
Dissecting BFT Consensus:

In Trusted Components we Trust!

Suyash Gupta†, Sajjad Rahnama, Shubham Pandey, Natacha Crooks†, Mohammad Sadoghi
Exploratory Systems Lab, University of California, Davis

†SkyLab, University of California, Berkeley

Abstract

The growing interest in reliable multi-party applications has
fostered widespread adoption of Byzantine Fault-Tolerant
(bft) consensus protocols. Existing bft protocols need f
more replicas than Paxos-style protocols to prevent equiv-
ocation attacks. trust-bft protocols seek to minimize this
cost by making use of trusted components at replicas.

This paper makes two contributions. First, we analyze the
design of existing trust-bft protocols and uncover three
fundamental limitations that preclude most practical deploy-
ments. Some of these limitations are fundamental, while
others are linked to the state of trusted components today.
Second, we introduce a novel suite of consensus protocols,
FlexiTrust, that attempts to sidestep these issues. We show
that our FlexiTrust protocols achieve up to 185% more
throughput than their trust-bft counterparts.

CCS Concepts: • Security and privacy → Systems secu-

rity; • Computer systems organization→ Dependable

and fault-tolerant systems and networks.

Keywords: Byzantine fault-tolerance, consensus, SGX, re-
sponsiveness, parallelism, permissioned blockchain
ACM Reference Format:

SuyashGupta†, Sajjad Rahnama, ShubhamPandey, Natacha Crooks†,
Mohammad Sadoghi. 2023. Dissecting BFT Consensus: In Trusted
Components we Trust!. In Eighteenth European Conference on Com-
puter Systems (EuroSys ’23), May 8–12, 2023, Rome, Italy. ACM, New
York, NY, USA, 19 pages. https://doi.org/10.1145/3552326.3587455

1 Introduction

Byzantine Fault-Tolerant (bft) protocols allow multiple par-
ties to perform shared computations and reliably store data
without fully trusting each other; the system will remain cor-
rect even if a subset of participants behave maliciously [15,
36, 38, 41, 48, 87]. These protocols aim to ensure that all
the replicas reach consensus on the order of incoming client

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroSys ’23, May 8–12, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9487-1/23/05.
https://doi.org/10.1145/3552326.3587455

requests. These protocols are increasingly popular today,
with applications ranging from safeguarding replicated and
sharded databases [40, 72, 81], edge applications [39, 62], and
blockchain applications [7, 60, 85].
bft protocols tolerate a subset of participants behaving

arbitrarily: a malicious actor can delay, reorder or drop mes-
sages (omission faults); it can also send conflicting informa-
tion to participants (equivocation) [36]. As a result, bft con-
sensus protocols are costly: maintaining correctness requires
a minimum of 3f +1 participants, where f participants can be
malicious. This is in contrast to crash-fault tolerant protocols
(cft), where participants can fail only by crashing, therefore
requiring only 2f + 1 participants for correctness [49, 66].
To minimise this additional cost, some existing bft pro-

tocols leverage trusted components to curb the degree to
which participants can behave arbitrarily [26, 27, 50, 79]. A
trusted component provably performs a specific computa-
tion: incrementing a counter [51, 83], appending to a log [21],
or more advanced options like executing a complex algo-
rithm [45, 52, 75]. While there exists a large number of bft
protocols that leverage these trusted components [21, 51, 86]
(we refer to these protocol as trust-bft protocols for sim-
plicity), they all proceed in a similar fashion: they force each
replica to commit to a single order for each request by hav-
ing the trusted component sign each message it sends. In
turn, each trusted component either: (1) records the chosen
order for a client request in an append-only log, or (2) binds
this order for the request with the value of a monotonically
increasing counter. Committing to an order in this way al-
lows these protocols to remain safe with 2f + 1 replicas only,
bringing them in line with their cft counterparts.
While reducing replication cost is a significant benefit,

this paper argues that current trust-bft protocols place
too much trust in trusted components. Our analysis uncovers
three fundamental issues with existing trust-bft imple-
mentations: (i) limited responsiveness for clients, (ii) safety
concerns associated with trusted components, and (iii) in-
ability to perform multiple consensuses in parallel.
Responsiveness We observe that malicious replicas can

successfully prevent a client from receiving a response for
its transactions. While the transaction will still commit (con-
sensus liveness), the system will appear to clients as stalled
and thus appear non-responsive to clients. trust-bft proto-
cols allow a reduced quorum size of f +1 to commit a request.
As f of those may be malicious, only one honest replica is

https://doi.org/10.1145/3552326.3587455
https://doi.org/10.1145/3552326.3587455

EuroSys ’23, May 8–12, 2023, Rome, Italy Suyash Gupta†, Sajjad Rahnama, Shubham Pandey, Natacha Crooks†, Mohammad Sadoghi

guaranteed to execute the operation. This is insufficient to
guarantee that a client will receive the necessary f +1 match-
ing responses post operation execution to validate that the
response is indeed valid.

Loss of Safety under Rollback. Existing trust-bft protocols
consider an idealised model of trusted computation. They
assume that the trusted components cannot be compromised
and that their data remains persistent in the presence of a ma-
licious host. This assumption does not yet align with current
hardware functionality. A large number of these protocols
employ Intel SGX enclaves for trusted computing [13, 28, 78].
Unfortunately, SGX-based designs have been shown to suffer
from rollback attacks [43, 58, 84], and the solutions to miti-
gate these attacks lack practical deployments [30]. Hardware
enclaves that do provably defend against rollback attacks,
such as persistent counters [26] and TPMs [33], have pro-
hibitively high latencies (tens of milliseconds) [51, 56, 68].
Sequential Consensus. Existing trust-bft protocols are

inherently sequential as they require each outgoing message
to be ordered and attested by trusted components. While
recent work mitigates this issue by pipelining consensus
phases [28] or running multiple independent consensus in-
vocations [13], their performance remains fundamentally
limited by the RTT of each protocol phase. In fact, despite
their lower replication factor, we observe that trust-bft
protocols achieve lower throughput than traditional parallel
bft protocols [15, 38, 65, 81].

This paper argues that trust-bft protocols have targeted
the wrong metric: while reducing the replication factor to
2f + 1 may seem appealing from a resource efficiency or
management overhead standpoint, it, paradoxically, comes
at a significant performance cost as the lack of parallelism
and heavy reliance on trusted hardware hurts throughput
significantly. We propose a novel suite of consensus algo-
rithms (Flexible Trusted bft (FlexiTrust)), which address
the aforementioned limitations. These protocols are always
responsive and achieve high throughput as they (1) make
minimal use of trusted components (once per client operation
and at the primary replica only), and (2) support parallel con-
sensus invocations. Both these properties are made possible
by the ability to use large quorums (of size 2f +1) when using
3f + 1 replicas. Our techniques can be used to convert any
trust-bft protocol into a FlexiTrust protocol. We provide
as examples two such conversions: Flexi-BFT and Flexi-
ZZ, two protocols based on Pbft [15]/ MinBFT [83] and
Zyzzyva [48]/ MinZZ [83], respectively. Flexi-BFT follows
a similar structure to Pbft, but requires one less communica-
tion phase. Flexi-ZZ is, we believe, of independent interest:
the protocol achieves consensus in a single linear phase with-
out using expensive cryptographic constructs such as thresh-
old signatures. Crucially, unlike the Zyzzyva and MinZZ
protocols, Flexi-ZZ continues to commit in a single-round
even when a single participant misbehaves, thus maintain-
ing high-throughput [23, 24, 38]. Further, Flexi-ZZ presents

a simplified view-change protocol than other single phase
consensus protocols, which prior works have illustrated is
notoriously complex and error-prone [2, 31].
We evaluate our FlexiTrust variants against five proto-

cols: three trust-bft and two bft systems. For fair eval-
uation, we implement these protocols on the open-source
ResilientDB fabric [37, 38, 65, 71]. Our evaluation on a real-
world setup of 97 replicas and up to 80 k clients shows that
our FlexiTrust protocols achieve up to 185% and 100% more
throughput than their trust-bft and bft counterparts, re-
spectively. Further, we show that our FlexiTrust protocols
continue outperforming these protocols even when repli-
cas are distributed across six locations in four continents.
The aforementioned results use SGX and are thus subject
to rollback attacks. When simulated with actual persistent
counters, we find that FlexiTrust’s minimal use of hard-
ware enclaves mitigates the cost of the required mechanisms
to prevent rollbacks. In summary, we make the following
four contributions:

• We identify a responsiveness issue in existing trust-
bft protocols when an honest replica faces temporary
message delays.

• We highlight that rollback attacks on trusted compo-
nents limit practical deployments.

• We observe that existing trust-bft protocols are in-
herently sequential. The lack of support for parallel
consensus invocations artificially limits throughput
compared to traditional bft prtoocols.

• We present FlexiTrust protocols: a novel suite of pro-
tocols that support concurrent consensus invocations
and require minimal access to the trusted components.

2 System model and notations

We adopt the standard communication and failure model
adopted by most bft protocols [15, 21, 35, 38, 65, 81], includ-
ing all existing trust-bft protocols [13, 21, 28, 83, 86].
We consider a replicated service S consisting of set of 𝑛

replicas R of which at most 𝑓 can behave arbitrarily. The
remaining 𝑛− 𝑓 are honest: they will follow the protocol and
remain live. We additionally assume the existence of a finite
set of clients C of which arbitrarily many can be malicious.
Similarly, we inherit standard communication assump-

tions: we assume the existence of authenticated channels (ma-
licious replicas can impersonate each other but no replica can
impersonate an honest replica) and standard cryptographic
primitives such as MACs and digital signatures (DS). We
denote a message𝑚 signed by a replica r using DS as ⟨𝑚⟩r.
We employ a collision-resistant hash function Hash(·) to map
an arbitrary value 𝑣 to a constant-sized digest Hash(𝑣). We
adopt the same partial synchrony model adopted in most
bft systems: safety is guaranteed in an asynchronous en-
vironment where messages can get lost, delayed, or dupli-
cated. Liveness, however, is only guaranteed during periods

Dissecting BFT Consensus:
In Trusted Components we Trust! EuroSys ’23, May 8–12, 2023, Rome, Italy

of synchrony [15, 21, 38, 81, 87]. Each replica only accepts a
message if it is well-formed. A well-formed message has a
valid signature and passes all the protocol checks.

We follow Schneider’s seminal work [77] to distinguish
between consensus and Replicated State Machine (Rsm). A
consensus protocol aims to order the operations among the
participants, whereas the correctness of an Rsm is not just
defined by the agreement but also that the response to a
client’s transaction 𝑇 is the result of applying each transac-
tion that precedes 𝑇 in order. This description allows us to
define the following guarantees:
Consensus Safety. If two honest replicas r1 and r2 order

a transaction 𝑇 at sequence numbers 𝑘 and 𝑘 ′, then
𝑘 = 𝑘 ′.

Consensus Liveness. If a honest replica commits 𝑇 , then
all honest replicas eventually commit 𝑇 .

