination-free as well: each replica
can eagerly move to checkout once its contents match the
manifest. Alvaro systematized this sealing idea in Blazes [12];
more work is needed to address the variety of coordination
guarantees we wish to enforce and maintain.

Clearly these issues are correlated, so a compiler will have
to explore the space defined by their combinations.

8 THE HYDROFLOW IR

Like many declarative languages, to execute HyproLoGIC
we translate it down to a lower-level algebra of operators
that can be executed in a flow style on a single node, or
partitioned and pipelined across multiple nodes (Section 9).
Most of these operators are familiar from relational algebra
and functional libraries like Spark and Pandas. Here we focus
on the unique aspects of the HyproLogic algebra.

8.1 Design Space

The HyprorLow algebra has to handle all the constructs of
HyproLogIcC’s event loop. One of the key goals of the Hy-
DROFLOW algebra design is a unification of dataflow, lattices
and reactive programming. Typical runtimes implement a
dataflow model of operators over streaming collections of
individual items. This assumes that collection types and their
operators are the primary types in any program. We want to
accommodate lattices beyond collection types. For example,
a COUNT query takes a set lattice as input and produces an
integer lattice as output; we need the output of that query
to “pipeline” in the same fashion as a set. In addition, to cap-
ture state mutation we want to adapt reactive programming
models (e.g., React.js and Rx). that provide ordered streams
propagating changes to individual values over time.

In deployment, a HYDRO program involves HYDROFLOW
algebra fragments running at multiple nodes in a network,
communicating via messages. Inbound messages appear at
HyDpROFLOW ingress operators, and outbound messages are
produced by egress operators. These operators are agnostic
to networking details like addressing and queueing, which
are parameterized by the target facet. However, as a working
model we can consider that a network egress point in Hy-
DROFLOW can be parameterized to do explicit point-to-point
networking, or a content-hash-based style of addressing. Asa
result, local HyDROFLOW algebra programs can participate as
fragments of a wide range of deployment models, including
parallel intra-operator partitioning (a la Exchange or MapRe-
duce) as well as static dataflows across algebraic operators,
or dynamic invocations of on-demand operators.



Martin Kleppmann @martinkl - Nov 12, 2020

Today in “distributed systems are hard": | wrote down a simple CRDT
algorithm that | thought was "“obviously correct” for a course I'm teaching.
Only 10 lines or so long. Found a fatal bug only after spending hours trying
to prove the algorithm correct. %

Figure 4: On the trickiness of manual checks for monotonic-
ity. The full thread includes pseudocode and fixes [52].

8.2 Promise and Challenges

A program in HyproLogic can be lowered (compiled) to
a set of single-node HYyprOFLOW algebra expressions in a
straightforward fashion, much as one can compile SQL to
relational algebra. Our concern at this stage of lowering is
scoped to single-node, in-memory performance; issues of
distributed computing are deferred to Section 9. The design
space here is similar to that of traditional query optimiza-
tion, and classical methods such as Cascades are a plausible
approach [40]. We are also considering more recent results
in program synthesis here, since they have shown promise
in traditional query optimization [24, 26].

The design of the HyDROFLOW algebra is a work in progress,
and achieving a semantics that unifies all of its aspects is
non-trivial. In addition, two other challenges arise naturally.

Monotonicity typechecking: Current models for mono-
tonic programming like CRDT libraries expect programmers
to guarantee the monotonicity of their code manually. This
is notoriously tricky—see Figure 4. Bloom! attempted to
simplify this problem by replacing monolithic CRDTs with
monotone compositions of simpler lattices, but correctness
was still assumed for the basic lattices and composition func-
tions. We wish to go further, providing an explicit monotone
type modifier, and a compiler that can typecheck monotonic-
ity. Guarantees of monotonicity can be exploited to ensure
guarantees from the consistency facet (Section 7) as part of
the Optimization facet (Section 9).

