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Abstract—This paper presents the design and evaluation of
Wendy, the first Byzantine consensus protocol that achieves
optimal latency (two phases), linear authenticator complexity, and
optimistic responsiveness. Wendy’s core technical contribution is
a novel aggregate signature scheme that allows leaders to prove,
with constant pairing cost, that an operation did not commit. This
No-commit proof addresses prior liveness concerns in protocols
with linear authenticator complexity (including view change),
allowing Wendy to commit operations in two-phases only.

I. INTRODUCTION

Blockchains and cryptocurrencies have become a popular
tool for decentralized trust in a wide-variety of applications,
from payment systems to healthcare and supply chains. At
the core of these systems are byzantine-fault tolerant (BFT)
consensus protocols [1]. A BFT consensus protocol ensures
that a set of mutually distrustful participants will reach agree-
ment on the same sequence of operations. Existing protocols,
however, map poorly to the blockchain ecosystem. Diem [2],
for instance, Facebook’s new payment network, targets large
numbers of geo-distributed participants, often on mobile de-
vices. It thus requires a protocol that scales well with the
number of participants and can tolerate the varying latencies
of cross-continental links [3]. Current solutions (Table I)
suffer from at least one of the following deficiencies: a)
incurring cryptographic costs (referred to as authenticator
complexity [4]) that grow quadratically with the number of
participants [5], [6], b) incurring additional round-trips [4], c)
lacking optimistic responsiveness (their latency depends on a
fixed worst case network delay bound rather than on the actual
network delay) [7], [8], or d) requiring prohibitively-expensive
cryptography [9].

At first glance, it would seem that the tradeoffs made by ex-
isting BFT protocols are fundamental: that linear authenticator
complexity necessarily comes at the cost of additional phases
or reduced responsiveness. This paper shows otherwise. We
present Wendy, a new BFT consensus protocol that achieves all
of optimal latency (two rounds of communication), optimistic
responsiveness, and linear authenticator complexity. To the
best of our knowledge, Wendy is the first system to achieve
all three properties.

The primary bottleneck of existing Byzantine consensus
protocols is the view-change, the mechanism through which
new leaders are replaced. Prior work considered view changes
to be rare, and for leaders to be stable. Concerns about fairness
and frontrunning [10] point to a need in blockchain systems
to rotate leaders frequently, thus increasing the frequency of
view changes and requiring them to be fast. Specifically, the
view change logic is tasked with preserving all committed

or ongoing operations in the consensus log from the old to
the new leader. Therein lies the key challenge: a new leader
must prove to all other replicas that the set of committed
operations it proposes to include in the new view is up-to-
date. Otherwise replicas will remain locked on the proposal
they believe is the most recent. PBFT [5] unlocks replicas
in a straightforward manner: it provably includes all received
proposals. This comes at a cost: O(n2) messages must be
verified (no linearity) [11], [12]. Convincing skeptical replicas
without this quadratic cost is more challenging as a leader
could intentionally omit the most recent proposal in the view
change. Tendermint [7] and Casper FFG [8] sidestep this
issue by making an additional network synchrony assumption
(no optimistic responsiveness) and asserting that, after a fixed
upper bound ∆, all honest nodes will have necessarily received
the most recent committed proposal. HotStuff [4] makes no
such assumption, but instead must add a third communication
round (suboptimal latency).

Wendy takes a different approach. It relies on explicit no-
commit proofs that allow the leader to prove to other replicas,
in a single round-trip and only when necessary, that their
locked proposal was not committed. Crucially, we present a
novel aggregate signature scheme that ensures that such a no-
commit proof only requires two cryptographic pairings [14] to
verify, in keeping with the ethos of linearity. When compared
to HotStuff, in a wide-area network, Wendy achieves 33%
lower latency and comparable throughput. No-commit proofs
have constant verification time, which in the presence of
byzantine attackers ensures that performance remains high,
even at scale.

In summary, we make the following contributions:
1) A new aggregate signature scheme tailored specifically

for no-commit proofs, with constant pairing cost. This
new building block and the new no-commit proof con-
struct it enables, we believe, is of independent interest.

2) We use this no-commit proof to design the first BFT pro-
tocol, Wendy, that can commit operations in two round-
trips, while providing linear authenticator complexity and
optimistic responsiveness.

3) We implement and evaluate Wendy, and demonstrate
latency improvements over HotStuff while maintaining
comparable throughput.

II. BACKGROUND

This work focuses on leader-based, partially synchronous
BFT protocols, which assume an upper-bound on maximum



TABLE I: Comparison of BFT protocols

Protocol Authenticator Complexity
(View Change)

Optimistic
Responsiveness

# of
rounds

Leader
paradigm

PBFT [5] O(n2) or O(n3) Yes 2 Stable
SBFT [13] O(n2) Yes 1-2 Stable

Tendermint [7] O(n) No 2 Rotating
Casper FFG [8] O(n) No 2 Rotating

HotStuff [4] O(n) Yes 3 Rotating
Wendy O(n) Yes 2 Rotating

message delay for guaranteed liveness after Global Stabiliza-
tion Time (GST). These protocols underpin popular permis-
sioned blockchains today such as Concord [15] and Diem. We
summarize related research efforts along three axes: latency-
optimality, optimistic responsiveness, and linearity. Finally, we
describe the tension between latency-optimality and liveness,
and give an example of the hidden-lock problem, an execution
in which linear protocols can livelock if implemented without
care.

A. Prior work

Overview Leader-based BFT protocols proceed in a se-
quence of views. For each view, a leader is responsible
for finalizing consensus decisions for operations previously
submitted by clients. Each view traditionally consists of two
primary phases: a non-equivocation phase, and a persistence
phase. The non-equivocation phase ensures that at most one
proposal can reach agreement in the current view, even in the
presence of a Byzantine leader, while the persistence phase
ensures that an agreed-upon decision (if any) is preserved
across views. The view-change protocol replaces an older
leader with a new leader, and guarantees that if a consensus
decision is made, then the new leader must abide by it.

No linear authenticator complexity PBFT [5] was the
first practical leader-based protocol, and remains the most
influential BFT protocol. It consists of a pre-prepare and pre-
pare phase, which together form the non-equivocation phase.
In the pre-prepare phase, the leader broadcasts a command
to all replicas. The replicas subsequently broadcast prepare
messages to all. Having received a prepare quorum certificate
(2 f + 1 prepare messages), replicas move on to the commit
phase, which is the persistence phase, and broadcast commit
messages. Replicas execute the command after forming a
commit quorum certificate (2 f + 1 commit messages). This
all-to-all pattern of communication allows PBFT to commit
an operation in two round-trips but incurs O(n2) authentica-
tor complexity. View-changes are especially costly in PBFT-
like systems: the new leader must collect prepare certificates
from all replicas and include all these votes in a new-view
message. Authenticator complexity is thus cubic: n replicas
must verify 2 f +1 prepare certificates, each of which consists
of 2 f + 1 messages. This cost can be reduced to O(n2) by
using signatures rather than simple message authentication
codes (MACs). Subsequent work augments PBFT with a one
round-trip fast-path [6], [16] by requiring 3 f + 1 matching

replies in the first phase but does not improve authenticator
complexity. SBFT [13] reduces the common-case operation
cost to O(n) while preserving the optimistic fast-path by
relying on a combination of collector nodes and threshold
signatures. The view change procedure, however, is still O(n2).
Non-linear protocols scale especially poorly when the number
of participants grows large.

Concurrent research efforts, Fast-Hotstuff [17] and
Jolteon/Ditto [18], also achieve Byzantine consensus in two
phases with optimistic responsiveness. They both achieve
linear authenticator complexity in the common case, but
fall back to quadratic authenticator complexity in the view
change when the leader is faulty. MSCFCL [9] does indeed
achieve linear authenticator complexity, but requires the use
of expensive succinct arguments of knowledge.

No optimistic responsiveness A protocol is optimistically
responsive if, after Global Stabilization Time (GST) [19] in the
steady state, a non-faulty leader can reach consensus in time
depending only on the actual network delays, independent of
the GST worst-case message delay parameter, ∆. The idea of
optimistic responsiveness was introduced by Thunderella [20],
which combined an optimistic fast-path with a slow, syn-
chronous path in the presence of failures. Tendermint [7]
and Casper FFG [8] made similar networking assumptions to
reduce the cost of PBFT’s view chain down to O(n) at the
cost of progress being defined by a worst-case delay ∆. Lack
of optimistic responsiveness is especially problematic in the
wide-area setting where networks exhibit long tail latencies,
as the worst-case delay is significantly worse than the actual
average network delay. This can cause significantly longer
slow downs in the presence of Byzantine actors or network
hiccups.