Rsm Safety. Given a consensus order𝑂 of transactions and
a transacton𝑇 , the output of𝑇 is consistent with apply-
ing𝑇 after applying all the transactions in𝑂 according
to the semantic characterisation of the state machine.

Rsm Liveness. If a client sends a transaction 𝑇 , then it will
eventually receive a response for 𝑇 .

Most works assume that RSM safety and liveness implic-
itly follow from consensus safety/liveness. We separate these
properties to emphasise the need for f + 1 matching reads;
traditional consensus definitions often ignore the response
part of the request. We additionally assume that our repli-
cated service S includes a set of trusted components. These
trusted components offer the following abstraction:

Definition 1. A trusted component t is a cryptographically
secure entity, which has a negligible probability of being com-
promised by malicious adversaries. t provides access to a func-
tion foo() and, when called, always computes foo().

Existing trust-bft protocols assume that each replica
r ∈ R has access to a co-located trusted component. We
use the notation tr to denote the trusted component at the
“host” replica r. As tr computes foo() and tr cannot be
compromised by the host r, existing trust-bft protocols
claim integrity in the computation of foo().

3 Primer on bft Consensus

To highlight the limitations of trust-bft protocols, we first
explain bft consensus. To this effect, we summarize the
structure of Pbft-like systems, which represent most mod-
ern bft protocols today [31, 35, 37, 38, 48, 87]. For simplicity
of exposition, we focus specifically on Pbft [15].
Pbft adopts the system and communication model pre-

viously described and guarantees safety and liveness for
n = 3f + 1 replicas where at most f can be malicious. The
protocol follows a primary-backup model: one replica is
designated as the primary (or leader), while the remaining
replicas act as backups. At a high-level, all bft protocols

consist of two logical phases: an agreement phase where
replicas agree to commit a specific operation, and a second
durability phase where this decision will persist even when
the leader is malicious and replaced as part of a view-change
(view-changes are the process through which leaders are
replaced). For ease of understanding, we focus on explaining
the simplest failure-free run of Pbft.
Client Library. The input to any Rsm is a client request.

A client 𝑐 invokes the client side library when it wants the
Rsm to process its transaction 𝑇 . To do so, 𝑐 issues a signed
message ⟨𝑇 ⟩𝑐 to the library, which forwards the message to
the Rsm’s primary replica p. The client library at 𝑐 waits for
identical responses from f + 1 replicas before returning the
result r to 𝑐 . Waiting for f + 1 matching responses ensures
execution correctness as at least one honest replica vouches
to that result.

1. Pre-prepare. When the primary replica p receives a
well-formed client request𝑚, it assigns the corresponding
transaction a new sequence number𝑘 and sends a PrePrepare
message to all backups.

2. Prepare. When a replica r ∈ R receives, for the first
time, a well-formed PrePrepare message from p for a given
sequence number 𝑘 , r broadcasts to all other replicas a
Preparemessage agreeing to support this (sequence number,
transaction) pairing.

3. Commit. When a replica r receives identical Prepare
messages from 2f + 1 replicas, it marks the request 𝑚 as
prepared and broadcasts a Commit message to all replicas.
When a request is prepared, a replica has the guarantee that
no conflicting request𝑚′ for the same sequence number will
ever be prepared by this leader.

4. Execute. Upon receiving 2f + 1 matching Commit mes-
sages, r marks the request as committed and executable. Each
replica r executes every request in sequence number order:
the node waits until request for slot 𝑘 − 1 has successfully
executed before executing the transaction at slot 𝑘 . Finally,
r returns the result r of the operation to the client 𝑐 .

4 Trusted BFT Consensus

bft protocols successfully implement consensus, but at a
cost: they require a higher replication factor (3f + 1) than
their cft counterparts and, in turn, must process signifi-
cantly more messages (all of which must be authenticated
and whose signatures/MACs must be verified). Equivocation
is the primary culprit: a byzantine replica can tell one group
of honest replicas that it plans to order a transaction𝑇 before
transaction𝑇 ′, and tells another group of replicas that it will
order 𝑇 ′ before 𝑇 .
In a cft system, it is sufficient for quorums to intersect

in a single replica to achieve agreement. In bft systems,
quorums must instead intersect in one honest replica (or, in
other words, must intersect in at least f + 1 replicas).

EuroSys ’23, May 8–12, 2023, Rome, Italy Suyash Gupta†, Sajjad Rahnama, Shubham Pandey, Natacha Crooks†, Mohammad Sadoghi

To mitigate this increased cost, trust-bft protocols make
use of trusted components (such as Intel SGX, AWS Nitro)
at each node [21, 22, 59]. Trusted components cannot, by
assumption, be compromised by malicious actors. They can
thus be used to prevent replicas from equivocating. In theory,
this should be sufficient to safely convert any bft protocol
into a cft system [22]. In practice, however, as we highlight
in this work, this process is less than straightforward.

4.1 Trusted Component Implementations

The easiest option is to run the full bft consensus inside
the trusted component [9, 32, 67, 69, 76, 82]. This approach
violates the principle of least privilege [54, 74].

Instead, existing protocols choose to put the smallest amount
of computation inside the trusted component, which bene-
fits by allowing custom hardware implementations that are
more secure [21, 51]. There are two primary approaches:
append-only logs, and monotonically increasing counters.
Careful use of these primitives allows prior work to reduce
the replication factor from 3f + 1 to 2f + 1.
Trusted Logs. trust-bft protocols like Pbft-EA [21]

and HotStuff-M [86] maintain, in each trusted component
tr, a set of append-only logs. Each log has an identifier (say
𝑞) and a set of slots. We refer to each slot using an identifier
𝑘 . Each trusted component tr offers the following API.

1. Append(𝑞, 𝑘𝑛𝑒𝑤, 𝑥) – Assume the last append to 𝑞-th
log of trusted component tr was at slot 𝑘 , then
• If 𝑘𝑛𝑒𝑤 = ⊥, no slot location is specified, tr sets 𝑘

to 𝑘 + 1 and appends the value 𝑥 to slot 𝑘 .
• If 𝑘𝑛𝑒𝑤 > 𝑘 , tr appends 𝑥 to slot 𝑘𝑛𝑒𝑤 and updates

𝑘 to 𝑘𝑛𝑒𝑤 . The slots in between can no longer be used.
2. Lookup(𝑞, 𝑘) – If there exists a value 𝑥 at slot 𝑘 in log

𝑞 of tr, it returns an attestation ⟨Attest(𝑞, 𝑘, 𝑥)⟩tr .
The Append function ensures that no two requests are ever
logged at the same slot; the Lookup function confirms this
fact with a digitally-signed assertion ⟨Attest(𝑞, 𝑘, 𝑥)⟩tr where
𝑘 is the log position and 𝑥 is the stored message.

Trusted Counters. A separate line of work further re-
stricts the scope of the trusted components. Rather than
storing an attested log of messages, it simply stores a set of
monotonically increasing counters [46, 83]. These counters
do not provide a Lookup function as they do not store mes-
sages. Instead, the Append(𝑞, 𝑘𝑛𝑒𝑤, 𝑥) function, at the time of
invocation, returns the attestation proof ⟨Attest(𝑞, 𝑘, 𝑥)⟩tr ,
which states that the 𝑞-th counter updates its current value
𝑘 to 𝑘𝑛𝑒𝑤 and bounds the updated value 𝑘 to message 𝑥 .

These two designs are not mutually exclusive; protocols
like Trinc [51], Hybster [13] and Damysus [28] require
their trusted components to support both logs and counters,
where logs record the last few client requests.

4.2 trust-bft protocol

Existing trust-bft protocols expect that in a system of
n = 2f + 1 replicas at most f replicas are byzantine. Most

trust-bft [13, 21, 46, 51, 83, 86] follow a similar design,
based on the Pbft-EA [21] protocol. Pbft-EA is derived
from Pbft and makes use of a set of trusted logs.
Pbft-EA protocol steps. In the Pbft-EA protocol, tr

stores five distinct sets of logs (note that only two logs are
used in the failure-free case). When the primary p receives
a client request𝑚, it calls the Append(𝑞, 𝑘,𝑚) function to
assign𝑚 a sequence number 𝑘 . tp logs𝑚 in the 𝑞-th prepare
log and returns an attestation ⟨Attest(𝑞, 𝑘,𝑚)⟩tp , which
p forwards to all replicas along with the Preprepare mes-
sage. The existence of a trusted log precludes a primary from
equivocating and sending two conflicting messages𝑚 and𝑚′

for the same sequence number 𝑘 . When a replica r receives
a well-formed Preprepare message for slot 𝑘 , it creates a
Preparemessage𝑚′, and calls the Append function on its tr
to log𝑚′. As a result, tr logs𝑚′ in its 𝑞-th prepare log and re-
turns an attestation ⟨Attest(𝑞, 𝑘,𝑚′)⟩tr , which r forwards
along with the Prepare message to all replicas.
Once r receives f + 1 identical Prepare messages from

distinct replicas (including itself), it declares the transac-
tion prepared. Following this, r repeats the process by cre-
ating a Commit message (say𝑚′′) and asking its tr to log
this message at slot 𝑘 in its 𝑞-th commit log. r broadcasts
the signed attestation ⟨Attest(𝑞, 𝑘,𝑚′′)⟩tr along with the
Commit message. Once r receives f + 1 matching commit
messages for𝑚 at slot 𝑘 , it marks the operation committed. r
executes𝑚 once it has executed the request at slot 𝑘 − 1 and
sends the result of execution (r). The client library returns r
to the client when it receives f + 1 identical responses.

MinBFT and MinZZ protocols. MinBFT [83] improves
over Pbft-EA by observing that the use of trusted compo-
nents makes the Commit phase redundant. MinBFT allows
a replica to mark transactions as committed once it receives
f+1 identical Preparemessages. MinZZ [83] makes a similar
observation to improve the Zyzzyva [48] protocol: it allows
replicas to speculatively execute an operation once they re-
ceive a Preprepare message from the primary. However,
unlike Zyzzyva where the client needs identical responses
from n = 3f + 1 replicas to mark its transaction as complete,
in MinZZ the client requires n = 2f + 1 responses. Both
MinBFT and MinZZ make use of trusted counters.
Checkpoints. Like bft protocols, trust-bft protocols

also periodically share checkpoints. These checkpoints re-
flect the state of a replica r’s trusted component tr and
enable log truncation. During the checkpoint phase, r sends
Checkpoint messages that include all the requests commit-
ted since the last checkpoint. If tr employs trusted logs, then
it also provides attestations for each logged request. If instead
tr employs only trusted counters, tr provides an attestation
on the current value of its counters. Each replica r marks
its checkpoint as stable if it receives Checkpoint messages
from f + 1 other replicas possibly including itself.