Representation of flows beyond collections: Algebras
defined for a collection type C<T> (e.g., relational algebra on
set<tuple>) are often implemented in a dataflow of opera-
tors over the underlying element type T, or over incremental
batches of elements. This differential approach is well-suited
for operators on C<T> that have stateless implementations
over T—e.g., map, select and project. Other operators require
stateful implementations that use ad-hoc internal memory
management to rebuild collections of type C<T> across invo-
cations over type T. This makes it difficult for a compiler to
check properties like determinism or monotonicity. More-
over, in HYDROFLOW we want to expand flow computation
beyond collection types to lattices and reactive scalar val-
ues. Hence we need to support operators that view inputs
differentially or all-at-once, providing clear semantics for
both cases, and allowing properties like monotonicity to be
statically checked by a compiler.
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Copy efficiency: In many modern applications and systems,
the majority of compute time is spent in copying and for-
matting data. Developers who have built high-performance
query engines know that it is relatively easy to build a simple
dataflow prototype, and quite hard to build one that makes
efficient use of memory and minimizes the cost of data copy-
ing and redundant work. Taking a cue from recent systems
like Timely Dataflow [61], we use the ownership properties
of the Rust language to help us carefully control how data is
managed in memory along our flows.

9 THE TARGET FACET

After specifying various semantic aspects of the application,
the final facet describes the targets for optimization that the
cloud runtime should achieve, as described in Section 1.1.
Such targets can include a cost budget to spend on running
the application on the cloud, maximum number of machines
to utilize, specific capabilities of the hosted machines (e.g.,
GPU on board), latency requirements for any of the handlers,
etc. We imagine that the user will provide a subset of these
configuration parameters and leave the rest to be determined
by HYDROLYSIS.

For example, lines 41-43 in Figure 3 show the targets
for our COVID application. Line 42 specifies the default
latency/cost goals for handlers; line 43 specializes this for
machine-learning-based 1ikelihood handler, dictating the
use of GPU-class machines with a higher budget per call.

Compared to the current practice of deployment configura-
tions spread across platform-specific scripts [13, 66], program
annotations [73], and service level agreements, HybroLoGIC
allows developers to consolidate deployment-related targets
in an isolated program facet. This allows developers to easily
see and change the cost/performance profiles of their code,
and enables HyproLogic applications to be deployed across
different cloud platforms with different implementations.

9.1 Design Space

Given a HyproLogiIc specification, the HyDRoOLYSIS compiler
will attempt to find an implementation that satisfies the pro-
vided constraints subject to the desired overall objectives. As
discussed in Section 2, Hypro will first generate an initial
implementation of the application based on the previously
described facets. The initial implementation would have var-
ious aspects of the application determined: algorithms for
data-related operations, replication and consistency proto-
cols, etc. What remains are the runtime deployment aspects
such as mapping of functions and data to available machines.

For instance, given the code in Figure 3, HyDpro can for-
mulate the runtime mapping problem as an integer program-
ming problem, based on our prior work [25, 87]. Such a
mapping problem can be formulated as a dynamic program



partitioning problem. Suppose at any given time we have
M different types of machine configurations to choose from,
and n; represents the number of instances we will use for
machine of type i. We then have the following constraints:

e latency(add_person, n;) < 100ms. The latency incurred
by hosting add_person on n; instances of type i machines
must be less than the specified value. We have one con-
straint for each pair of handler and machine type, and
Figure 3 shows a shortcut using the default construct
while overriding it for the 1ikelihood handler.

e cost(add_person, n;) < 0.01. The cost of running add_person

on n; instances of type i machines must be less than the
specified value. The value can either be specified by the
end user or provided by the hosting platform.

e 3., n; > 0. Allocate some machines to fulfill the workload.

The overall objective depends on the user specification,
for instance minimizing the total number of machines used
(3; n;), or maximizing overall throughput of each handler
f; while executed on n; machines (3; ; tput(f;, n;)). More
sophisticated objectives are possible, for instance incurring
up to a fixed cost over a time period [14].