Suboptimal latency HotStuff adopts a similar communi-
cation structure to SBFT: it eschews all-to-all communication
between replicas and has replicas exchange messages with the
leader only. HotStuff operates in the lock-commit paradigm:
replicas become locked on a value when it is possible that
the value could have been committed by some other replica.
The replica unlocks only when it is shown by the leader that
the locked value definitely did not commit. HotStuff hence
consists of three phases: a prepare phase (non-equivocation
phase), a precommit phase (persistence phase), and a commit
phase. In the prepare phase, the leader broadcasts a proposal
to the replicas and waits for a quorum (2 f + 1 replicas)
of responses in return to form a prepare quorum certificate
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(QC). No two prepare quorum certificates can exist in the
same view. In the precommit phase, the leader broadcasts the
prepare quorum certificate, and generates a precommit quorum
certificate from the 2 f +1 replies. While this two-step process
ensures safety, it does not guarantee liveness. As we describe
in §II-B, a Byzantine leader could abuse this process to
prevent termination by creating a hidden lock problem. Instead,
HotStuff adds a third commit phase: the leader broadcasts a
precommit certificate. At this point, replicas become locked
on this quorum certificate: they will unlock only if presented
with a QC of a higher view. Once the leader receives commit
responses back, it is finally safe for all replicas to execute the
operation. In this way, HotStuff sends and verifies only O(n)
messages per phase.

B. Livelessness in existing protocols

HotStuff, a linear protocol with optimistic responsiveness,
guarantees liveness by achieving consensus in three phases
rather than two. Not doing so can trigger an infinite sequence
of view changes after GST due to honest leaders continually
failing to make progress. Specifically, it is possible to create
executions in which the view change never includes the most
up-to-date locked proposal, causing honest replicas to reject
valid commands, and thus trigger constant view changes and
prevent progress. We illustrate this scenario using a two-phase
variant of HotStuff as our example. HotStuff operates in the
lock-commit paradigm where if replicas become locked on a
proposal in view v, they will reject all proposals in a smaller
view. To illustrate the potential issue, consider the following
example in Figure 1.

A Byzantine primary, R1, equivocates in view 1, sending
proposal u to itself, R2, and R3, but proposal v to R4. R1
generates a lock-certificate for u in view 1, and sends it to
R2. R1 then fails to make further progress, triggering a view
change. R3 becomes the new primary and receives responses
from R1,R3,R4, all of whom contain no locks. It thus proposes
a new command v. R4 votes in favor of the proposal. R2 rejects
this command as it is locked on u, and R1 fails to reply. A
view-change is once again triggered as the leader received
fewer than 2 f + 1 responses. At the last minute, R1 votes
to accept, allowing R3 to create a lock-certificate. R2 is the
next primary for view 3. It collects new view messages from
R1,R2,R4, and proposes the lock certificate for u in view 1.
The same scenario repeats itself. R1 does not reply, and R3
rejects the proposal as it is locked on a higher view (v for
view 2). This triggers yet a new view change, after which R1
finally sends a reply, allowing R2 to create a lock-certificate
for u in view 3. This sequence of events can repeat infinitely,
even after GST, thus violating liveness.

The root cause of the problem comes from replicas rejecting
proposals (by failing to respond) if they are locked on a higher
view. They must do so as they may have helped form a quorum
allowing that command to commit. Unlocking such replicas
requires convincing them that this command did not in fact
commit. As discussed in the background section, existing BFT
protocols achieve that in several different ways, from adding
an extra phase in HotStuff (which guarantees that a majority of

honest replicas will learn about the lock before the command
can commit), to sending all the locks as in PBFT and Fast-
HotStuff. In this paper, we propose an alternative approach:
we introduce a new cryptographic mechanism called a no-
commit proof that allows the leader to convince a replica,
with linear authenticator complexity, that its locked command
was not committed. By sending this command as part of a
view-change message, Wendy fully sidesteps the hidden lock
problem without the need of an additional phase or quadratic
cryptographic costs.

III. SYSTEM MODEL

Wendy adopts the standard system model of existing BFT
protocols.

Failure Model We assume a static set of n= 3 f +1 replicas,
of which at most f can be Byzantine faulty. Faulty replicas
can deviate arbitrarily from their specification. Replicas send
messages to each other in point-to-point, authenticated and
reliable FIFO channels. A strong but static adversary can coor-
dinate faulty replicas’s actions but cannot break standard cryp-
tographic primitives. Wendy adopts the partial synchrony [19]
model: there is a known bound ∆ and an unknown Global
Stabilization Time (GST), such that after GST, all transmission
between two replicas arrive within ∆.

Cryptographic building blocks In addition to the novel
aggregate signature scheme that we describe in §IV, Wendy
uses BLS-based multi-signatures [14], [21] for signing groups
of identical messages sent by distinct replicas. In a BLS
multi-signature scheme, there is a single public key (pk =
(pk1, . . . , pkn)) held by all replicas and separate private keys
held by individual replicas. Each replica i uses its private
key to sign a message m. Each partial signature for i is
then aggregated and used to produce a digital signature for
m that can only be verified if it was signed by all desired
replicas. We make use of the following procedures for key
generation, signing, aggregation and verification: BLS.KGen,
BLS.SignShare, BLS.VerifyShare, BLS.Agg, BLS.VerifyAgg
(see Algorithm 2 in the Appendix). As is standard, Wendy as-
sumes authenticated channels and a cryptographically secure,
collision-resistant hash function h which maps an arbitrary
length input to a fixed length output (also referred to as
message digest).

Rogue-key attacks Aggregate and multi-signature schemes
are vulnerable to rogue-key attacks [22] where an adversary
can maliciously choose their PK as a function of the honest
players’ public keys. All of the schemes we present prevent
such attacks using proofs-of-knowledge (PoKs) or proofs-of-
possession (PoPs) [22]. Importantly, although our algorithms
verify these PoKs/PoPs during signature verification, in prac-
tice, this cost is easily avoided. Specifically, in our BFT setting,
where the number of signers n is fixed, the PoKs/PoPs are only
verified once when the system is bootstrapped.

Correctness Wendy is safe as long as no more than f
replicas exhibit byzantine faults. By safe, we mean that no two
honest replicas decide on a different sequence of commands.
Wendy is live after GST. By live, we mean that any command
proposed by a client will eventually be executed.
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Fig. 1: Illustrating the hidden lock problem

IV. DESIGNING PROOFS OF NO-COMMIT

As described in §II, a new Byzantine leader must convince
other replicas that the set of commands it includes in the view
change is correct: a view-change must preserve all commands
that could have been committed in prior views. This can be
achieved by sending all view-change messages [5], making ad-
ditional synchrony assumptions such that pending commands
will eventually be received [7], or adding additional phases
to address liveness issues when sending a subset of received
view change messages [4]. Wendy sidesteps these trade-offs.
It adopts the best of both worlds: it adopts HotStuff’s view
change optimistically but also uses a PBFT-like view change
in the pessimistic case that conveys key information from all
received view change messages (but in an efficient way that
preserves linearity). Wendy’s novel No-commit proof is the
core technical innovation that enables this hybrid approach. It
allows a leader to prove to replicas that a specific block did
not commit without sending all view change messages naively.

In this section, we begin by formulating a simpler question:
assume that a leader in view v receives signed view numbers
from 2 f + 1 replicas. How can it efficiently and provably
convey these distinct values to an arbitrary replica r? By
efficient, we mean that the replica must verify the authenticator
in constant time and using a constant number of pairing oper-
ations. We first describe our construction informally (§IV-A)
before sketching out its formal underpinnings (§IV-B). The
new custom aggregate signature scheme that we develop
represents a significant performance improvement over prior
aggregate schemes such as BGLS aggregate signatures [23]. Its
efficiency relies on three core assumptions: 1) replicas know
the leader’s view v (A1) 2) honest replicas will never send
two different numbers for the same leader’s view (A2) 3) the
difference in view numbers is generally small (A3). These
assumptions derive from properties of the Wendy protocol,
which we describe next.

A. Intuition

Leveraging multi-signatures The most natural, inefficient
option is to send all of the signed view numbers to a replica r.
A similar approach is taken by PBFT, SBFT, and Jolteon/Ditto.

This naturally incurs linear verification cost for each replica.
Multi-signatures or threshold signatures are the next obvious
choice: they allow for replicas to partially sign a message, and

for a leader to aggregate these partial signatures into a single
signature.

Unfortunately, these signatures require that the same mes-
sage be signed. We take a different approach: rather than
encoding the view number in the message that we sign, we
encode it in the signature of the message. For each replica,
we generate ` BLS signature keys, one for each possible
number that could be sent (we show how to reduce this next).
We then have each replica sign the leader’s view v with the
corresponding signing key. If a replica wants to send view 5 for
instance to the leader for view vl , it uses its fifth signing key
to sign vl . The leader can then aggregate the partial signatures
into a single signature, which replica r can efficiently verify
using the matching public keys. This verification process re-
quires only two pairings, which is significantly faster than prior
approaches, which leverage BGLS aggregate signatures [23]
(as we confirm in Figure 6 in our evaluation).

Reducing number of key pairs The above protocol allows
replicas to efficiently verify a leader’s claim. It is, however,
clearly not practical as it would require generating an infinite
number of key pairs to account for all possible view numbers.
As the leader’s view is known to all, we instead choose to
encode the difference between the leader and each replica’s
view, ci (this difference is bounded after GST). To further
reduce overhead, we generate keys according to the binary
representation of the resulting view difference. Specifically,
we generate 2 log(vd) keys, where vd is the maximum assumed
view difference: for each bit in vd , we generate two keys, one
for set bits, and one for zero-bits. Note that the replica’s view
difference could still be outside the maximum assumed target
view difference. We consequently include a special signing
key pair (skvd , pkvd ), which is used to sign the replica’s view
difference when it is outside this bound. Note that the resulting
signature only conveys that the replica’s view is outside the
bound and not the specific view difference.