View Change. The existence of trusted logs/counters pre-
cludes the primary from equivocating, but it can still deny

Dissecting BFT Consensus:
In Trusted Components we Trust! EuroSys ’23, May 8–12, 2023, Rome, Italy

service and maliciously delay messages. The view-change
mechanism enables replicas to replace a faulty primary;
a view refers to the duration for which a specific replica
was leader. All trust-bft protocols provide such a mecha-
nism [21, 46]: a view change is triggered when f + 1 replicas
send a Viewchange message. Requiring at least f + 1 mes-
sages ensures that malicious replicas cannot alone attempt
to replace leaders. Similar to the common-case protocol, f +1
replicas must participate in every view-change quorum.

Unfortunately, we identify several limitations and perfor-
mance bottlenecks in all of the aforementioned protocols
(Figure 1), which we describe next.

5 Restricted Responsiveness

We first observe that current trust-bft protocols lack guar-
anteed client responsiveness: temporary delaying the mes-
sages of a single honest replica is sufficient to prevent a
client from receiving a result for its transaction until the
next checkpoint. For any production-scale system, RSM live-
ness (or client responsiveness, the point at which the client
receives a response to its operation) is as important a met-
ric as consensus liveness (the operation commitment at the
replica). Specifically, trust-bft protocols as currently im-
plemented guarantee that a quorum of 𝑓 + 1 replicas will
commit a request (consensus liveness), but do not guarantee
that sufficiently many honest replicas will actually execute
the request. These protocols cannot guarantee that the clients
will receive 𝑓 + 1 identical responses from distinct replicas
(Rsm liveness), which is the necessary threshold to validate
execution results. The ease with which such a Rsm liveness
(or client responsiveness) issue can be triggered highlights
the brittleness of current trust-bft approaches. We high-
light this issue using MinBFT as an example, but, to the best
of our knowledge, the same problem arises with all existing
trust-bft protocols.
Claim 1. In a replicated system S of replicas R and clients
C, where |R | = n = 2f + 1, there exist an execution in which
Rsm liveness is not guaranteed

Proof. Assume a run of the MinBFT protocol (Figure 2). We
know that f of the replicas in R are malicious. We represent
them with set F . The remaining f + 1 replicas are honest.
Let us distribute them into two groups: 𝐷 and r, such that
|𝐷 | = f replicas and r be the remaining replica.
Assume that the primary p (view 𝑣) is malicious (p ∈ F)

and all replicas in F intentionally fail to send replicas in
𝐷 any messages. As is possible in a partially synchronous
system, we further assume that the Prepare messages from
the replica r to those in 𝐷 are temporarily delayed by an
amount greater than the view change timeout.

p sends a Preprepare message for a client 𝑐’s transaction
𝑇 to all replicas in F and to r. These f + 1 replicas are able
to prepare 𝑇 . All messages from replica r to those in 𝐷 are
temporarily delayed by an amount greater than the client

and view change timeouts. During this time, r is the only
honest replica to receive the transaction and reply to the
client 𝑐 as all the replicas in F fail to respond. Unfortunately,
the client needs f + 1 responses to validate the correctness
of the executed operation, and thus cannot make progress.
After its timeout expires, the client will inform to all the

replicas that it has not received sufficient responses for its
transaction 𝑇 . As replica r has successfully committed and
executed 𝑇 , it will simply reply back to 𝑐 . The f replicas in
𝐷 will wait for the leader to initiate consensus on 𝑇 . Having
not heard from the leader about 𝑇 , the f replicas in 𝐷 will
vote to trigger a view-change and will switch to view 𝑣 + 1.
Replica r will not agree to switch to view 𝑣 + 1 and cannot
trust the f replicas in 𝐷 nor the (potentially malicious) client.
Replicas in F will also not trigger a view-change.

Unfortunately, a view-change requires at least f + 1 votes
to proceed; otherwise, malicious replicas could stall system
progress by constantly triggering spurious view-changes.
The f replicas in 𝐷 will thus not successfully trigger a view-
change. To make matters worse, in all bft protocols, once a
replica votes to enter a new view (𝑣 + 1), it must, for safety,
discard any message it receives for view 𝑣 . As such, even
when the replicas in 𝐷 do in fact receive the delayed mes-
sages for𝑇 , they can no longer process them! In summary, in
this example, the system can no longer successfully execute
operations: the client will never receive enough matching
responses and no view-change can be triggered to address
this issue. □

This attack is not specific to MinBFT and applies to other
protocols like Pbft-EA, Trinc, CheapBFT, and Hybster as
they have similar consensus phases and commit rules. It also
applies to streamlined protocols HotStuff-M and Damysus
which frequently rotate primaries.

Weak Quorums. The smaller set of replicas in trust-bft
protocols triggers this responsiveness issue. In trust-bft
protocols, a quorum of f + 1 matching votes suffices to en-
force consensus safety as trusted components certify the
position of the transaction in the log and preclude equivoca-
tion. Unfortunately, these smaller quorums of f + 1 replicas
are insufficient to enforce RSM liveness in all current im-
plementations of trust-bft protocols. A quorum of f + 1
replicas only guarantees that one honest replica will commit,
execute 𝑇 , and reply to the client with the transaction result.
It does not guarantee that f + 1 replicas will reply to the
client with the transaction result, which is necessary for the
client library to validate the execution result and thus return
the correct answer to the client.

Existing trust-bft protocols can be modified to support
Rsm liveness, but at additional cost. This cost is often higher
than the 3f + 1 setup that they sought to improve on. There
are three ways to address this issue: checkpointing, added
latency, broadcasting.

EuroSys ’23, May 8–12, 2023, Rome, Italy Suyash Gupta†, Sajjad Rahnama, Shubham Pandey, Natacha Crooks†, Mohammad Sadoghi

Replicas Trusted Liveness
as bft

Out-of-
Order Memory Only Primary

needs active TC Protocols

2f + 1
Log ✗ ✗ High ✗ Pbft-EA, HotStuff-M

Counter + Log ✗ ✗ Order of Log-size ✗ Trinc, Hybster, Damysus
Counter ✗ ✗ Low ✗ MinBFT, MinZZ, CheapBFT

3f + 1 Counter ✓ ✓ Low ✓ FlexiTrust (Flexi-BFT, Flexi-ZZ)

Figure 1. Comparing trust-bft protocols. From left to right: Col1: type of trusted abstraction; Col2: identical liveness
guarantees as bft protocols; Col3: support for out-of-order consensuses; Col4: amount of memory needed; and Col5: only
primary replica requires active trusted component. FlexiTrust are our proposals, which we present in this paper.

tr2
r2𝐷 =

tr1
r1r =

tp
pF =

𝑐
𝑇 𝑇

Re
sen

d

view
changeDelayed

Preprepare Prepare Reply Wait Inform Decide

MinBFT

Ignore

< f + 1 r3𝐷 =

r2
r1r =

pF =

𝑐
𝑇

Delayed Delayed

Preprepare Prepare Commit Reply

Pbft

Figure 2. Disruption in service in MinBFT protocol due to weak quorums in comparison to the Pbft protocol (Section 5).

1. Checkpointing. Periodic checkpoints will eventually
bring honest replicas up-to-date and disseminate the nec-
essary commit certificates. Unfortunately, this implies that
clients will incur latency that is directly dependent on the
checkpoint frequency (which tend to be relatively infre-
quent). Moreover, checkpoints require only f + 1 replicas
to participate, and thus may not immediately include the
necessary honest replica.

2. Added Latency. A replica could, upon executing the
transaction, include both the output and the commit certifi-
cate when replying to the client. Such a commit certificate
informs the client that its request is successfully committed,
but the client still needs matching responses from at least
f + 1 replicas. Client cannot make progress with just one
response because a malicious replica can always forward
a commit certificate with incorrect result of executing the
operation. The client could then, after a timeout, broadcast
the commit certificates to all other replicas, thus informing
them that the transaction is committed and can safely be
executed. The remaining honest replicas could then execute
the relevant operation and reply to the client library. Once
the client library receives f + 1 responses from replicas, it
could then finally return the result to the client. Clearly, this
approach introduces an additional round-trip (from 3 to 4 for
Pbft-EA) at a time when consensus protocols are concerned
about latency [81, 83]. As clients may not be located near
the Rsm replicas, the added latency may be significant. No-
tice that a malicious client may fail to forward the commit
certificates, further delaying the processing of subsequent
(honest) clients.

3. Broadcast.Alternatively, upon committing a transaction
𝑇 , replicas could systematically and preemptively broadcast
the commit-certificate for 𝑇 to other replicas in the system.
This additional all-to-all communication phase may cause a
significant throughput drop [87], especially when f is large.

What about 3f +1?Moving to 3f +1 and quorums of 2f +1
ensures that all committed operations will be committed at
f + 1 honest replicas, thus guaranteeing that the client will
receive f + 1 responses for all operations.

6 Lack of Safety under Rollbacks

Existing trust-bft protocols require some state to be per-
sisted on the trusted hardware, corresponding to the logged
requests or the counter values. These systems rely on this
property to guarantee safety. Despite any failures or attacks,
these protocols expect this state to remain uncorrupted and
available. Unfortunately, realizing this assumption in avail-
able implementations of trusted hardware is challenging.
Intel SGX enclaves, for instance, are the most popular plat-
form for trusted computing [9, 17, 70, 73], but can suffer
from power-failures and rollback attacks.While recent works
try to mitigate these attacks, they remain limited in scope
and have high costs [30]. Unfortunately, hardware that has
been shown to resist these attacks, such as SGX persistent
counter [26] or TPM [33], is prohibitively slow: they have
upwards of tens of milliseconds access latency and support
only a limited number of writes [26, 56, 68].
Persistent state, is, as we show below, necessary for cor-

rectness of trust-bft protocols; a rollback attack can cause
a node to equivocate. Once equivocation is again possible

Dissecting BFT Consensus:
In Trusted Components we Trust! EuroSys ’23, May 8–12, 2023, Rome, Italy

in a trust-bft protocol, a single malicious node can cause
a safety violation. To illustrate, we consider the following
run of the MinBFT protocol. Let F be the set of f Byzantine
replicas, 𝐷 and𝐺 a set of respectively f and 1 honest replicas.
Assume that the primary p is byzantine and all replicas

in F intentionally fail to send replicas in 𝐷 any messages.
As is possible in a partially synchronous system, we further
assume that the Prepare messages from the replica in 𝐺 to
those in 𝐷 are temporarily delayed by an amount greater
than the client and view change timeouts. p asks its trusted
component to generate an attestation for a transaction 𝑇 to
be ordered at sequence number 1. Following this, p sends a
Preprepare message for 𝑇 to all replicas in F and 𝐺 . These
f + 1 replicas are able to prepare 𝑇 , and they execute 𝑇 and
reply to the client. As a result, the client receives f + 1 iden-
tical responses and marks 𝑇 complete. Now, assume that the
byzantine primary p rollbacks the state of its trusted compo-
nent tp. Following this, p ask its tp to generate an attestation
for a transaction 𝑇 ′ to be ordered at sequence number 1.
Next, p sends a Preprepare message for 𝑇 ′ to all replicas
in 𝐷 . Similarly, these replicas will be able to prepare and
execute 𝑇 ′ and the client will receive f + 1 responses. There
is a safety violation as replicas in 𝐷 and 𝐺 have executed
two different transactions at the same sequence number.
How can we solve this? The straightforward approach

is to replace all vulnerable enclave accesses with TPMs or
persistent counters.While this solutionmay become viable in
the future, we highlight in Figure 8 that it is still impractical.
What about 3f+1? We propose a set of protocols that,

by increasing the replication factor to 3f + 1, reduce this
overhead significantly: they limit the use of TPMs to once per
transaction (O(n) times for current trust-bft protocols).