As formulated above, our integer programming problem
relies on having models to estimate latency, throughput,
and cost of running each function given machine type and
number of instances. Solving the problem gives us the values
of each n;, i.e., the number of instances to allocate for each
machine configuration. Given that program objectives or
resource costs can vary as the application executes in the
cloud, we might need to periodically reformulate the problem
based on the data available. Predicting or detecting when a
reformulation is needed will be interesting future work.

Note that the above integer program might not have a
solution, e.g., if the initial implementations were too costly to
meet the given targets. If this arises, HYDRO can ask previous
components to choose other implementations and reiterate
the mapping procedure. This iterative process is simplified
by decomposing the application into facets, allowing Hybro
to revert to a previous search state during compilation.

9.2 Promise and Challenges

Our problem formulation above is inspired by prior work
in multi-query optimization [77], multi-objective optimiza-
tion [82] and scheduling tasks for serverless platforms [49].
Our faceted setting, however, also raises new challenges.

Cost modeling: Our integer programming problem formu-
lation relies on having accurate cost models for different
aspects of program execution on the cloud (e.g., latency pre-
diction). While cost prediction has been a classic research
topic in data management, much of the prior work has fo-
cused on single and distributed relational databases. The
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cloud presents new challenges as functions can move across
heterogeneous machines, and aspects such as machine prices
and network latencies can vary at any time.

Solution enumeration: As mentioned earlier, our faceted
approach allows Hypro to easily backtrack during compila-
tion, should an initial strategy turn out to be infeasible given
the configuration constraints. Implementing backtracking
will rely on an efficient way to enumerate different imple-
mentations based on the previously described facets, and
being able to do so efficiently in real time. This depends
on the algorithms used to generate the initial implemen-
tations, for instance by considering types of query plans
that were previously bypassed during code generation, or
asking solvers to generate another satisfiable solution if for-
mal methods-based algorithms are used. We will also need
feedback mechanisms to interact with the user, should the
provided specifications prove too stringent.

Adaptive optimization: One of the reasons for deploying
applications on the cloud is to leverage the cloud’s elasticity.
As a consequence, the implementation generated by Hy-
pro will likely need to change over time. While HyDRrRO’s
architecture is designed to tackle that aspect by not having
hard-wired rules for code generation, we will also devise
new runtime monitoring and adaptive code generation tech-
niques, in the spirit of prior work [17, 25, 34].

10 CONCLUSION

We are optimistic that the time is ripe for innovation and
adoption of new technologies for end-user distributed pro-
gramming. This is based not only on our assessment of re-
search progress and potential, but also the emerging compe-
tition among cloud vendors to bring third-party developers
to their platforms. We are currently implementing the Hy-
DROFLOW runtime, and exploring different algorithms to lift
legacy design patterns to HyproLogic. Our next goals are
to design the compilation strategies from HybroLogic to
HyprOFLOW programs, and to explore the compilation of
application-specific availability and consistency protocols.
We are also contemplating related research agendas in se-
curity and developer experience including debugging and
monitoring. There are many research challenges ahead, but
we believe they can be addressed incrementally and in paral-
lel, and quickly come together in practical forms.
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A LIFTING LEGACY DESIGN PATTERNS

We aim for HyproLogic to be a general-purpose IR that
can be targeted from a range of input languages. In this
section, we provide initial evidence that HyproLogGIc can
be a natural target for code written in a variety of accepted
distributed design patterns: actors, futures, and MPI. We
provide working implementations of all code from the paper
at https://github.com/hydro-project/cidr2021.

A.1 Actors

The Actor model has a long history [47]. In a nutshell, an
actor is an object with three basic primitives [2]: (a) exchange
messages with other actors, (b) update local state, and (c)
spawn additional actors. Like other object abstractions, ac-
tors have private, encapsulated state. Actors are often im-
plemented in a very lightweight fashion running in a single
OS process; actor libraries like Erlang can run hundreds of
thousands of actors per machine. At the same time, the asyn-
chronous semantics of actors makes it simple to distribute
them across machines.