B. Formalisms

The above section informally introduced our approach. We
now describe in more detail the formalism underpinning this
novel aggregate signature scheme. We carefully model its
security in Theorem 7 and prove it holds under computational
co-Diffie-Hellman (co-CDH) [22] in Theorem 8. Algorithm 1
summarizes the pseudocode.
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Algorithm 1 Our Wendy aggregate signature scheme

1: procedure AS.KGen(1λ , `) → (sk,pk)
2: For j ∈ [0, `),b ∈ {0,1}, pick sk j,b ∈R Zp uniformly at

random
3: For j ∈ [0, `),b ∈ {0,1}, set pk j,b = gsk j,b

2
4: Set π j,b = H1(pk j,b)

sk j,b

5: Set sk= (sk j,b) j∈[0,`),b∈{0,1}
6: Set pk= ((pk j,b,π j,b) j∈[0,`),b∈{0,1})

7: procedure AS.SignShare(ski,m = (ci|v)) → σi
8: Let ci, j denote the jth bit of ci
9: Parse ski = (ski, j,b) j∈[0,`),b∈{0,1}

10: Set σi = ∏ j∈[0,`) H0(v)
ski, j,ci, j

11: procedure AS.VerifyShare(pki,m = (ci|v),σi) →{0,1}
12: Let ci, j denote the jth bit of ci
13: Parse pki = (pki, j,b,πi, j,b) j∈[0,`),b∈{0,1}
14: . PoP verification (only done during bootstrapping in Wendy)
15: ∀ j ∈ [0, `),b ∈ {0,1}, check if:
16: e(πi, j,b,g2) = e(H1(pki, j,b),pki, j,b)
17: Check if e(σi,g2) = e(H0(v),∏ j∈[0,`) pki, j,ci, j

)

18: procedure AS.Agg((σi)i∈I) → σ

19: Let σ = ∏i∈I σi

20: . Note: Assumes the mi’s have the same v, or returns 0.
21: procedure AS.VerifyAgg((pki,mi = (ci|v))i∈I ,σ ) →{0,1}
22: Let ci, j denote the jth bit of ci, for all i ∈ I
23: Parse pki = (pki, j,b,πi, j,b) j∈[0,`),b∈{0,1}, for all i ∈ I
24: . PoP verification (only done during bootstrapping in Wendy)
25: ∀i ∈ I,∀ j ∈ [0, `),b ∈ {0,1}, check if:
26: e(πi, j,b,g2) = e(H1(pki, j,b),pki, j,b)
27: Check if e(σ ,g2) = e(H0(v),∏i∈I ∏ j∈[0,`) pki, j,ci, j

)

Key generation. The ith replica’s secret key will consist
of 2` different secret subkeys (ski,0,b,ski,1,b, . . . ,ski,`−1,b) for
each of the ` bits of a difference ci, covering the possibility
that the bit is b = 0 or b = 1. More formally, the ith replicas’s
key-pair (ski,pki) consists of:

ski =
(
ski, j,b

)
j∈[0,`),b∈{0,1} ∈R Z`

p (1)

pki =
(
pki, j,b,πi, j,b

)
j∈[0,`),b∈{0,1} ∈G`

2 (2)

where pki, j,b = g
ski, j,b
2 and πi, j,b = H1(pki, j,b)

ski, j,b is a proof-
of-possesion (PoP) [22], to prevent rogue-key attacks.

Signing. Let ci, j be the jth bit of ci. Note that ci, j ∈ {0,1},
and j ∈ [0, `]. To sign mi = (ci|v), replica i computes its
signature share:

σi = H0(v)
∑ j∈[0,`) ski, j,ci, j (3)

In effect, this is a multisignature on v, but with secret subkeys
selected based on the bits of ci. Note that two signature shares
on v with different ci’ leads to forgeries, but our security
definition from Theorem 7 discounts such attacks which are
not problematic in our BFT setting.

Aggregation. To aggregate several signature shares (σi)i∈I ,
each on a (ci|v), from a set of replicas I, we multiply them
together. Below, ci, j denotes the jth bit of ci.

σ = ∏
i∈I

σi = ∏
i∈I

H0(v)
∑ j∈[0,`) ski, j,ci, j (4)

= H0(v)
∑i∈I ∑ j∈[0,`) ski, j,ci, j (5)

Verification. Our key observation is that verifying such an
aggregated signature, only requires two pairings, rather than
|I|. Recall that the verifier has all the signed messages mi =
(ci|v),∀i∈ I. Again, let ci, j denote the jth bit of ci. The verifier
checks if:

e(σ ,g2)
?
= e(H0(v),∏

i∈I
∏

j∈[0,`)
pki, j,ci, j

) (6)

V. WENDY: A TWO-PHASE, LINEAR PROTOCOL

We next use this novel aggregate signature scheme to
design Wendy, a two-phase BFT protocol that achieves linear
authenticator complexity and optimal latency while preserving
optimistic responsiveness. Wendy is similar in spirit to Hot-
Stuff but reduces the number of phases necessary to ensure
liveness. Indeed, HotStuff requires three phases (optimal is
two) to address the hidden lock problem illustrated in §II).
Wendy instead uses no-commit proofs to convince skeptical
replicas that it is safe to change their mind during a view
change: a leader can now prove to a replica that its chosen
command was not committed. A leader could pro-actively send
this no-commit proof to replicas to always achieve consensus
in two phases. However, Wendy further observes that the
hidden lock problem is in fact exceedingly rare and thus
does not send no-commit proofs by default. Instead, skeptical
replicas must explicitly request such a proof when necessary,
reducing cryptographic load on the system.

A. Terminology

Wendy adopts the chaining model, popular in new BFT
protocols targeted towards blockchain systems [4], [7], [8].
Replicas reach consensus on a chain, which consists of a
sequence of blocks containing one or more commands.

Blocks More formally, a block is defined as a tuple b =
(v,c,h) where v is the view in which the block is proposed, c
is a batch of commands, and h is a hash pointer to its parent
block. Each block has a greater view than its parent and the
first block in a chain is represented as an empty genesis block.

Chains A chain is then represented as a tuple of three
blocks: c = (bCommit,bLock,bProposal). Each block is at a
different stage of the consensus protocols: bCommit represents
the last block in the chain to have been committed, bLock
the last block in the chain which is locked (more on this
later), while bProposal represents a block that is currently
being proposed and the tail of the chain. These blocks extend
each other: bProposal has a hash pointer to bLock, and bLock
has a hash pointer to bCommit). It follows that bCommit.v <
bLock.v < bProposal.v. We say that a chain C′ extends C if
there exists a sequence of hash parent pointers starting from
C′.bProposal that reach C.bLock.

Quorum Certificates (QC) A quorum certificate (QC)
authenticates individual chains. It is also represented as a tuple
QC = (C,v,σ) where C is a chain, v is the view in which the
QC was formed, and σ is an authenticator that consists of
2 f +1 signatures on chain C in view v.

We assume that replicas always verify any signed message
that they receive and discard the message if the signature is
invalid or buffer it if it is for a view greater than the replica’s
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current view. We omit explicitly mentioning these steps for
clarity in later sections.

B. Protocol - Common case
Wendy consists of two phases: a prepare phase in which

replicas agree on a block to process next, and a commit
phase in which the choice of that command is persisted
across failures. An optional unlock phase allows the leader to
“unstuck” replicas who believe that an old block might have
already committed. Each phase executes in a separate round
or view. If progress stalls in a phase and a timeout expires,
replicas invoke a view-change procedure to elect a new leader.
The new primary then restarts the protocol beginning with the
Prepare phase.

Each replica r maintains, as local state, its current view vr,
a quorum certificate QCr = (C,v,σ), where C is a chain, v
is the view in which QCr formed, and σ is an authenticator
indicating that 2 f +1 replicas signed (C,v), and Cr, the latest
proposed chain.

Phase 1: Prepare Phase Intuitively, the prepare phase
ensures that at most one block of commands can be agreed
on per view (non-equivocation).

1) Leader actions:

1: Leader receives 2 f +1 VOTE-RESP〈v−1,QC,C,σr〉

Wendy operates in a chaining model. The start of the
prepare phase for view v is thus overlapped with the com-
pletion of the preceding view v− 1. The leader for view
v thus waits to receive 2 f + 1 matching VOTE-RESP〈v−
1,QCparent ,Cpropose,−〉 (QCparent =QC,Cpropose =C) messages
from the previous view. Cpropose refers to the chain being voted
on in view v−1. The leader combines these responses using
BLS multi-signature aggregation to form a QC authenticating
the new latest chain Cpropose. Specifically, the primary com-
putes QCpropose = (Cpropose,v, BLS.Agg (σr)r∈R), aggregating
all signature shares σr and stores it locally, QCr = QCpropose.