7 Lack of Parallelism

trust-bft protocols are inherently sequential: they order
client requests one at a time and cannot support parallel
consensus invocations. Pipelining consensus phases can mit-
igate the performance impact of this approach: it allows for
the Preprepare phase of transaction 𝑖+1 to begin directly after
the Preprepare phase of 𝑖 (similarly for Prepare and Commit).
Pipelining does not address the root cause of the problem:
the sequentiality of trust-bft consensus protocols creates
an artificial throughput bound on the throughput they can
achieve (batch size / (number phases × RTT)). This is in di-
rect contrast to traditional bft protocols which are parallel
in nature: replicas can attempt to commit transaction 𝑖 + 1
concurrently with transaction 𝑖 . As such, their throughput is
bound by the available resources in the system. Sequential
consensus protocols also perform poorly in the WAN-area
as their throughput is directly proportional to phase latency.
Hybster [13] attempts to mitigate this issue by allowing
each of the n replicas to act as a primary in parallel, but each
associated consensus invocation remains sequential.

To illustrate why trust-bft protocols cannot run two
instances of consensus in parallel, we assume the following
run of MinBFT. Assume that the primary p allows consensus
invocations of transactions𝑇𝑖 and𝑇𝑗 (𝑖 < 𝑗) to proceed in par-
allel. This implies that a replica r may receive Preprepare
message for 𝑇𝑗 before 𝑇𝑖 . On receiving a message, r calls the
Append function to access its tr. In this example, r would
call Append on 𝑇𝑗 (before 𝑇𝑖) and will receive an attestation
⟨Attest(𝑞, 𝑗,𝑇𝑗)⟩tr , confirming that the counter value was
updated to 𝑗 and 𝑇𝑗 was assigned the value 𝑗 , which it will
forward to all the replicas.When r then receives Preprepare
message for𝑇𝑖 , its attempt to call the Append function would
fail. Its tr ignores this message as 𝑖 < 𝑗 and tr cannot pro-
cess a lower sequence number request. The consensus for
𝑇𝑖 will not complete, stalling progress. Similar issues arise
for other trust-bft protocols when attempts are made to
parallelize their consensus.
What about 3f + 1? By increasing the replication factor

back to 3f + 1, we can design a protocol that has higher
throughput per replica than the 2f + 1 approach (Figure 6(ii)).
In this setup, only the leader needs to invoke trusted hard-
ware to order transactions, replicas no longer do. This per-
mits replicas to process transactions in parallel.

8 FlexiTrust Protocols

The previous sections highlighted several significant limi-
tations with existing trust-bft approaches, all inherited
from their lower replication factor. In this section, we make
two claims: (i) 2f + 1 is simply not enough: it either impacts
responsiveness or requires an extra phase of all-to-all com-
munication (§5); it requires the use of slow persistent trusted
counters for every message (§6); and it sequentializes consen-
sus decisions(§7). (ii) Trusted components are still beneficial
to bft consensus if used with 3f + 1 replicas as they can be
used to reduce either the number of phases or the communi-
cation complexity. To this effect, we present FlexiTrust, a
new set of bft consensus protocols that make use of trusted
components. These protocols satisfy both the Rsm and con-
sensus safety/liveness conditions described in Section 4, and,
through the use of 3f + 1 replicas, achieve the following
appealing performance properties:

(G1) Parallel Consensus. FlexiTrust protocols allow
replicas to process consensus invocations concurrently.

(G2) Minimal Trusted Component Use. FlexiTrust
protocols require accessing a single trusted component per
transaction rather than one per message. This is especially
important when using TPMs or persistent counters as the
counter/logging service to preclude rollback attacks.

(G3) No Trusted Logging. Moreover, FlexiTrust proto-
cols maintain low memory utilization at trusted components
as they do not require trusted logging.

EuroSys ’23, May 8–12, 2023, Rome, Italy Suyash Gupta†, Sajjad Rahnama, Shubham Pandey, Natacha Crooks†, Mohammad Sadoghi

8.1 Designing a FlexiTrust protocol

We make three modifications to trust-bft protocols. To-
gether, these steps are sufficient to achieve significantly
greater performance, and better reliability.
First, we modify the Append functionality. Recall that

the participants use this function to bind a specific message
with a counter value. The value of this counter can be sup-
plied by the replica but must increase monotonically; no
two messages can be bound to the same value. We restrict
this function to preclude replicas from supplying their own
sequence number, and instead have the trusted component
increment counters internally, thus ensuring that counter
values will remain contiguous.
AppendF(𝑞, 𝑥) – Assume the 𝑞-th counter of tr has value

𝑘 . This function increments 𝑘 to 𝑘+1, associates 𝑘 with
message𝑥 , and returns an attestation ⟨Attest(𝑞, 𝑘, 𝑥)⟩tr
as a proof of this binding.

This change is necessary to support parallel consensus in-
stances efficiently: while multiple transactions can be or-
dered in parallel, the execution of these transactions must
still take place in sequence number order. Existing Append
functionality allows a Byzantine replica to either stall the
system’s progress, or exhaust the defined range of sequence
numbers by issuing a sequence number that is far in the
future. As a consequence, honest replicas are forced to fre-
quently trigger view changes to "fill" the gapwith no-ops [15]
and update high and low watermark range.
Create(𝑘) – Creates a new counter with identifier 𝑞 and

initial counter value 𝑘 , such that no previous counter
has an identifier 𝑞. This function also returns an attes-
tation ⟨Attest(𝑞, 𝑘)⟩tr .

We additionally make use of the standard functionality of
creating new counters [26, 51]. This function helps the new
primary (post view change) to re-start consensus on previ-
ously proposed requests. For each new counter that a replica
creates, it has to share a certificate (attestation) that proves
the newness of this counter.
Second, we ensure that only the leader (not the replicas)

need to invoke a trusted counter. All other participants sim-
ply validate the trusted counter’s signature when receiving
a message from the primary. Specifically, upon receiving a
client request𝑚 := 𝑇 , the primary invokes AppendF(𝑞,𝑚)
to bind a unique counter value 𝑘 to𝑚 and returns an attes-
tation ⟨Attest(𝑞, 𝑘,𝑚)⟩tp . The primary then forwards this
attestation as part of its first consensus phase. This allows
replicas to process transactions in parallel; once the transac-
tions have been assigned a sequence number at the leader
(using AppendF), replicas can process them out-of-order and
thus in parallel.

Finally, we increase the quorum size necessary to proceed
to the next phase of consensus to 2f + 1. This higher quorum
size guarantees that any two quorums will intersect in at
least f + 1 distinct replicas (and thus in one honest replica).

Initialization:

// 𝑞 be the latest counter with value 𝑘 .
// 𝑣 be the view-number, determined by the identifier of primary.

Client-role (used by client 𝑐 to process transaction𝑇) :
1: Sends ⟨𝑇 ⟩𝑐 to the primary p.
2: Awaits receipt of messages Response(⟨𝑇 ⟩𝑐 , 𝑘, 𝑣, 𝑟) from f + 1 replicas.
3: Considers𝑇 executed, with result 𝑟 , as the 𝑘-th transaction.

Primary-role (running at the primary p) :
4: event p receives ⟨𝑇 ⟩𝑐 do

5: Calculate digest Δ := Hash(⟨𝑇 ⟩𝑐) .
6: {𝑘, 𝜎 } := AppendF(𝑞,Δ)
7: Broadcast Preprepare(⟨𝑇 ⟩𝑐 ,Δ, 𝑘, 𝑣, 𝜎) .

Non-Primary Replica-role (running at the replica r) :
8: event r receives Preprepare(⟨𝑇 ⟩𝑐 ,Δ, 𝑘, 𝑣, 𝜎) from p such that:

• Message is well-formed and attestation 𝜎 is valid.
• r did not accept a 𝑘-th proposal from p.

do

9: Broadcast Prepare(Δ, 𝑘, 𝑣, 𝜎) .

Replica-role (running at any replica r) :
10: event r receives Prepare(Δ, 𝑘, 𝑣, 𝜎) messages from 2f + 1 replicas such that:

all the messages are well-formed and identical. do
11: if r has executed transaction with sequence number 𝑘 − 1 ∧ 𝑘 > 0 then
12: Execute𝑇 as the 𝑘-th transaction.
13: Let 𝑟 be the result of execution of𝑇 (if there is any result).
14: Send Response(⟨𝑇 ⟩𝑐 , 𝑘, 𝑣, 𝑟) to 𝑐 .
15: else

16: Place𝑇 in queue for execution.

Trusted-role (running at the trusted component tp) :
17: event tp is accessed through AppendF(𝑞,Δ) do
18: Increment 𝑞-th counter; 𝑘 := 𝑘 + 1
19: 𝜎 := Generate attestation ⟨Attest(𝑞, 𝑘,Δ) ⟩tp .
20: Return {𝑘, 𝜎 }.

Figure 3. Flexi-BFT protocol (failure-free path).

Forcing an honest replica to be part of every quorum makes
the need for accessing a trusted counter redundant as this
replica will, by definition, never equivocate.

8.2 Case Study: Flexi-BFT

We apply our transformations to MinBFT [83], a two-
phase trust-bft protocol that makes use of trusted counters.
MinBFT requires one less phase than Pbft and Pbft-EA
(two-phases total): as the primary cannot equivocate, it is
safe to commit a transaction in MinBFT after receiving f + 1
Prepare messages. Note that, in its current form, MinBFT
does not guarantee consensus liveness (§ 5) and would need
an extra phase to do so. Flexi-BFT, the new protocol that
we develop, preserves this property, but remains responsive
and makes minimal use of trusted components (once per
consensus). The view-change and checkpointing protocols
remain identical to the Pbft view-change, we do not discuss
them in detail here. We include pseudocode in Figure 3.

As stated, Flexi-BFT consists of two phases. Upon receiv-
ing a transaction 𝑇 , the primary p of view 𝑣 requests its
trusted component to generate an attestation for 𝑇 . This
attestation ⟨Attest(𝑞, 𝑘,𝑚)⟩tp states that 𝑇 will be ordered
at position 𝑘 (Line 6, Figure 3). The primary broadcasts a
Preprepare with this proof to all replicas. When a replica
r receives a valid Preprepare message in view 𝑣 , it marks

Dissecting BFT Consensus:
In Trusted Components we Trust! EuroSys ’23, May 8–12, 2023, Rome, Italy

the transaction 𝑇 as prepared. Prepared transactions have
the property that no conflicting transaction has been pre-
pared for the same counter value in the same view. In the
Pbft protocol, an additional round is necessary to mark mes-
sages as prepared, as replicas can equivocate. The replica
r then broadcasts a Prepare message in support of 𝑇 and
includes the attestation. When r receives Prepare messages
from 2f + 1 distinct replicas in the same view, it marks 𝑇
as committed. r will execute 𝑇 once all transactions with
sequence numbers smaller than 𝑘 have been executed. The
client marks 𝑇 as complete when it receives matching re-
sponses from f + 1 replicas.