Actors are like objects: they encapsulate state and han-
dlers. HyproLogic does not bind handlers to objects, but
we can enforce that when lifting by generating a Hypro-
LogIc program in which we have an Actor class keyed by
actor_id, and each handler’s first argument identifies an
actor_id that associates the inbound message with a partic-
ular Actor instance. The HyproLocic to emulate spawning
an actor simply creates a new Actor instance with a unique
ID and runs any initialization code to associate initial state
with the actor. In keeping with other actor implementations,
each actor is very lightweight. HyproLogic allows us to
optionally specify availability, consistency and deployment
for our actors’ handlers. HypRrROLYSIS can choose to how to
partition/replicate actors across machines.

Actor frameworks provide event loops, and at first blush it
is straightforward to map an actor method into HypRroLOGIC.
Consider an actor method do_foo(msg) with an RPC-like
behavior in Erlang style:

1| do_foo(msg) ->
2 ‘ foo(msg);

This translates literally into a HyproLogic handler:

A Simple Actor Method in HyproLoGIc
1 | on do_foo(actor_id, msg):
2| return foo(msg)

RPC is a good match to the transducer model where code
fragments are bracketed by send and receive. But actors
are not transducers. In particular, they can issue blocking
requests for messages at any point in their control flow. In
the next listing, note that the actor first runs the function

15

m_pre(msg), then waits to receive a message in the mybox
mailbox, after which it runs m_post on the message it finds:

1 | m(msg) ->

2| m_pre(msg)

3| receive

4 ‘ {mybox, newmsg} ->
5 m_post (newmsg)
6] end.

We can translate this into two separate handlers in Hy-
DROLOGIC, but we need to make sure that (a) the state of the
computation (heap and stack) after m_pre runs is preserved,
(b) m_post can run from that same state of computation, and
(c) that the handler doesn’t do anyting else while waiting for
newmsg. Coroutines are a common language construct that
provides convenient versions of (a) and (b), and are found
in many host languages for actors (including C# for Orleans
and Scala for Akka). The third property (c) can be enforced
across HyproLoaic ticks by a status variable in the actor?:

—mm  Mid-Method Message Handling in HYDROLOGIC =

on m(actor_id:
actors[actor_id].state

1 int, msg):

2 ‘ := m_pre(msg)
3 \ actors[actor_id].waiting := true

4 ‘on m_receive_mybox(actor_id: int, newmsg):
5 \ result = m_post(actors[actor_id].state, newmsg)
6 | actors.delete([actor_id])

7| return result

Note that this HyproLogic has to use non-monotonic
mutation to capture the (arguably undesirable!) notion of
blocking that is implicit in a synchronous receive call.

A.2 Promises and Futures

Another common language pattern for distributed messaging
is Promises and Futures; this has roots in the actor literature
as well [19], but often appears independently. The basic idea
is to spawn an asynchronous function call with a handle for
the computation called a Promise, and a handle for the result
called a Future. In the basic form, sequential code generates
pairs of Promises and Futures, effectively launching the com-
putation of each Promise in a separate thread of execution
(perhaps on a remote machine), and continuing to process
locally until the Future needs to be resolved. We take an
example from the Ray framework in Python:

1 \futures = [f.remote(i) for i in range(4)]

2 |x =280

3 | print(ray.get(futures))

The function f is invoked as a promise for the numbers 0
through 3 via Ray’s f. remote syntax; four futures are imme-
diately stored in the array futures. The function g() then
runs locally while the promises execute concurrently and
remotely. After g() completes, the futures are resolved (in

The attentive reader will note that we have elided a bit of bookkeeping
here that buffers new inbound messages to m while the actor is waiting.


https://github.com/hydro-project/cidr2021

batch, in this case) by the ray.get syntax. In this simple
example, futures are little more than a syntactic sugar for
keeping track of asynchronous promise invocations. The
translation to HyproLogiIc is straightforward. It could be
sugared similarly to Ray if desired, but we show it in full
below. Much like our mid-method receipt for actors, we im-
plement waiting across HyproLogIc ticks with a condition
variable.