The leader then proposes a new block by appending that
block to Cpropose. If QCpropose.v = QCparent .v+1 (consecutive
views) then it is safe to additionally commit Cpropose.bLock by
creating a new chain Cnew =(C.bLock,C.bPropose,bPropose).
Otherwise, the leader moves C.bPropose into the C.bLock
position, sets C.bPropose.h pointer to the hash of C.bCommit
(since C.bLock did not satisfy the commit rule), and creates
Cnew = (C.bCommit,C.bPropose,bPropose).

The leader then updates its state to store Cnew locally
(Cr = Cnew) and broadcasts this new proposal to all replicas,
containing its current view v, and its latest proposal Cnew
alongside QCpropose indicating that Cnew is a valid proposal.
Intuitively, Cpropose, which is now authenticated by QCpropose
becomes the parent chain, while Cnew is the new chain.
Sending QCpropose with Cnew proves that Cnew does in fact
extend the former Cpropose.

2: Leader broadcasts VOTE-REQ〈v,QCpropose,Cnew〉 to all
replicas

2) Replica actions:

1: Replica receives a VOTE-REQ〈v,QCpropose,Cnew〉

Replica r first validates QCpropose by verifying the authen-
ticator QCpropose.σ , and checking that Cnew extends the
QCpropose.C chain. If these checks fail then the replica does
not vote. It then checks whether Cnew extends its current latest
chain Cr. If true, r knows that it is safe to continue extending
this chain and votes to support this proposal. Otherwise,
r checks whether the chain’s locked view Cnew.bLock.v is
greater than its own Cr.bLock.v. This scenario indicates that
Cr failed to commit due to a subsequent view change, r must
consequently change its vote, moving to support Cnew. In either
case, r sends a VOTE-RESP〈−〉 in support of Cnew and updates
its local state to (vr = v,QCr = QCpropose,Cr = Cnew). r also
computes σr = BLS.SignShare (Cnew,v).

2: Replica sends VOTE-RESP〈v,QCr,Cr,σr〉 to the leader

Phase 2: Commit phase Recall that in chained BFT sys-
tems, phases are overlapped, the commit phase of C in view v
and for block b is thus overlapped with the prepare phase of the
next proposed block in view v+1. In other words, the commit
phase of C aligns with Step 1 of the prepare phase described
above. The leader in view v+1 combines the 2 f +1 received
vote responses to form a quorum certificate QC = (C,v,σ).
The leader then proposes a new block bPropose (as part of
that block’s prepare phase in view v+ 1) and creates a new
chain C′ that extends C. Once 2 f +1 vote responses have been
received, b is deemed committed.

Execution: the asynchronous decide stage A block b
is executed once 1) it has been committed and a commit
certificate has been generated 2) all blocks that precede it in
the chain have also been committed.

We illustrate the common case with a worked example in
Figure 2. In view 1, replica 1 is the leader and proposes b1. It
thus creates a chain Cpropose = (⊥,⊥,b1), as no prior blocks
have been locked or committed. It sends this chain as part
of a VOTE-REQ〈〉 message, which all replicas accept. No
replica is locked on a QC with a higher view. All replicas
send VOTE-RESP〈〉 messages to the leader of view 2, R2,
signing Cpropose. R2 aggregates these signature shares, stores
Cr and forms a QCr = (Cpropose,1,σ) = ((⊥,⊥,b1),1,σ). R2
then extends this chain. Block b1 has been successfully locked,
and is thus moved to the bLock position in the chain, while
bPropose is set to b2. The new chain Cr is thus equal to
Cr = (⊥,b1,b2). R2 sends a VOTE-REQ〈〉 to all, including Cr
and QCr. All replicas check that Cr extends QCr.C (which
is the case here, as Cr contains b1,b2 and QCr contains b1)
and that they are not currently locked on a QC with a higher
view. Once again, they all vote to accept and send VOTE-
RESP〈〉 messages to R3, the leader of view 3. This leader also
creates a QCr = ((⊥,b1,b2),2,σ), aggregating all signature
shares. R3 marks b1 as committed and executes it, promoting
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b2 to locked, and proposing a new block b3. R3 thus proposes
a new chain Cr = (b1,b2,b3). This process continues until a
view change is triggered.

C. Protocol - View Change

We next describe the view-change logic. A view change is
the process through which a leader is replaced. Its objective
is to 1) elect a new leader 2) preserve all committed blocks.

1) Replica actions: A view timeout is associated with each
view v and started when a replica enters view v as a non-
primary. Upon detecting a timeout in view v− 1, the replica
r sends a NEWVIEW〈〉 message to the leader of view v. The
NEWVIEW〈〉 message for the new view v contains the new
target view v, the replica’s local state and a signature share on
the difference between the target view v and the latest QC’s
current view QCr.v (σr = AS.SignShare (v−QCr.v,v)). σr will
be used by the leader to create a no-commit proof if a hidden
lock is detected. Signing the difference between views rather
than the current view itself is an efficiency optimization, key
to reducing the verification cost of the view change (§IV-A).

1: Upon timeout for v− 1, send NEWVIEW〈v,QCr,σr〉 to
leader in v

2) Leader actions:

1: Leader receives 2 f +1 NEWVIEW〈v,QCr,σr〉 messages

The primary of view v waits for 2 f + 1 NEWVIEW〈〉 mes-
sages, validates that they are for target view v, verifies that
AS.VerifyShare (pkr,v−QCr.v,σr) == 1, and sets the view
timeout for v.

The leader picks the NEWVIEW〈〉 message with the
highest locked view, QCr.v, validates the QCr.σ au-
thenticator and sets QCpropose = QCr, and Cpropose =
QCr.C. The leader then proposes bPropose, by append-
ing that block to Cpropose. Let QCparent be the QC for
chain (−,Cpropose.bCommit,Cpropose.bLock). If QCpropose.v =
QCparent .v + 1 (consecutive views) then it can additionally
commit Cpropose.bLock by creating a new chain Cnew =
(C.bLock,C.bPropose,bPropose). Otherwise, the leader does
not commit C.bLock, and the resulting new chain is Cnew =
(C.bCommit,C.bPropose,bPropose). The primary updates its
state to store Cnew locally, Cr =Cnew, and vr = v. The primary
broadcasts a VOTE-REQ〈v,QCpropose,Cnew〉 message to all
replicas.

2: Leader broadcasts VOTE-REQ〈v,QCpropose,Cnew〉 to all
replicas

3) Replica actions: Upon receiving a VOTE-REQ〈〉 follow-
ing a view change, the replica takes one of two options,
depending on the view number that it is currently locked
on (vr). If Cnew extends the replica’s current chain Cr or
QCpropose.v>QCr.v (higher locked view), the replica proceeds
as in §V-B, step 2 and votes to support the leader’s new

proposal. Note that σr refers to the replica’s own signature
share on (Cr,vr).

2A: Replica sends VOTE-RESP〈v,QCr,Cr,σr〉 to the leader

If instead the replica’s stored chain Cr has a higher locked
view (Cr.bLock.v) and Cnew does not extend Cr, r cannot safely
adopt the new chain. The existence of a lock certificate for Cr
in a higher view means that Cr could have committed, with
r’s help. r thus rejects the proposal with a NACK〈−〉 message
containing its current state.

2B: Replica sends NACK〈v,QCr〉 to the leader

Sending a NACK〈〉 message reveals the existence of a
hidden lock (a lock for a higher view) that the leader was
unaware of or maliciously omitted. This NACK〈〉 message is in
direct contrast with prior protocol’s approach to simply ignore
the message, as illustrated in our hidden lock example. We
describe how the leader handles this negative response next.

D. Protocol - Optional unlocking

The Unlock phase is optional and only occurs when a
replica informs the leader of a hidden lock. Even if a replica
informs the leader of a hidden lock, the leader can proceed
to the commit phase if it receives 2 f + 1 matching VOTE-
RESP〈v,−,−〉 messages. Additionally, in the common case,
the primary skips directly to the commit phase. In practice,
hidden locks are rare. Wendy thus chooses to pay additional
cryptographic cost only in the rare cases where a malicious
leader has sufficiently created such a lock. This is in direct
contrast to HotStuff, which always incurs the cost of an extra
phase. Wendy further ensures, through its novel aggregate
signature scheme, that recovering from this hidden lock is not
prohibitively expensive. By comparison, similar schemes incur
quadratic authenticator complexity [17], [18] or rely on still
prohibitively expensive cryptography [9].

1) Leader actions:

3: Leader receives a NACK〈v,QCi〉 from replica i

The leader first validates that the NACK〈〉 message contains a
hidden lock by checking that its own QCr.v <QCi.v. As stated
previously, the existence of a hidden lock QCi is an indication
that the chain QCi.C might have been committed. The leader
must therefore convince the replica otherwise. We note that,
if a chain Ci had been committed in view v, its associated
quorum-certificate must necessarily be in the set of 2 f + 1
NEWVIEW〈v,−,−,−〉 messages. The reasoning is simple:
committing an operation requires 2 f + 1 quorum certificates,
of which f + 1 belong to honest nodes. The set of 2 f + 1
NEWVIEW〈v,−,−,−〉 necessarily intersects with at least one
honest replica that contributed to committing the operation. It
follows that, if no such lock-certificate is present, the operation
did not commit. We leverage the novel aggregate signature
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Fig. 2: Common-case execution

scheme developed in §IV-B to convey this information. As
described above, each replica sends to the leader a signed
signature share encoding the difference between the current
view and its current locked view, QCr.v. The leader then
aggregates those signatures into a single no-commit proof σ =
AS.Agg (σr). Note that each QC is unique per view, thus a
signed view number uniquely identifies the signed QC itself.