Replicas initiate the view-change protocol when they sus-
pect that the primary has failed. As stated previously, the
view-change logic is identical to the Pbft view-change; we
only describe it here briefly. A replica in view 𝑣 enters the
view change by broadcasting a ViewChange message to
all replicas. Each ViewChange message sent by a replica
r includes all the valid prepared and committed messages
received by r with relevant proof (the trusted component at-
testation for the Preprepare message and the 2f+1 Prepare
messages for committed messages). The new primary starts
the new view if it receives ViewChange message from 2f +1
replicas for view 𝑣 + 1.

8.3 Case Study: Flexi-ZZ

We now transform MinZZ [83] into our novel Flexi-ZZ pro-
tocol. MinZZ follows the design proposed by Zyzzyva [48].
Zyzzyva introduces a bft consensus with a single-phase
fast-path (when all replicas are honest and respond) and a
two-phase slow-path. MinZZ uses trusted counters to re-
duce the replication factor from 3f + 1 to 2f + 1. The cost
of transforming MinZZ to Flexi-ZZ is that, once again, we
use 3f + 1 replicas. However, there are several benefits (1)
Flexi-ZZ can always go fast-path as it only requires n − f
matching responses (compared to the n for both MinZZ and
Zyzzyva). This helps improve performance under byzan-
tine attacks, which past work has demonstrated is an issue
for Zyzzyva [23, 24, 38]. (2) Flexi-ZZ minimizes the use of
trusted components: a single access to a trusted counter is
required at the primary per consensus invocation. (3) Flexi-
ZZ’s view-change is significantly simpler than Zyzzyva’s
view-change. View-change protocols are notorious complex
and error-prone [2, 31] to design and implement; a simple
view-change protocol thus increases confidence in future
correct deployments and implementations. We present pseu-
docode in Figure 4.
Common Case. A client 𝑐 submits a new transaction

𝑇 by sending a signed message ⟨𝑇 ⟩𝑐 to the primary p. The
primary p invokes the AppendF(𝑞,𝑚) function, binding the
transaction to a specific counter value 𝑘 and returning an
attestation ⟨Attest(𝑞, 𝑘,𝑚)⟩tp as proof. This step prevents
p from assigning the same sequence number 𝑘 to two con-
flicting messages𝑚 and𝑚′. The primary then forwards this

Initialization: // 𝑞 be the latest counter with value 𝑘 .

Client-role (used by client 𝑐 to process transaction𝑇) :
1: Sends ⟨𝑇 ⟩𝑐 to the primary p.
2: Awaits receipt of messages Response(⟨𝑇 ⟩𝑐 , 𝑘, 𝑣, 𝑟) from 2f + 1 replicas.
3: Considers𝑇 executed, with result 𝑟 , as the 𝑘-th transaction.

Primary-role (running at the primary p of view 𝑣) :
4: event p receives ⟨𝑇 ⟩𝑐 do

5: Calculate digest Δ := Hash(⟨𝑇 ⟩𝑐) .
6: {𝑘, 𝜎 } := AppendF(𝑞,Δ)
7: Broadcast𝑚 := Preprepare(⟨𝑇 ⟩𝑐 ,Δ, 𝑘, 𝑣, 𝜎) .
8: Execute(𝑚).

Non-Primary Replica-role (running at the replica r) :
9: event r receives𝑚 := Preprepare(⟨𝑇 ⟩𝑐 ,Δ, 𝑘, 𝑣, 𝜎) from p such that:

• Message is well-formed and attestation 𝜎 is valid.
• r did not accept a 𝑘-th proposal from p.

do

10: Execute(𝑚).

Trusted-role (running at the trusted component tp) :
11: event tp is accessed through AppendF(𝑞,Δ) do
12: Increment 𝑞-th counter; 𝑘 := 𝑘 + 1
13: 𝜎 := Generate attestation ⟨Attest(𝑞, 𝑘,Δ) ⟩tp .
14: Return {𝑘, 𝜎 }.

15: function Execute (message:𝑚)
16: if r has executed transaction with sequence number 𝑘 − 1 ∧ 𝑘 > 0 then
17: Execute𝑇 as the 𝑘-th transaction.
18: Let 𝑟 be the result of execution of𝑇 (if there is any result).
19: Send Response(⟨𝑇 ⟩𝑐 , 𝑘, 𝑣, 𝑟) to 𝑐 .
20: else

21: Place𝑇 in queue for execution.

Figure 4. Flexi-ZZ protocol (common-case).

attestation along with the transaction to all replicas. Repli-
cas, upon receiving this message, execute the transaction
in sequence order, and reply directly to the client with the
response. The client marks the transaction𝑇 complete when
it receives 2f + 1 identical responses in matching views.

View Change. If the client does not receive 2f + 1 match-
ing responses, it re-broadcasts its transaction to all replicas;
the primary may have been malicious and failed to forward
its request. Upon receiving this broadcast request, a replica
either (1) directly sends a response (if it has already executed
the transaction𝑇) or, (2) forwards the request to the primary
and starts a timer. If the timer expires before the replica re-
ceives a Prepreparemessage for𝑇 , it initiates a view-change.
Specifically, the replica enters view 𝑣 + 1, stops accepting
any messages from view 𝑣 , and broadcasts a ViewChange
message to all replicas. ViewChange messages include all
requests for which r has received a Preprepare message.

Upon receiving ViewChange messages from 2f + 1 repli-
cas in view 𝑣 + 1, the replica designated as the primary for
view 𝑣 + 1 (say p′) creates a NewView message and broad-
casts it to all replicas. This message includes: (1) the set of
ViewChange messages received by the primary as evidence,
and (2) the (sorted-by-sequence-number) list of transactions
that may have committed. The primary p′ creates a new
trusted counter and sets it to the transaction with the lowest
sequence number. p′ then re-proposes all transactions in this
list, proposing specific no-op operations when there is a gap
in the log between two re-proposed transactions.

EuroSys ’23, May 8–12, 2023, Rome, Italy Suyash Gupta†, Sajjad Rahnama, Shubham Pandey, Natacha Crooks†, Mohammad Sadoghi

To re-propose these transactions, the primary proceeds in
the standard fashion: it accesses its trusted counter, obtains
a unique counter value (setting the counter to the transac-
tion with the lowest sequence number ensures that sequence
numbers remain the same across views), and broadcasts the
transaction and its attestation as part of a new Preprepare
message. This mechanism guarantees that all transactions
that could have been perceived by the client as commit-
ted (the client receiving 2f + 1 matching replies) will be
re-proposed in the same order: for the client to commit an
operation, it must receive 2f +1 matching votes; one of those
those votes is thus guaranteed to appear the NewView mes-
sage. Transactions that were executed by fewer than 2f + 1
replicas, on the other hand, may not be included in the new
view, which may force some replicas to rollback.

9 Proofs

We first prove that in FlexiTrust protocols, no two hon-
est replicas will execute two different requests at the same
sequence number.

Theorem 2. Let r𝑖 , 𝑖 ∈ {1, 2}, be two honest replicas that
executed ⟨𝑇𝑖⟩𝑐𝑖 as the 𝑘-th transaction of a given view 𝑣 . If
n = 3f + 1, then ⟨𝑇1⟩𝑐1 = ⟨𝑇2⟩𝑐2 .

Proof. Replica r𝑖 only executed ⟨𝑇𝑖⟩𝑐𝑖 after r𝑖 received a well-
formed Preprepare message (Preprepare(⟨𝑇 ⟩𝑐 ,Δ, 𝑘, 𝑣, 𝜎))
from the primary p. This message includes an attestation
𝜎 = ⟨Attest(𝑞, 𝑘,Δ)⟩tp from tp, which we assume can-
not be compromised. Let 𝑆𝑖 be the replicas that received
Preprepare message for ⟨𝑇𝑖⟩𝑐𝑖 . Let 𝑋𝑖 = 𝑆𝑖 \ F be the hon-
est replicas in 𝑆𝑖 . As |𝑆𝑖 | = 2f + 1 and |F | = f , we have
|𝑋𝑖 | = 2f + 1− f . An honest replica in𝑇𝑖 will only execute the
𝑘-th transaction in view 𝑣 if it has an attestation from the
trusted component at the primary. If ⟨𝑇1⟩𝑐1 ≠ ⟨𝑇2⟩𝑐2 , then 𝑋1
and𝑋2 must not overlap as the trusted component will never
assign them the same sequence number. Hence, |𝑋1 ∪ 𝑋2 | ≥
2(2f + 1 − f). This simplifies to |𝑋1 ∪ 𝑋2 | ≥ 2f + 2, which
contradicts n = 3f +1. Thus, we conclude ⟨𝑇1⟩𝑐1 = ⟨𝑇2⟩𝑐2 . □

Next, we show that both Flexi-BFT and Flexi-ZZ guaran-
tee a safe consensus.

Theorem 3. In a system S = {R, C} where |R | = n = 3f + 1,
Flexi-BFT protocol guarantees a safe consensus.

Proof. If the primary p is honest, then from Theorem 2, we
can conclude that no two replicas will execute different trans-
actions for the same sequence number. This implies that all
the honest replicas will execute the same transaction per
sequence number. If a transaction is executed by at least
f + 1 honest replicas, then it will persist across views as in
any view-change quorum of 2f + 1 replicas, there will be
one honest replica that has executed this request and has
a valid Preprepare message and 2f + 1 Prepare messages
corresponding to this request.

If the primary p is byzantine, it can only prevent broad-
casting the Preprepare messages to a subset of replicas. p
cannot equivocate as it does not assign sequence numbers.
For each transaction 𝑇 , p needs to access its tp, which re-
turns a sequence number 𝑘 and an attestation that binds 𝑘
to 𝑇 . Further, Theorem 2 proves that for a given view, no
two honest replicas will execute different transactions for
the same sequence number. So, a byzantine p can send the
Preprepare for 𝑇 : (i) to at least 2f + 1 replicas, or (ii) to less
than 2f + 1 replicas. In either cases, any replica r that re-
ceives 𝑇 will send the Prepare message. If r receives 2f + 1
Prepare messages, it will execute 𝑇 and reply to the client.
Any remaining replica that did not receive 𝑇 will eventually
timeout waiting for a request and trigger a ViewChange.
If at least f + 1 replicas timeout, then a ViewChange will
take place. If 𝑇 was prepared by at least f + 1 honest repli-
cas, then this request will be part of the subsequent view.
Otherwise, the subsequent view may or may not include 𝑇 .
But this should not be an issue because such a transaction
was not executed by any honest replica; no replica would
have received 2f + 1 Prepare messages. Hence, system is
safe even if this transaction is forgotten.
Each new view 𝑣 + 1 is led by a replica with identifier

𝑖 , where 𝑖 = (𝑣 + 1) mod n. The new primary waits for
ViewChange messages from 2f + 1 replicas, uses these mes-
sages to create a NewViewmessage, and forwards these mes-
sages to all the replicas. This NewView message includes
a list of requests for each sequence number present in the
ViewChange message. The new primary needs to set its
counter to the lowest sequence number of this list (may need
to create a new counter). Post sending the NewView mes-
sage, the new primary re-proposes the Preprepare message
for each request in the NewView. Each replica on receiving
the NewView message can verify its contents. □

Theorem 4. In a system S = {R, C} where |R | = n = 3f + 1,
Flexi-ZZ protocol guarantees a safe consensus.