Promises/Futures in HyproLoGgic )
import promises from PromisesEngine

var waiting
on start:
send promises(handle: int, f, i: int):
{(unique_id(), f, i) for i in range(4)})
x :=g(0)
waiting := true

on futures(handle: int, result).len() >= 4:
print([f.result for f in futures])
futures.delete()
waiting := false

- ® © o N U A WwN =

Promise/Future libraries vary in their semantics, and it’s
relatively easy to generate HyproLogic code for each of
these semantics. For example, note that promises and futures
are data, so we can implement semantics where they can
be sent or copied to different logical agents (like our actors
above). Similarly, we can support a variety of “kickoff” se-
mantics for promises. Our example above eagerly executes
promises, but we could easily implement a lazy model, where
pending promises are placed in a table until future requests
come along.

A.3 MPI Collective Communications

MPI is a standard Message Passing Interface for scientific
computing and supercomputers [64]. While this domain per
se is not a primary target for HyproLogic, the “collective
communication” patterns defined for MPI are a good suite of
functionality that any distributed programming environment
should support.

The MPI standard classifies these patterns into the follow-
ing categories:
One-to-All, in which one agent contributes to the result,
but all agents receive the result. The two basic patterns are
Bcast (which takes a value and sends a copy of it to a set of
agents) and Scatter (which takes an array and partitions it,
sending each chunk to a separate agent).

All-to-One, in which all agents contribute to the result, but
one agent receives the result. The basic patterns are Gather
(which assembles data from all the agents into a dense array)
and Reduce (which computes an aggregate function across
data from all agents).

All-to-All, in which all agents contributes to and receive
the result. This includes Allgather (similar to gather but
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all agents receive all the data and assemble the result array),
Allreduce (similar to reduce except the result arrives at all
agents) and Alltoall (all processes send and receive the
same amount of data to each other).

These operations map very naturally into HybroLoGIC.
Assume we start with a static table agents containing the
set of relevant agentIDs.

. MPIcollective communication in HyproLoGgic )
table agents(agent_id: int, key=agent_id)
query acount int:

agents.count ()
table gathered(request_id: int, ix: int, val,

tombstone: bool,key=(request_id, ix))

query gcount(req_id: int, cnt: int):

(req_id, gathered[req_id].count())

~o s wN =

9 | on mpi_bcast(msg_id: int, msg):
0 send mpi_bcast_channel(agent_id: int, msg_id, int, msg):
1 {(a.aid, msg_id, msg} for a in agents))

3 | on mpi_scatter(req_id: int, arr):
4 send mpi_scatter_channel(agent_id: int, req_id: int,

5 subarray):

6 chunksz = arr.len()/acount

7 if chunksz > 1:

8 {(i, req_id, arr[range(i*chunksz, (i+1)*chunksz - 1)1)
9 for i in acount }

o else:

D1 {(i, req_id, arr[i]) for i in arr.len() }

D3 | on mpi_gather(req_id: int, ix: int, val):
D4 gathered.merge(req_id, ix, val)
D5 if (gcount[reg_id] >= acount):

D6 result = gathered[req_id].array_agg(val, order=ix)
7 gathered[req_id].tombstone.merge(true)

P8 return result

0 | on mpi_reduce(req_id: int, ix: int, val, lambda):

31 gathered.merge(req_id, ix, val)

2 if (gcount[req_id] >= acount):

3 result = reduce(lambda, gathered[req_id])

B4 gathered[req_id].tombstone.merge(true)
return result

a

37 | on mpi_allgather(req_id: int, ix: int, val):

8 result = mpi_gather(req_id, ix, val)
39 if (result):
1o send mpi_bcast(req_id, result)

12 | on mpi_allreduce(req_id: int, ix: int, val, lambda):

13 result = mpi_reduce(req_id, ix, val)
ha if (result):
U5 send mpi_bcast(req_id, result)

Note that these are naive specifications, and there are
various well-known optimizations that can be employed by
Hyprovysis, including tree-based or ring-based mechanisms.
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