4: Leader sends NO-COMMIT〈v,σ ,M,QCr,Cr〉 to locked
replica

The leader sends a NO-COMMIT〈−〉 message containing its
state (v,QCr,Cr), the signed no-commit proof σ , and the list
of QCr.v views for each replica, M.

2) Replica actions:

3: Replica receives a NO-COMMIT〈v,σ ,M,QC,C〉

The replica r extracts the set of views vi from the list of
views in M, verifies the signature σ and checks that no vi is for
a view greater than or equal to QCr.v. Intuitively, this ensures
that 1) the leader was honest and did in fact send the highest
QCr (if QCr.v > QCi for some i, there would not have been
any need to send a NACK〈)〉 2) QCr.v was not included in
any of the quorum certificates, thus confirming its associated
chain did not commit. The replica then downgrades its lock
and updates its state to (v,QCr,Cr), and votes to support this
new proposal.

4: Replica sends VOTE〈v,QCr,Cr〉 to the leader

The leader progresses as in step 2A and moves to the
Commit phase once 2 f +1 VOTE-RSP〈〉 messages have been
received.

E. Safety

Chained Wendy makes the following safety guarantee:

Theorem 1. No two non-faulty replicas can execute conflicting
chains.

An honest replica will only execute a chain C if it receives
two QCs: QC on chain C, and QC1 on a chain C1 =
(C.bLock,C.bProposal,−), such that QC.v + 1 == QC1.v
(consecutive views). We define the Lock-Certificate of chain C
to be QC. If C is executed, then define the Commit-Certificate
of chain C to be QC1.

We first prove the following lemma:
Lemma 1: If a QC forms in view v, then any other QC′ with

view QC′.v = v, must have the property that QC′.C = QC.C.
Proof: Suppose for contradiction that QC′.C 6= QC.C, then

2 f +1 replicas voted for QC′.C, and 2 f +1 replicas voted for
QC.C. These two quorums must intersect in at least 1 honest
replica. This honest replica must have voted for both QC′.C
and QC.C, a contradiction.

We now prove safety by proving the following stronger
theorem:

Theorem 2. If there exists a Commit-Certificate in view v for
chain C and a Lock-Certificate in view v′ (where v′ ≥ v) for
chain C′ then C′ must extend chain C.
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Proof: We prove by induction over the view v′, starting at
view v.

Base case: If v′ = v then C = C′ since there can only be
at most one Lock-Certificate in view v. This is because each
non-faulty replica can only vote for one chain in v, and each
Lock-Certificate requires 2 f +1 votes (quorum intersection).

Inductive case: Assume this property holds for view v′ from
v to v+k−1 (inclusive) for some k≥ 1. We will consider the
case that v′ = v+ k.

Suppose for the sake of contradiction that there exists a QC
for chain C′ in view v+k that does not extend chain C. Since
there exists a Commit-Certificate for chain C in view v, this
implies that there are 2 f +1 replicas who had a QCr such that
QCr.v = v−1 and QC.C =C. Thus if there is a QC′ for chain
C′ in view v+ k then 2 f +1 must have voted for C′ in view
v+ k, and this set must intersect the quorum of replicas that
had a QCr for view v−1 and chain C in at least one honest
replica. This honest replica must have had that QCr before
it sent VOTE-RESP〈〉 message for C′ in view v + k. In the
meantime, this honest replica may have updated its QCr to be
for a higher view. However all of these QC.C must also extend
C as (under the inductive hypothesis) any QCs for views from
v to v+ k−1 must be for a chain that extends chain C. This
honest replica must therefore have a QCr on a proposal that
extended C from some view v+ j (where 0≤ j < k) before it
sent a VOTE-RESP〈〉 message for C′ in view v+k. This honest
replica could have voted after receiving a VOTE-REQ〈〉 for C′

in view v+k or if not, then after it sent a NACK〈−〉 message.
We will consider each case in turn.

If the non-faulty replica voted for C′ in view v+ k and did
not send a NACK〈〉 message, then C′ must extend C as any
QC with a view between v+ j and v+k must extend C (under
the induction hypothesis), and thus a contradiction.

Otherwise, if the honest replica did not vote in the Prepare
phase (thus C′ does not extend C) then the honest replica must
have voted for C′ during the unlock phase. This means that
this honest replica sent a NACK〈〉 message because its QCr.v>
QCpropose.v and C′ does not extend QCr.C in the VOTE-REQ〈〉
message. We know that QCr.v≥ v from the commit on C, and
know that all QCs in views v+ j (where 0≤ j < k are for C,
a contradiction, since C′ cannot extend QCr.C.

F. Liveness

For liveness we assume we have a pacemaker which satisfies
the following synchronization property.

Property 1: There exists a bounded value t such that after
GST, if view v has an honest leader then all honest replicas
will enter view v.

Let ∆ be the message delay, Λ be the view timeout duration,
and vd = O(n) be the maximum view difference used for the
No-Commit proofs. We now first prove the following theorem.

Theorem 3. Let v1, v2 = v1 +1, and v3 = v1 +2 be the first
views that have honest leaders after GST, then a decision will
be reached in a bounded duration, Tf after v1 starts.

Proof: By Property 1 from the pacemaker, we know that all
honest replicas will enter view v within t time. We consider the

two cases of when the new view v starts. A new view starts
when either 1) the leader collects matching 2 f + 1 VOTE-
RESP〈〉 messages from the previous view, v− 1, or 2) the
leader collects 2 f +1 NEWVIEW〈〉 messages for view v with
at least one QCr such that v−QCr.v< vd (within the max view
difference range) or waits ∆ for all NEWVIEW〈〉 messages
from honest replicas to be received. In case 1), these 2 f + 1
VOTE-RESP〈〉 messages can be used to form a QC for view
v− 1. This QC is guaranteed to be the highest since there
can be at most one QC per view from Lemma 1. Since all
honest replicas are synchronized in their view and the leader
is honest, when the leader sends a VOTE-REQ〈〉 message, it is
guaranteed that all honest replicas will send a VOTE-RESP〈〉
message since v− 1 is the highest view in which a QC can
form. For case 2), the leader collects 2 f + 1 NEWVIEW〈〉
messages and picks the QC with the highest QC.v. This QC
is not guaranteed to be the highest an honest replica has
since out of the 2 f + 1 NEWVIEW〈〉 messages only f + 1
are guaranteed to be from honest replicas, unless the primary
waited for ∆ if there was no QCr within the vd max view
difference range. Thus, when the leader broadcasts a VOTE-
REQ〈〉 message, not all honest replicas will send a VOTE-
RESP〈〉 message immediately. If an honest replica has a QCr
such that QCr.v > QCpropose.v, then this honest replica will
send a NACK〈〉 message to the leader. The leader will then
generate a No-Commit proof, since QCpropose was the QC with
the highest view from the NEWVIEW〈〉 messages it received
in the view change. Since we assume there is at least one
NEWVIEW〈〉 message with a QCr such that v−QCr.v< vd , we
are guaranteed that the replica that sent the NACK〈〉 message
has a QC with QC.v> v−vd . There are two cases for each QC
received in the view change: either 1) its view is > v− vd or
2) its view is ≤ v−vd . For case 1), the σr in the NEWVIEW〈〉
message will be signed using the secret key encoding QCr.v
while for case 2) the σr will be signed using the secret key
encoding that the QCr.v is ≤ v− vd without encoding QCr.v
directly. Since the replica which sent the NACK〈〉 message
must have a QC with QC.v > v− vd , this proof will convince
the honest replica that its QCr.v is greater than all QCs sent in
the view change. Thus all honest replicas that sent a NACK〈〉
message will send a VOTE-RESP〈〉 message for Cnew. This
means all honest replicas will send matching VOTE-RESP〈〉
messages. With 2 f +1 VOTE-RESP〈〉 messages, a QC in view
v will form. This will also hold for view v+1 since the leader
of v+1 is honest and the network is synchronous. A decision
is reached after two consecutive QCs. Since the leader of view
v+ 2 is honest, then similarly, during view v+ 2, all honest
replicas will commit to the proposal from view v. The total
time for this decision is bounded by the time to synchronize
to v added to the time for 2.5 rounds to complete, which is
Tf = t +2(2∆)+∆ = t +5∆.

Theorem 4. Let v be any view with an honest leader that is
larger than v2. Then after view synchronization to v, the leader
will form a QC in v with a latency of O(δ ), where δ is the
actual network speed.