Proof. If the primary p is honest, then from Theorem 2, we
can conclude that no two replicas will execute different trans-
actions for the same sequence number. This implies that all
the honest replicas will execute the same transaction per
sequence number. If a transaction is executed by at least f +1
honest replicas, then it will persist across views as in any
view-change quorum of 2f + 1 replicas, there will be one
honest replica that has executed this request and has a valid
Preprepare message.
If the primary p is byzantine, it can only prevent broad-

casting the Preprepare messages to a subset of replicas. p
cannot equivocate as it does not assign sequence numbers.
For each transaction 𝑇 , p needs to access its tp, which re-
turns a sequence number 𝑘 and an attestation that binds 𝑘
to 𝑇 . Further, Theorem 2 proves that for a given view, no
two honest replicas will execute different transactions for
the same sequence number. So, a byzantine p can send the

Dissecting BFT Consensus:
In Trusted Components we Trust! EuroSys ’23, May 8–12, 2023, Rome, Italy

Preprepare for 𝑇 : (i) to at least 2f + 1 replicas, or (ii) to less
than 2f + 1 replicas. In either cases, any replica that receives
𝑇 will execute it and reply to the client, while the remaining
replicas will eventually timeout waiting for a request and
trigger a ViewChange. If at least f +1 replicas timeout, then
a ViewChange will take place. If𝑇 was executed by at least
f + 1 honest replicas, then this request will be part of the
subsequent view. Otherwise, the subsequent view may or
may not include 𝑇 . In such a case, any replica that executed
𝑇 would be required to rollback its state. However, for any
request if the client receives 2f + 1 responses, it will per-
sist across views because at least f + 1 honest replicas have
executed that request.
Each new view 𝑣 + 1 is led by a replica with identifier

𝑖 , where 𝑖 = (𝑣 + 1) mod n. The new primary waits for
ViewChange messages from 2f + 1 replicas, uses these mes-
sages to create a NewViewmessage, and forwards these mes-
sages to all the replicas. This NewView message includes
a list of requests for each sequence number present in the
ViewChange message. The new primary needs to set its
counter to the lowest sequence number of this list (may need
to create a new counter). Post sending the NewView mes-
sage, the new primary re-proposes the Preprepare message
for each request in the NewView. Each replica on receiving
the NewView message can verify its contents. □

10 Evaluation

The goal of our evaluation is to gauge how our FlexiTrust
protocols fare against their trust-bft and bft counterparts.
To do so, we ask three core questions. (1) How do our Flex-
iTrust protocol perform and scale? (§10.4 to §10.7) (2) What
is the impact of failures? (§10.8) (3) How will these protocols
behave as hardware technology evolves? (§10.9 and §10.10)

10.1 Implementation

We use the open-source ResilientDB fabric to implement
all the consensus protocols [35, 37, 38, 65]. ResilientDB
supports all standard bft optimizations, including multi-
threading at each replica and both client and server batching.
The system relies on CMAC for MAC, ED25519 for DS-based
signatures and SHA-256 for hashing.
SGX Enclaves. We use Intel SGX for Linux [26] to im-

plement the abstraction of a trusted component at each
replica. Specifically, we implement multiple monotonically
increasing counters inside each enclave, which can be con-
currently accessed by multiple threads through the func-
tion GetSequenceNo(<counter-id>). This API call returns
an attestation that includes the latest value of the specific
counter and a DS that proves that this counter value was
generated by the relevant trusted component. To highlight
the potential of trusted components under the 3f + 1 regime,
we implement counters inside of the SGX enclave instead of
leveraging Intel SGX Platform Services for trusted counters

a b c d e f g
0

20K

40K

60K

80K

Th
ro
ug

hp
ut

(tx
n/

s)

Figure 5. Impact of trusted counter (TC) and signature attestations
(SA) on Pbft. [a] Standard Pbft protocol. [b] Primary (P) requires
TC in Preprepare phase (Prep). [c] P requires TC and SA in Prep. [d]
P requires TC and SA in all three phases. [e] All replicas require TC
in Prep. [f] All replicas require TC and SA in Prep. [g] All replicas
require TC and SA in all three phases.

as they have prohibitively high latency and are not available
on most cloud providers. All protocols (including baselines
and FlexiTrust protocols) are thus subject to rollback at-
tacks in the current experimental setup. We highlight the
trade-offs associated with the choice of trusted hardware in
Section 10.9.

10.2 Evaluation Setup

We compare our FlexiTrust protocols against eight base-
lines: (i) Pbft [15], available with ResilientDB, as it outper-
forms the BFTSmart’s [14] implementation, which is single-
threaded and sequential [35, 38, 65, 81]; (ii) Zyzzyva [48],
a linear single phase bft protocol where client expects re-
sponses from all the 3f + 1 replicas; (iii) Pbft-EA [21], a
three phase trust-bft protocol; (iv) MinBFT [83], a two
phase trust-bft protocol; (v) MinZZ [83], a linear single
phase trust-bft protocol where client expects responses
from all the 2f + 1 replicas; and (vi) Opbft-ea, a variation
of Pbft-EA we develop that supports parallel consensus in-
vocations. (vii) oFlexi-BFT and (viii) oFlexi-ZZ , variations
of Flexi-BFT and Flexi-ZZ with no parallel consensus in-
vocations. In all these protocols, we enable pipelining. We
parallelize cryptographic computations in all the protocols.
We do not compare against streamlined bft protocols such
as Hotstuff [87] or Damysus [28], as their chained nature
precludes concurrent consensus invocations.

We use the Oracle Cloud Infrastructure (OCI) and deploy
up to 97 replicas on VM.Standard.E3.Flex machines (16 cores
and 16GiB RAM) with 10GiB NICs. Unless explicitly stated,
we use the following setup: each system supports up to f = 8
Byzantine replicas. We intentionally choose a higher f to
maximize the potential cost of increasing the replication
factor to 3f +1. Clients run in a closed-loop; each experiment
runs for 180 seconds (60 seconds warmup/cooldown) and we
report average throughput/latency over three runs.We adopt
the popular Yahoo Cloud Serving Benchmark (YCSB), [25,
29, 38, 42]. YCSB generates key-value store operations that
access a database of 600 k records.

EuroSys ’23, May 8–12, 2023, Rome, Italy Suyash Gupta†, Sajjad Rahnama, Shubham Pandey, Natacha Crooks†, Mohammad Sadoghi

Pbft-EA MinBFT MinZZ Opbft-ea Flexi-BFT Flexi-ZZ Pbft Zyzzyva oFlexi-BFT oFlexi-ZZ

0 0.2 0.4 0.6 0.8 1 1.2 1.40

40K

80K

120K

160K

Latency (s)

Th
ro
ug

hp
ut

(tx
n/

s)
(i) Throughput vs. Latency

4 8 16 24 320

40K

80K

120K

160K

200K

Number of Replicas (in f)

Th
ro
ug

hp
ut

(tx
n/

s)

(ii) Scalability (Throughput)

4 8 16 24 320.0

0.5

1.0

1.5

Number of Replicas (in f)

La
te
nc
y
(s)

(iii) Scalability (Latency)

10 100 500 1000 50000

40K

80K

120K

160K

200K

Batch size

Th
ro
ug

hp
ut

(tx
n/

s)

(iv) Batch Size (Throughput)

10 100 500 1000 50000.0

0.5

1.0

1.5

Batch size

La
te
nc
y
(s)

(v) Batch Size (Latency)

1 2 3 4 5 60

20K

40K

60K

Number of Regions

Th
ro
ug

hp
ut

(tx
n/

s)

(vi) Regions (Throughput)

1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

1.2

Number of Regions

La
te
nc
y
(s)

(vii) Regions (Latency)

Figure 6. Throughput results as a function of number of clients, number of replicas, batch size and cross-site latency. We set
the number of replicas in f as for bft and FlexiTrust protocols n = 3f + 1 and for trust-bft and Opbft-ea n = 2f + 1.

10.3 Trusted Counter Costs. In Figure 5, we quantify
the costs of accessing trusted counters. To do so, we run
a Pbft implementation with a single worker-thread. Bar
[a] represent our baseline implementation; we report peak
throughput numbers for each setup. Throughput degradation
occurs when the primary replica needs to access the trusted
component (Bar [b]). This degradation accelerates when
the primary replica requires trusted component to perform
signature attestations (Bar [c]), and needs to perform these
operations during each phase of consensus (Bar [d]). The
drop in throughput from [a] to [d] is nearly 2×. Bars [e] to
[g] extend the use of trusted components to non-primary
replicas. The system is already bottlenecked at the primary
replica (it must process more messages than replicas); this
change thus has no impact on performance

10.4 Throughput Results. In Figure 6(i), we increase
the number of clients from 4 k to 80 k and report on latency
and throughput. Pbft-EA achieves the lowest throughput
as it requires three phases for consensus and disallows par-
allel consensus invocations. The reduced replication factor
of 2f + 1 does not help performance as threads are already
under-saturated: the system is latency-bound rather than
compute bound due to the protocol’s sequential processing
of consensus invocations. Opbft-ea protocol attains up to
6% higher throughput (and lower latency) than Pbft-EA as it
supports parallel consensus invocations but bottlenecks on
trusted counter accesses at replicas. Specifically, the replica’s
worker thread has to sign the outgoing message, and per-
form two verifications on each received message: (i) MAC of
the received message, and (ii) DS of the attestation from the
trusted component. MinBFT and MinZZ achieve up to 47%
and 68% higher throughputs than Pbft-EA respectively, as

they reduce the number of phases necessary to commit an
operation (from three to two for MinBFT, and from three to
one in the failure-free case for MinZZ). Interestingly, Pbft
yields better throughput than all trust-bft protocols. The
combination of parallel consensus invocations and lack of
overhead stemming from the use of trusted counters drives
this surprising result. Our Flexi-BFT and Flexi-ZZ proto-
cols instead achieve up to 22% and 58% higher throughput
than Pbft, (and up to 87% and 77% higher throughput over
MinBFT and MinZZ). This performance improvement stems
from reducing the number of phases, accessing a trusted
counter once per transaction, and permitting parallel con-
sensus invocations. Note that supporting parallel consensus
is key to these performance gains. Without this parallelism,
our FlexiTrust protocols perform worse than their trust-
bft counterparts (oFlexi-BFT yields 33% less throughput
than MinZZ) as the primary needs to sequentially attest an
additional 𝑓 messages.
10.5 Scalability. Figures 6(ii) and 6(iii) summarize the

protocols’ scaling behavior as the number of replicas in-
creases from f = 4 to f = 32. As expected, an increased repli-
cation factor leads to a proportional increase in the number
of messages that are propagated and verified. This increased
cost leads to a significant drop in the latency and throughput
of all protocols: going from f = 4 to f = 8 causes Pbft, Flexi-
BFT, and Flexi-ZZ’s performance to drop 3.89×, 2.48×, and
2.54× respectively. MinBFT, and MinZZ’s throughput also
drops by a factor of 2.66× and 2.67×. This performance drop
is larger for bft and FlexiTrust protocols than for trust-
bft protocols as replicas are never fully saturated due to
sequential consensus invocations.