Proof: The only step where the leader could explicitly wait
∆ is when collecting 2 f +1 NEWVIEW〈〉 messages for view

9



v. If the primary receives at least one NEWVIEW〈〉 message
containing a QCr such that QCr.v> v−vd , then it does not wait
∆ to receive NEWVIEW〈〉 messages from all honest replicas.
We show that this case always occurs by showing at least f +1
honest replicas satisfy this property.

Theorem 5. Let v′′ be a view with an honest leader > v2, then
there exists f +1 honest replicas with a QCr.v > v′′− vd

We prove this theorem by induction.
Base Case. Let v′′ = v2 +1, and v′′−2, v′′−1, and v′′ have

honest leaders. From Theorem 3 we know that at least f +1
replicas have a QCr.v = v2 > v′′− vd .

Let vy be the yth view with an honest leader. We now assume
that this theorem holds for all v′′ = vy−1.

Induction Step. Let v′′ = vy. If there was a commit in view
> v′′− vd , then we are guaranteed that f + 1 honest replicas
have a QCr.v > v′′−vd . Otherwise, we do not have a commit.
Since vd = O(n), we are guaranteed that between v− vd and
v there exists three consecutive views with honest leaders a
the balls and bins argument. Namely given n = 3 f + 1 bins,
no matter how f balls are thrown by the adversary, there must
be three consecutive empty bins. Let these views be v′,v′+
1,v′+ 2. From the induction hypothesis, v′ must have f + 1
honest replicas that have a QCr.v > v′−vd and therefore, from
the same argument as Theorem 3, it will commit at network
speed. Since there was a commit in view v′+2, there must be
f +1 honest replicas with a QCr.v of at least v′+1 > vy−vd .

VI. IMPLEMENTATION

We implement Wendy in Go on top of an open-source
implementation of HotStuff1 using the Gorums [24] net-
working library. We use the Herumi Go bindings2 for BLS
signatures [14]. We use the Go ecdsa3 implementation for
digital signatures used for all messages besides view change
messages, which require BLS multi-signatures. Note that like
HotStuff, Wendy uses a list of ecdsa signatures for QCs.
Wendy is multi-threaded with separate threads for networking,
agreement, and cryptography (including signature verifica-
tion).

VII. EVALUATION

In our evaluation, we answer three questions:
• How does Wendy’s performance compare to HotStuff as

a function of batch size, network latency, execution time
and scale?

• How does Wendy’s aggregate signature scheme compare
to BGLS aggregate signatures?

• What is the performance of Wendy’s view-change in the
presence of Byzantine attacks?

A. Experimental Setup

We run our experiments on Cloudlab m510 machines (8-
core 2.0 GHz CPU, 64 GB RAM, 10 GB NIC). Each replica

1https://github.com/relab/hotstuff
2https://github.com/herumi/bls-eth-go-binary
3https://github.com/golang/go/blob/master/src/crypto/ecdsa/ecdsa.go

server is run on a separate machine, and up to 5 clients
are run on the same machine. We increase the number of
clients until the system saturates. Clients execute in a closed-
loop, and each experiment runs for 60 seconds. We compare
against the aforementioned HotStuff implementation. Unless
otherwise stated, Wendy and HotStuff both run batches of
no-op commands containing a zero-byte payload, and with
∆ = 10s. For local area (LAN) experiments, ping latency
between machines is 0.2ms. WAN latencies are simulated
for wide-area experiments using the tc [25] Linux command.
Our WAN deployment models a setup with four regions:
Europe, Virginia, Oregon, and China, using latency data from
CloudPing [26].

B. Basic Performance

We evaluate the basic performance of Wendy with f = 1
failures in both a LAN and a WAN.

Local Area (LAN) We consider three different batch
sizes, 100, 400, and 800, and report the throughput/latency
results in Figure 3. We observe that Wendy and HotStuff
exhibit similar throughput, with Wendy achieving at most a
3% increase in peak throughput independent of batch size.
Pipelining amortizes the cost of consensus to 1 RTT per batch
independently of the number of phases. The throughput for
all protocols is thus simply a function of batch size divided
by round latency. Round latency is identical in HotStuff and
Wendy in the failure-free case; they consequently exhibit the
same throughput. In contrast, Wendy’s latency is on average
27.6% lower than HotStuff due to the fewer number of phases
(Figure 3).

Wide-Area (WAN) Results in the wide-area follow an
identical pattern to those in the LAN setup (Figure 4). Wendy
and HotStuff exhibit identical throughput, but Wendy has 33%
lower latency thanks to its two-phased protocol.

Execution Prior experiments considered no-ops only. We
now measure the relative performance of Wendy and HotStuff
with a simulated 0.25ms of execution time per command (Fig-
ure 5). This corresponds to an approximate average execution
time of a simple smart contract for payment transfers [27].
Once again, we draw identical conclusions: Wendy and Hot-
Stuff exhibit identical throughput, with Wendy having 23.4%
lower latency than HotStuff.

Scale Finally, we confirm that the aforementioned conclu-
sions hold independently of scale. As f increases, throughput
remains similar for both Wendy and HotStuff, while Wendy
continues to have lower latency (Figure 5).

C. Aggregate Signature Cost

Prior experiments quantified the relative performance of
Wendy and Hotstuff in the common case. We now look
at Wendy’s performance in the presence of view changes.
Specifically, we look at the cost of Wendy’s core technical
contribution, its novel aggregate signature scheme, which lies
at the core of its No-commit proof. We compare Wendy’s
aggregate signature scheme against a baseline of BGLS’s
aggregate signatures [23] (Figure 6).
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Fig. 3: Impact of batch size (LAN)
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Fig. 4: Impact of batch size (WAN)
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Fig. 5: Impact of execution time and of scale

Verification We first measure verification time as a function
of f (a). With 193 replicas ( f = 64), the latency of verification
for our scheme is 3.44ms compared to 127ms in BGLS. This
significant speedup stems from our use of multi-signatures
internally, which incur O(1) pairing cost, compared to O(n)
pairing cost in BGLS.

Signing We next quantify the relative latency of signing as
a function of the maximum view difference vd compared to
BGLS (b). We fix the number of replicas to 193 ( f = 64).
We find that as the maximum view difference, vd , increases,
the number of signatures that need to be aggregated also
increases by logvd . In contrast, BGLS is unaffected by the
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view difference: its signing cost is constant. Nonetheless, even
for a large view difference (1024), Wendy has less than a
millisecond higher signing latency than HotStuff. We find this
to be a worthy trade-off given the 124ms speedup for signature
verification.

D. Relative view change performance

The other experiments describe the performance benefits
of our aggregate signature scheme over traditional BGLS
signatures. For this experiment we quantify the performance
of Wendy’s view change relative to HotStuff (Figure 7), which
does not send all locks, and instead simply sends the highest
lock. We note that the default Go implementation of HotStuff
makes use of ECDSA signatures rather than BLS multi-
signatures. The cost of verifying a QC thus grows linearly as
a function of f in HotStuff. We quantify the relative overhead
of Wendy over HotStuff as a function of f . With f = 1,
Wendy’s overheads are high: 4.32ms compared to 0.25ms, a
6x increase in latency over HotStuff. This is because ECDSA
signatures are significantly cheaper to verify than BLS multi-
signatures. For smaller values of f , it is thus preferable to
eschew linearity and send all locks. For larger values of f ,
Wendy’s view change overheads go down significantly. For
instance, for f = 64, Wendy’s view change in the presence
of a hidden lock has a latency of 362.09ms (compared to
243.46ms for HotStuff). Hidden locks are generally rare since

it requires a very specific order of events to occur. Thus, our
experiments show that at high values of f (the traditional
setup for modern permissioned systems), Wendy can always
achieve two-round trips in the common case and, in the rare
cases where a hidden lock does exist, suffers only moderate
overheads in its view change compared to HotStuff. In other
words, Wendy’s optimism pays off.

VIII. CONCLUSION

This paper introduced Wendy, a new pipelined BFT con-
sensus protocol that achieves low-latency, linear authenticator
complexity, and optimistic responsiveness. Wendy’s main con-
tribution is its innovative use of a linear no-commit proof that
allows it to efficiently prove to replicas that it is safe to change
their vote. Wendy’s ability to scale and resilience to varying
network conditions makes it well-suited for usage in modern
permissioned blockchain systems.
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Algorithm 2 BLS multi-signature scheme

1: procedure BLS.KGen(1λ ) → (sk,(pk,π))

2: Set sk $← Zp uniformly at random
3: Set pk= gsk2
4: Set π = H1(pk)

sk

5: procedure BLS.SignShare(ski,m) → σi
6: Set σi = H0(m)ski

7: procedure BLS.VerifyShare((pki,πi),m,σi) →{0,1}
8: . PoP verification (only done during bootstrapping in Wendy)
9: Check if e(πi,g2) = e(H1(pki),pki)

10: Check if e(σi,g2) = e(H0(m),pki)

11: procedure BLS.Agg((σi)i∈I) → σ

12: Set σ = ∏i∈I σi

13: procedure BLS.VerifyAgg(((pki,πi),mi)i∈I ,σ ) →{0,1}
14: . PoP verification (only done during bootstrapping in Wendy)
15: Check if e(πi,g2) = e(H1(pki),pki),∀i ∈ I
16: Check if e(σ ,g2) = e(H0(v),∏i∈I pki)

APPENDIX

Our protocols rely on Boneh-Lynn-Shacham (BLS) signa-
tures [14]. BLS signatures work in bilinear groups G1,G2,GT
of prime order p endowed with a pairing e : G1×G2→ GT .
Let g2 denote the generator of G2.

The secret key in BLS is a random field element s ∈R Zp
and the public key is gs

2. A random oracle H : {0,1}∗→ G1
is used for signing. To sign a message m, the signer computes
σ = H(m)s. To verify a signature on m given the public key
gs

2, the verifier checks if:

e(σ ,g2) = e(H(m),gs
2) (7)

Correctness follows from the bilinerity of the map e:

e(σ ,g2) = e(H(m),gs
2)⇔ (8)

e(H(m)s,g2) = e(H(m),gs
2)⇔ (9)

e(H(m),g2)
s = e(H(m),g2)

s (10)

Unforgeability of signatures under chosen-message attack
holds under the computational Diffie-Hellman (CDH) assump-
tion in bilinear groups [14].

We also compare our aggregate signature scheme against
normal, BGLS aggregate signatures [28]. We summarize this
scheme in Algorithm 3, where H0 denotes a random oracle
that maps signed messages to G1 and H1 denotes the oracle
used in the proof of possession (PoP) [22], mapping public
keys in G2 to a G1 element.

A. Security definition and proof

We first describe the generic notion of unforgeability for
aggregate signatures from [23, Section 3.2] and then slightly
modify it for our Wendy aggregate signature scheme.

Unforgeability for traditional aggregate signatures. To
model security in a normal aggregate signature scheme such as
BGLS [23], we require that an adversary A, who controls the
last k−1 of k different signers (i.e., picks their PKs, potentially
knowing their corresponding SKs), cannot forge an aggregate
signature on (m1, . . . ,mk) under these k signers, even if A gets
oracle access for signatures by the first signer. Of course, the

Algorithm 3 BGLS aggregate signature scheme

1: procedure BGLS.KGen(1λ ) → (sk,pk)

2: Set sk $← Zp uniformly at random
3: Set pk= gsk2
4: procedure BGLS.SignShare(ski,m) → σi
5: Set σi = H0(m)ski

6: procedure BGLS.VerifyShare(pki,m,σi) →{0,1}
7: Check if e(σi,g2) = e(H0(m),pki)

8: procedure BGLS.Agg((σi)i∈I) → σ

9: Set σ = ∏i∈I σi

10: procedure BGLS.VerifyAgg((pki,mi)i∈I ,σ ) →{0,1}
11: Check if e(σ ,g2) = ∏i∈I e(H0(mi),pki)

forgery’s first message m1 cannot be queried to this signing
oracle.

Definition 6. We say an aggregate signature scheme is
(t,qH ,qs, N,ε)-secure in the aggregate chosen-key model if,
for all adversaries A that run in time at most t, make at
most qH random oracle queries and at most qs signing oracle
queries, A wins AggSigForgeA,N(1λ ), defined below, with
probability at most ε:

AggSigForgeA,N(1λ )→{0,1}
(sk1,pk1)← AS.KGen(1λ )

(σ ,pk2, . . . ,pkk,m1, . . . ,mk,k ≤ N)←AAS.SignShare(sk1,·)(1λ ,pk1)
Return 1 if:

1. AS.VerifyAgg((pki,mi)i∈[k],σ) = 1
2. m1 /∈ Q

Return 0 otherwise.

OAS.SignShare(sk1,m) oracle
Add m to set Q
Return AS.SignShare(sk1,m)

Unforgeability for Wendy aggregate signatures. Our Wendy
aggregate signature has the same notion of security as defined
above, except the unforgeability game uses a slightly different
signing oracle that does not allow double-signing on messages
(c|v) and (c′|v) that share the same suffix v but have c 6=
c′. This captures honest replicas not double signing in our
application scenario.

Definition 7. We say a Wendy aggregate signature scheme
is (t,qH ,qs, N,ε)-secure in the aggregate chosen-key model,
if it satisfies Theorem 6 but with the modified signing oracle
below:

OAS.SignShare(sk1,m=(c|v)) oracle
If 6 ∃(·|v) in Q, then:

1. Add (c|v) to set Q
2. Return AS.SignShare(sk1,m)

Observation: The constraint that the forged m1 = (c|v) /∈ Q
from Definition 6, together with the modified oracle above,
guarantees that a successful forgery on (c|v) is meaningful in
our application. Specifically, that either:

14



1) v was not previously queried to the signing oracle for
sk1, or

2) v was queried before to the signing oracle for sk1, but
not with c.

Theorem 8. The Wendy aggregate signature scheme from Al-
gorithm 1 is secure as per Theorem 7 under the computational
co-Diffie-Hellman (co-CDH) [22] assumption.

Proof: Suppose A (t,qH ,qs,N,ε)-breaks our Wendy aggre-
gate signatures scheme with non-negligible probability. We
show how to construct another adversary B that solves a
random co-CDH instance with probability:

ε
′ ≥ ε/

√
e

2(qs +N)
(11)

This will contradict the hardness of co-CDH.
Specifically, B is given a co-CDH instance

(g1,ga
1,g2,ga

2,h) ∈ G2
1 ×G2

2 ×G1 and must output ha ∈ G1
to break co-CDH. B will interact with A, acting as the
challenger in the unforgeability game from Theorem 6 and
simulating the (modified) signing oracle from Theorem 7. B
also simulates the two random oracles H0 and H1 to A, which
are used for signing and for proofs of possesion (PoPs),
respectively. B’s goal is to turn a forgery from A into an ha

solution to its co-CDH instance.

Setup: B guesses that A will forge on a message (c|v) whose
first bit of c is b̂ ∈R {0,1}, picked at random. Next, B embeds
the co-CDH challenge in the public key pk1 of the first player.
For this, B randomly picks sk1, j,b ∈R Zp for all j ∈ [1, `) and
b ∈ {0,1} but lets sk1,0,b̂ = a. Even though B does not know

a, B can still compute all pk1, j,b = g
sk1, j,b
2 since he knows

ga
2. Therefore, pk1 is distributed as if it was picked by the

challenger, but actually embeds the co-CDH challenge.
B also computes PoPs πi, j,b for all the secret subkeys ski, j,b.

However, note that for sk1,0,b̂ = a, B does not actually know a,
so B must simulate a PoP by programming the random oracle
H1. Specifically, on input pk1,0,b̂, B programs H1 to return
gz

1 for random z ∈R Zp. This way, π1,0,b̂ = H1(pk1,0,b̂)
sk1,0,b̂ =

(gz
1)

a = (ga
1)

z, which B can compute. B remembers this by
adding (pk1,0,b̂,z) to a so-called H1-list. (In fact, B will
program H1 even when computing PoPs for ski, j,b’s it knows,
since the oracle must always return a random value.)

Finally, B gives A the public parameter g2 and the public
key pk1 = (pk1, j,b,π1, j,b) j∈[0,`),b∈{0,1}, on which A has oracle
access.

H1 hash queries: Recall that A can query the random ora-
cle H1 : G2 → G1 on any inputs it pleases. B has already
programmed this oracle in order to simulate PoPs for pk1. In
addition, B must also simulate random responses when queried
by A and record them on its H1-list defined above. When A
queries H1 on y, B responds as follows:

1) If y already appears on the H1 list in some tuple (y,z),
then B responds with H1(y) = hz ∈ G1, where h is part
of the co-CDH challenge.

2) Otherwise, B picks a random z∈Zp, records (y,z) on the
H1-list and returns H1(y) = hz.

H0 hash queries: Recall that A can query the random oracle
H0 : {0,1}∗→G1 on the suffix v of the (c|v) messages being
signed. B will be responding to these queries by keeping an
H0-list of (vi,wi, fi,ri) tuples as follows. Initially, the H0-list
is empty. When A queries H0 on v, B responds as follows:

1) If v already appears on the H0-list in some tuple
(v,w, f ,r), then B responds with H0(v) = w ∈G1.

2) Otherwise, B flips a coin f ∈R {0,1}, so that Pr[ f = 0] =
1/(qs +N).

a) Note: When f = 1, B is effectively guessing that A
will not forge on this queried v.

3) B picks a random r ∈R Zp
4) B sets w = h1− f gr

1
5) B adds (v,w, f ,r) to the H0-list and returns H0(v) = w to
A

Importantly, whether f is 0 or 1, w is uniform in G1, and
independent of A’s current view (i.e., its input and received
oracle outputs), due to the randomization of w by gr

1.

Signature queries: Recall that A has oracle access to sig-
natures under pk1 (but through the modified oracle from
Theorem 7). Let c j denote the jth bit of c. On a request from
A to sign (c|v), B implements the signing oracle as follows:

1) B runs its hash-query algorithm on v and obtains the
(v,w, f ,r) tuple from the H0-list.

2) If [ f = 0 and c0 = b̂], then B fails (i.e., B incorrectly
guessed that A will forge on this v; therefore, B would
need to know sk1,0,b̂ = a to simulate a signature on (c|v),
but B cannot since B does not know a).