Dissecting BFT Consensus:
In Trusted Components we Trust! EuroSys ’23, May 8–12, 2023, Rome, Italy

4 8 16 24 320

40K

80K

120K

160K

200K

Number of Replicas (in f)

Th
ro
ug

hp
ut

(tx
n/

s)

4 8 16 24 320.0

0.5

1.0

1.5

2.0

Number of Replicas (in f)

La
te
nc
y
(s)

Figure 7. Impact of failure of one non-primary replica.

Access cost (in ms) Flexi-ZZ MinZZ MinBFT
1.0 87 k 49 k 39 k
1.5 67 k 48 k 37 k
2.0 50 k 47 k 35 k
2.5 40 k 40 k 34 k
3.0 34 k 33 k 32 k
10 10 k 10 k 10 k
30 3 k 3 k 3 k
100 993 959 994
200 494 479 496

Figure 8. Peak throughput (in transactions per second) on
varying the time taken to access a trusted counter while
running consensus among 97 replicas.

10.6 Batching. Figures 6(iv) and 6(v) quantify the impact
of batching client requests as we increase the batch size from
10 to 5 k. As expected, the throughput of all protocols in-
creases as batch sizes increase until communication becomes
a bottleneck.

10.7 Wide-area replication. For this experiment (Fig-
ures 6(vi) and 6(vii)), we distribute the replicas across five
countries in six regions: San Jose, Ashburn, Sydney, Sao
Paulo, Montreal, and Marseille, and use the regions in this
order. We set f = 20; n = 41 and n = 61 replicas for 2f + 1
and 3f + 1 protocols, respectively.1 To observe the gradual
change in performance, on increasing the number of regions,
for all protocols, we place the leader in San Jose.
Latency and throughput remain mostly constant as the

number of regions increases. We attribute this phenomena
to the following reason. Each replica needs to wait for only
a quorum of messages, f + 1 (21) or 2f + 1 (41), before it
can transit to the next phase. These systems thus need to
wait only for responses of North American replicas (San Jose,
Ashburn, Montreal), which are connected by links that pro-
vide high bandwdith and low round-trip costs. The increase
in latency or decrease in throughput is thus comparatively
small. Importantly, the visible changes are within the margin
of error bounds as they are averaged over multiple runs.

10.8 Single Replica Failure. Next, we consider the im-
pact of failures on our protocols (Figure 7). Unlike MinZZ
and Zyzzyva, our Flexi-ZZ protocol’s performance does not
degrade as it can handle up to f non-primary replica failures

1As the LCM of numbers in the range [1, 6] is 60, so we set 3f + 1 = 61,
which yields f = 20.

Replicas (in f) Flexi-ZZ MinZZ
4 15813 12431
8 7570 5329
16 2462 2038
24 1341 1002
32 834 640

Figure 9. Throughput-per-machine: total system through-
put/(number of replicas)

on the fast path. In contrast, both MinZZ and Zyzzyva re-
quire their clients to receive responses from all replicas; in
order to commit in a single round-trip.

10.9 Real-World Adoption

This paper’s objective is to highlight current limitations
of existing trust-bft approaches, be it hardware-related or
algorithmic. Trusted hardware, however, is changing rapidly.
Current SGX enclaves are subject to rollback attacks, but
newer enclaves (Keystone, Nitro) may not be. Similarly, ac-
cessing current SGX persistent counters or TPMs currently
takes between 80ms to 200ms for TPMs and between 30ms
to 187ms for SGX [51, 58, 68]. New technology is rapidly
bringing this cost down; counters like ADAM-CS [57] re-
quires less than 10ms.
Our final experiment aims to investigate the current per-

formance of trust-bft protocols on both present and future
trusted hardware. Our previous results were obtained us-
ing counters inside of SGX enclave as hardware providing
access to SGX persistent counters and TMPs are not read-
ily available on cloud providers. In our experiments so far,
all trust-bft and FlexiTrust protocols were subject to
rollback attacks. In this experiment, we gage the impact of
throughput and latency as we increase the time to access the
trusted counter (Figure 8) on Flexi-ZZ, MinBFT and MinZZ
protocols. We run this experiment on 97 replicas, and high-
light that, for this setup Pbft yields 40 ktxn/s. We find that
Flexi-ZZ outperforms all protocols as long as the latency is
less than 2.5ms. Beyond this value, a single access to trusted
hardware becomes the bottleneck; causing all protocols’ per-
formance to degrade to similar values (eg. at 10ms, 10 k can
be directly obtained by batch size × 1 s / 10ms). This re-
sult highlights a path whereby, as trusted hardware matures,
trust-bft protocols will become an appealing alternative
to standard bft approaches.
10.10 Throughput-Per-Machine. trust-bft protocols

seek to reduce the hardware necessary to deploy bft consen-
sus; additional replicas increase operational complexity and
resource costs. In fact, the high costs of accessing trusted
hardware for every message combined with the lack of par-
allelism that results from a 2f + 1 replication factor decreases
overall system throughput. We find that reverting to 3f + 1
actually increases the throughput-per-machine performance
of the system (for the reasons outlined above). Per machine,
3f +1 FlexiTrust protocol achieve higher throughput than a
2f + 1 trust-bft protocol (up to 30%, as shown in Figure 9).

EuroSys ’23, May 8–12, 2023, Rome, Italy Suyash Gupta†, Sajjad Rahnama, Shubham Pandey, Natacha Crooks†, Mohammad Sadoghi

11 Related Work

There is long line of research on designing efficient bft
protocols [1, 8, 10, 11, 15, 31, 35, 37, 38, 47, 48, 64, 72, 81, 87,
90] and bft-based blockchain applications [5, 6, 16, 18, 19, 34,
44, 55, 61, 63, 88, 89]. As stated, trust-bft protocols prevent
replicas from equivocating, reducing the replication factor
or the number of phases necessary to achieve safety. We
summarized Pbft-EA in Section 4 and now describe other
trust-bft protocols.

CheapBFT [46] uses trusted counters and optimizes for the
failure-free case by reducing the amount of active replication
to f + 1. When a failure occurs, however, CheapBFT requires
that all 2f + 1 replicas participate in consensus. The protocol
has the same number of phases as MinBFT; as higlighted in
Sections 5 and 7, the protocol is inherently sequential and
may not be responsive to clients.
Hybster [13] is a meta-protocol that takes as an input

an existing trust-bft protocol (such as Pbft-EA, MinBFT,
etc.) and requires each of the n replicas to act as parallel
primaries; a common deterministic execution frameworkwill
consume these local consensus logs to execute transactions
in order. While multiple primaries improve concurrency,
each primary locally invokes consensus in-sequence; each
sub-log locally inherits the limitations of existing trust-bft
protocols. There continues to be an artificial upper-bound on
the amount of parallelism supported in the system. Moreover,
recent work shows that designingmultiple primary protocols
is hard as f of these primaries can be byzantine and can
collude to prevent liveness [37, 80].
Streamlined protocols like HotStuff-M [86] and Damy-

sus [28] follow the design of HotStuff [87]. They linearize
communication by splitting the all-to-all communication
phases (Prepare and Commit) into two linear phases. These
systems additionally rotate the primary after each transac-
tion, requiring f + 1 replicas to send their last committed
message to the next primary. The next primary then selects
the committed message with the highest view number as the
baseline for proposing the next transaction for consensus.
HotStuff-M makes use of trusted logs; Damysus requires
its replicas to have trusted components that provide support
for both logs and counters. Specifically, Damysus requires
two types of trusted components at each replica, an accumu-
lator and a checker. The primary leverages the accumulator
to process incoming messages and create a certificate sum-
marizing the last round of consensus. Each replica instead
accesses the checker to generate sequence numbers using a
monotonic counter and logs information about previously
agreed transactions. These protocols once again suffer from
a potential lack of responsiveness; their streamlined nature
precludes opportunities to support any concurrency [38, 65].
Microsoft’s CCF framework uses Intel SGX to support

building confidential and verifiable services [73, 78]. CCF
provides a framework that helps to generate an audit trail

for each request. To do so, they log each request and have it
attested by the trusted components. CCF provides flexibility
of deploying any consensus protocol.
In the specific case of blockchain systems, Teechain [53]

designs a two-layer payment network with the help of SGX.
Teechain designates trusted components as treasuries and
only allows them to manage user funds. Teechain permits
a subset of treasuries to be compromised, and it handles
such attacks by requiring each fund to be managed by a
group of treasuries. Ekiden [20] executes smart contracts
directly in the trusted component for better privacy and
performance. Avoine et al. [12] provide a good theoretical
treatment of fair-exchange problem using trusted hardware.
Aguilera et al. [3, 4] reduce the replication factor from 3f + 1
to 2f + 1, without relying on trusted hardware, with the help
of disaggregated memory. They assume that each memory
block permits only one writer and multiple readers.

12 Conclusion

In this paper, we identified three challenges with the de-
sign of existing trust-bft protocols: (i) they have limited
responsiveness, (ii) they suffer from safety violations in the
presence of rollback attacks, and (iii) their sequential nature
artificially bounds throughput. We argue that returning to
3f + 1 is the key to fulfilling the potential of trusted compo-
nents in bft. Our suite of protocols, FlexiTrust, supports
parallel consensus instances, makes minimal use of trusted
components, and reduces the number of phases necessary to
safely commit operations while also simplifying notoriously
complex mechanisms like view-changes. In our experiments,
FlexiTrust protocols outperform their bft and trust-bft
counterparts by 100% and 185% respectively.