3) Otherwise (i.e., [ f = 1] or [ f = 0 and c0 = 1− b̂]), B can
simulate a signature σ1 on (c|v), which is defined as:

σ1 = H0(v)
∑ j∈[0,`) sk1, j,c j (12)

= w∑ j∈[0,`) sk1, j,c j (13)

a) If [ f = 0 and c0 = 1− b̂], then w = hgr
1 and B knows

all the sk1, j,b’s in order to compute σ1

σ1 = (hgr
1)

∑ j∈[0,`) sk1, j,c j (14)

= (hgr
1)

sk1,0,1−b̂(hgr
1)

∑ j∈[1,`) sk1, j,c j (15)

b) Otherwise, if [ f = 1], then w= gr
1 and B knows r. Thus,

independent of c’s binary representation, B can always
simulate as:

σ1 = (gr
1)

∑ j∈[0,`) sk1, j,c j (16)

=

(
g

∑ j∈[0,`) sk1, j,c j
1

)r

(17)

=

(
∏

j∈[0,`)
pk1, j,c j

)r

(18)

A’s output: Having interacted with B, requesting hashes and
signatures via the oracles, A eventually halts. If A fails to
produce a forgery, B fails to break co-CDH. Otherwise, if A
succeeds, A returns an aggregated signature forgery on v of
size k ≤ N:

σ ,pk, . . . ,pkk,m1 = (c1|v), . . . ,mk = (ck|v) (19)
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Recall that:

pki = ((pki, j,b,πi, j,b) j∈[0,`),b∈{0,1} (20)

Also, recall that each pki, j,b = g
ski, j,b
2 . Importantly, A either

never requested a signature on the v above or, if it did, the
signature was requested with a c different from the c1 above.
Since A succeeded, B makes sure there is an entry (v,w, f ,r)
for v on the H0-list by running an oracle query for v, if need
be.

If f = 1, then B guessed incorrectly and fails to break co-
CDH. Otherwise (i.e., f = 0), we have two cases. Let ci, j
denote the jth bit of ci. Recall that B’s guess for the first
bit c1,0 of c1 was b̂. In the first case, c1,0 6= b̂ and B fails to
break co-CDH. In the second case, c1,0 = b̂, and B can break
co-CDH as follows.

Recall that, since f = 0, we have H0(v) = w = hgr
1. Since

σ is a valid forgery, we have:

e(σ ,g2) = e(H0(v), ∏
i∈[1,k]

∏
j∈[0,`)

pki, j,ci, j
) (21)

= e(w, ∏
i∈[1,k]

∏
j∈[0,`)

pki, j,ci, j
) (22)

= e(hgr
1, ∏

i∈[1,k]
∏

j∈[0,`)
pki, j,ci, j

) (23)

Let σi, j = (hgr
1)

ski, j,ci, j and σi = ∏ j∈[0,`) σi, j. Note that if B can
obtain σ1,0 = (hgr

1)
ski,0,ci,0 = (hgr

1)
ski,0,b̂ = (hgr

1)
a he can output

the co-CDH solution ha = (σ1,0)/(ga
1)

r, since B knows ga
1 and

r.
Rewrite Eq. (23) as:

e(σ ,g2) = ∏
i∈[1,k]

∏
j∈[0,`)

e((hgr
1)

ski, j,ci, j ,g2) (24)

= ∏
i∈[1,k]

∏
j∈[0,`)

e(σi, j,g2) = ∏
i∈[1,k]

e

(
∏

j∈[0,`)
σi, j,g2

)
(25)

= ∏
i∈[1,k]

e(σi,g2) (26)

As a result, observe that:

σ1 = σ/( ∏
i∈[2,k]

σi) (27)

Later on, we show how B can recover all the other signature
shares σi from players i∈ [2,k] using their proofs of possession
(PoP) from pki. This way, B can recover σ1 as per Eq. (27).
Since B randomly picked all the sk1, j,b secret subkeys when
j≥ 1, B can also recover σ1,0 = σ1/∏ j∈[1,`) σ1, j. Thus, B can
break co-CDH by outputting ha = (σ1,0)/(ga

1)
r.

Analyzing B’s success probability: For B to successfully
break co-CDH, the following three events must occur:
• E1: B does not fail as a result of any of A’s signature

queries.
• E2: A generates a valid signature forgery (k,pk2, . . . ,pkk,

m1, . . . ,mk), where mi = (ci|v).
• E3: Event E2 occurs and f = 0 in the H0-list entry
(v,w, f ,r) for v, with c1,0 = b̂ (In other words, B can
use the forgery to break co-CDH.)

B succeeds if all events above happen:

Pr[E1∧E2∧E3] = Pr[E1] ·Pr[E2 | E1] ·Pr[E3 | E1∧E2] (28)

We analyze the probabilities above one by one. Let e denote
the base of the natural logarithm. (This overloads e, which also
denotes a pairing, but meaning should be clear from context.)

Claim 1: Pr[E1] ≥ 1/
√

e. Recall that A makes qs signature
queries and that, by Theorem 7, A never queries the signing
oracle on the same v twice. We prove by induction that the
probability that B does not fail after the first i signature queries

is at least
(

1− 1
2(qs+N)

)i
≥ 1/
√

e.
First, note that the probability B does not fail on the

ith query is independent from the probability on the pre-
vious queries and from A’s current view. In other words,
the probability only depends on B’s coin flips. After i = 0
queries, clearly B does not fail with probability 1, which is

≥
(

1− 1
2(qs+N)

)0
. Assume inductively that after i−1 queries

the probability is
(

1− 1
2(qs+N)

)i−1
. Then, at the ith query on

(c,v), the probability that B fails is at most the probability
that f = 0 and c1,0 = b̂:

Pr[B fails on query i]≤ Pr[ f = 0∧ c1,0 = b̂] = (29)

=
1

qs +N
· 1

2
=

1
2(qs +N)

(30)

Thus, the probability that B does not fail on the ith signature
query is:

Pr[B succeeds on query i]≥ 1− 1
2(qs +N)

(31)

Therefore, by the inductive hypothesis, the probability that B
does not fail after the first i signature queries is:

Pr[B succeeds on queries 1,2, . . . , i−1]· (32)
· Pr[B succeeds on query i]≥ (33)

≥
(

1− 1
2(qs +N)

)i−1

·
(

1− 1
2(qs +N)

)
= (34)

=

(
1− 1

2(qs +N)

)i

(35)

Since limqs→∞

(
1− 1

2(qs+N)

)qs
= 1/

√
e, this probability is ≥

1/
√

e.

Claim 2: Pr[E2 | E1]≥ ε . The adversary A gets a public key
pk1 from the same distribution as public keys produced by
AS.KGen, since the co-CDH challenge ga

2 is uniform in G2,
since a is uniform in Zp. The responses wi on the ith random
oracle query are also uniform in G1 since they are computed
as wi = h1− figri

1 where ri is uniform in Zp. Since E1 happened
(i.e., B succeeded in simulating all qs signatures to A), the
probability Pr[E2 | E1] that A outputs a forgery is at least ε .
This is because, in the beginning of this proof, we assumed A
(t,qH ,qs,N,ε)-breaks the Wendy aggregate signature scheme.

Claim 3: Pr[E3 | E2 ∧E1] ≥ 1
2(qs+N) : Recall this is the prob-

ability that B can use the forgery on m1 = (c1|v) to break
co-CDH. In other words, the probability that (1) f = 0 in
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the H0-list entry (v,w, f ,r) for the forged v and (2) c1,0 = b̂.
From Eq. (29), we already know that this probability is
Pr[ f = 0∧ c1,0 = b̂] = 1

2(qs+N) .
Recall that in order to break co-CDH, B needs to compute

all σi, i ∈ [2,k] from Eq. (27). Recall that each adversarially-
generated pki = (pki, j,b) j∈[0,`),b∈{0,1} comes with a proof-
of-possesion (PoP) πi = (πi, j,b) j∈[0,`),b∈{0,1}, where πi, j,b =

H1(pki, j,b)
ski, j,b . Also, recall that B programmed H1(y) to

return hz, for random z ∈ Zp, and recorded (y,z) in its H1-list.
Thus, since B has all the πi, j,b PoPs, B actually has all the
(hzi, j,b)ski, j,b . B can thus exponentiate by (zi, j,b)

−1 and obtain
all hski, j,b ’s. Once it has these, recall that:

σi, j = (hgr
1)

ski, j,ci, j (36)

σi = ∏
j∈[0,`)

(37)

Thus, B can compute the σi, j’s from the hski, j,b ’s. Next, B
computes all σi, i ∈ [2,k] and, lastly, σ1 as per Eq. (27).

Therefore, B’s success probability here is Pr[E3 | E2∧E1]≥
1

2(qs+N) .

B’s final success probability: To summarize, B’s probability
of breaking co-CDH is:

Pr[E1∧E2∧E3] = Pr[E1] ·Pr[E2 | E1] ·Pr[E3 | E1∧E2] (38)

≥ 1√
e
· ε · 1

2(qs +N)
(39)

=
ε/
√

e
2(qs +N)

(40)
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