Acknowledgments

We thank the anonymous reviewers and our shepherd Nuno
Preguiça for the constructive feedback that helped improve
this paper. This work was supported in part by (1) Oracle
Cloud Credits & Research Program, (2) the NSF STTR Award
#2112345 through Moka Blox LLC, (3) Algorand Centres of
Excellence programme managed by Algorand Foundation,
and (4) gifts from Amazon, Astronomer, Google, IBM, Intel,
Lacework, Microsoft, Nexla, Samsung SDS, and VMWare

References

[1] Ittai Abraham, Natacha Crooks, Neil Giridharan, Heidi Howard, and
Florian Suri-Payer. 2022. Brief Announcement: It’s not easy to re-
lax: liveness in chained BFT protocols. In 36th International Sym-
posium on Distributed Computing, DISC 2022, October 25-27, 2022,
Augusta, Georgia, USA (LIPIcs, Vol. 246), Christian Scheideler (Ed.).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 39:1–39:3. https:
//doi.org/10.4230/LIPIcs.DISC.2022.39

[2] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla,
and Jean-Philippe Martin. 2017. Revisiting Fast Practical Byzantine
Fault Tolerance. https://arxiv.org/abs/1712.01367

https://doi.org/10.4230/LIPIcs.DISC.2022.39
https://doi.org/10.4230/LIPIcs.DISC.2022.39
https://arxiv.org/abs/1712.01367

Dissecting BFT Consensus:
In Trusted Components we Trust! EuroSys ’23, May 8–12, 2023, Rome, Italy

[3] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, AntoineMu-
rat, Athanasios Xygkis, and Igor Zablotchi. 2023. UBFT: Microsecond-
Scale BFT Using Disaggregated Memory. In Proceedings of the 28th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS 2023). Association
for Computing Machinery, New York, NY, USA, 862–877. https:
//doi.org/10.1145/3575693.3575732

[4] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Dalia Papuc,
Athanasios Xygkis, and Igor Zablotchi. 2021. Frugal Byzantine Com-
puting. In 35th International Symposium on Distributed Computing
(DISC 2021), Vol. 209. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany, 3:1–3:19. https://doi.org/10.4230/LIPIcs.
DISC.2021.3

[5] Mohammad JavadAmiri, Divyakant Agrawal, andAmr El Abbadi. 2019.
CAPER: A Cross-application Permissioned Blockchain. Proc. VLDB
Endow. 12, 11 (2019), 1385–1398. https://doi.org/10.14778/3342263.
3342275

[6] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi.
2021. SharPer: Sharding Permissioned Blockchains Over Network Clusters.
Association for Computing Machinery, New York, NY, USA, 76–88.

[7] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christo-
pher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Mu-
ralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh,
Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko
Vukolić, Sharon Weed Cocco, and Jason Yellick. 2018. Hyperledger
Fabric: A Distributed Operating System for Permissioned Blockchains.
In Proceedings of the Thirteenth EuroSys Conference. ACM, 30:1–30:15.
https://doi.org/10.1145/3190508.3190538

[8] Karolos Antoniadis, Antoine Desjardins, Vincent Gramoli, Rachid
Guerraoui, and Igor Zablotchi. 2021. Leaderless Consensus. In 41st
IEEE International Conference on Distributed Computing Systems. IEEE,
392–402. https://doi.org/10.1109/ICDCS51616.2021.00045

[9] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, André
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark Stillwell, David Goltzsche, David M. Eyers, Rüdiger
Kapitza, Peter R. Pietzuch, and Christof Fetzer. 2016. SCONE: Secure
Linux Containers with Intel SGX. In 12th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2016, Savannah, GA,
USA, November 2-4, 2016. USENIX Association, 689–703.

[10] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knezevic, Vivien
Quéma, and Marko Vukolic. 2015. The Next 700 BFT Protocols. ACM
Trans. Comput. Syst. 32, 4 (2015), 12:1–12:45. https://doi.org/10.1145/
2658994

[11] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. 2013.
RBFT: Redundant Byzantine Fault Tolerance. In Proceedings of the 2013
IEEE 33rd International Conference on Distributed Computing Systems.
IEEE, 297–306. https://doi.org/10.1109/ICDCS.2013.53

[12] Gildas Avoine, Felix Gärtner, Rachid Guerraoui, and Marko Vukolić.
2005. Gracefully Degrading Fair Exchange with Security Modules. In
Dependable Computing - EDCC 5, Mario Dal Cin, Mohamed Kaâniche,
and András Pataricza (Eds.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 55–71.

[13] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2017. Hybrids
on Steroids: SGX-Based High Performance BFT. In Proceedings of the
Twelfth European Conference on Computer Systems (EuroSys ’17). Asso-
ciation for Computing Machinery, 222–237. https://doi.org/10.1145/
3064176.3064213

[14] Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri. 2014. State
Machine Replication for the Masses with BFT-SMART. In 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks.
IEEE, 355–362. https://doi.org/10.1109/DSN.2014.43

[15] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine Fault
Tolerance and Proactive Recovery. ACM Trans. Comput. Syst. 20, 4

(2002), 398–461. https://doi.org/10.1145/571637.571640
[16] Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2021. Why

Do My Blockchain Transactions Fail? A Study of Hyperledger Fabric.
In Proceedings of the 2021 International Conference on Management of
Data (SIGMOD ’21). Association for Computing Machinery, New York,
NY, USA, 221–234. https://doi.org/10.1145/3448016.3452823

[17] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX:
A Practical Library OS for Unmodified Applications on SGX. In 2017
USENIX Annual Technical Conference (USENIX ATC 17). USENIX Asso-
ciation, Santa Clara, CA, 645–658.

[18] Junchao Chen, Suyash Gupta, Sajjad Rahnama, and Mohammad
Sadoghi. 2022. Power-of-Collaboration: A Sustainable Resilient Ledger
Built Democratically. IEEE Data Eng. Bull. 45, 2 (2022), 25–36.

[19] Junchao Chen, Suyash Gupta, Alberto Sonnino, Lefteris Kokoris-
Kogias, and Mohammad Sadoghi. 2023. Resilient Consensus Sustained
Collaboratively. CoRR abs/2302.02325 (2023). https://doi.org/10.48550/
arXiv.2302.02325 arXiv:2302.02325

[20] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes,
Noah Johnson, Ari Juels, AndrewMiller, and Dawn Song. 2019. Ekiden:
A Platform for Confidentiality-Preserving, Trustworthy, and Perfor-
mant Smart Contracts. In 2019 IEEE European Symposium on Security
and Privacy (EuroS P). 185–200. https://doi.org/10.1109/EuroSP.2019.
00023

[21] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubia-
towicz. 2007. Attested Append-Only Memory: Making Adversaries
Stick to Their Word. SIGOPS Oper. Syst. Rev. 41, 6 (2007), 189–204.
https://doi.org/10.1145/1323293.1294280

[22] Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues.
2012. On the (Limited) Power of Non-Equivocation. In Proceedings
of the 2012 ACM Symposium on Principles of Distributed Computing.
Association for Computing Machinery, 301–308. https://doi.org/10.
1145/2332432.2332490

[23] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo
Alvisi, Mike Dahlin, and Taylor Riche. 2009. Upright Cluster Ser-
vices. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles. ACM, 277–290. https://doi.org/10.1145/1629575.
1629602

[24] Allen Clement, EdmundWong, Lorenzo Alvisi, Mike Dahlin, andMirco
Marchetti. 2009. Making Byzantine Fault Tolerant Systems Tolerate
Byzantine Faults. In Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation. USENIX, 153–168.

[25] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing.
ACM, 143–154. https://doi.org/10.1145/1807128.1807152

[26] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryp-
tology ePrint Archive, Report 2016/086. https://ia.cr/2016/086.

[27] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum:
Minimal Hardware Extensions for Strong Software Isolation. In 25th
USENIX Security Symposium (USENIX Security 16). USENIX Associa-
tion, Austin, TX, 857–874.

[28] Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan
Yu. 2022. DAMYSUS: Streamlined BFT Consensus Leveraging Trusted
Components. In Proceedings of the Seventeenth European Conference on
Computer Systems. Association for Computing Machinery, New York,
NY, USA, 1–16. https://doi.org/10.1145/3492321.3519568

[29] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi,
and Kian-Lee Tan. 2017. BLOCKBENCH: A Framework for Analyzing
Private Blockchains. In Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, 1085–1100. https://doi.org/
10.1145/3035918.3064033

[30] Shufan Fei, Zheng Yan,Wenxiu Ding, and Haomeng Xie. 2021. Security
Vulnerabilities of SGX and Countermeasures: A Survey. ACM Comput.
Surv. 54, 6, Article 126 (jul 2021). https://doi.org/10.1145/3456631

https://doi.org/10.1145/3575693.3575732
https://doi.org/10.1145/3575693.3575732
https://doi.org/10.4230/LIPIcs.DISC.2021.3
https://doi.org/10.4230/LIPIcs.DISC.2021.3
https://doi.org/10.14778/3342263.3342275
https://doi.org/10.14778/3342263.3342275
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/ICDCS51616.2021.00045
https://doi.org/10.1145/2658994
https://doi.org/10.1145/2658994
https://doi.org/10.1109/ICDCS.2013.53
https://doi.org/10.1145/3064176.3064213
https://doi.org/10.1145/3064176.3064213
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/3448016.3452823
https://doi.org/10.48550/arXiv.2302.02325
https://doi.org/10.48550/arXiv.2302.02325
https://doi.org/10.1109/EuroSP.2019.00023
https://doi.org/10.1109/EuroSP.2019.00023
https://doi.org/10.1145/1323293.1294280
https://doi.org/10.1145/2332432.2332490
https://doi.org/10.1145/2332432.2332490
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1145/1807128.1807152
https://ia.cr/2016/086
https://doi.org/10.1145/3492321.3519568
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.1145/3456631

EuroSys ’23, May 8–12, 2023, Rome, Italy Suyash Gupta†, Sajjad Rahnama, Shubham Pandey, Natacha Crooks†, Mohammad Sadoghi

[31] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi,
Benny Pinkas, Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir,
and Alin Tomescu. 2019. SBFT: A Scalable and Decentralized Trust
Infrastructure. In 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 568–580. https://doi.
org/10.1109/DSN.2019.00063

[32] Franz Gregor, Wojciech Ozga, Sébastien Vaucher, Rafael Pires, Do Le
Quoc, Sergei Arnautov, André Martin, Valerio Schiavoni, Pascal Felber,
and Christof Fetzer. 2020. Trust Management as a Service: Enabling
Trusted Execution in the Face of Byzantine Stakeholders. In 50th An-
nual IEEE/IFIP International Conference on Dependable Systems and Net-
works. IEEE, 502–514. https://doi.org/10.1109/DSN48063.2020.00063

[33] Trusted Computing Group. 2019. Trusted Platform Module Li-
brary. https://trustedcomputinggroup.org/resource/tpm-library-
specification/

[34] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and
Dragos-Adrian Seredinschi. 2019. The Consensus Number of a Cryp-
tocurrency. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, Peter Robinson and Faith Ellen (Eds.). ACM,
307–316. https://doi.org/10.1145/3293611.3331589

[35] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad
Sadoghi. 2021. Proof-of-Execution: Reaching Consensus through Fault-
Tolerant Speculation. In Proceedings of the 24th International Conference
on Extending Database Technology, EDBT. OpenProceedings.org, 301–
312. https://doi.org/10.5441/002/edbt.2021.27

[36] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2021. Fault-
Tolerant Distributed Transactions on Blockchain. Morgan & Claypool
Publishers. https://doi.org/10.2200/S01068ED1V01Y202012DTM065

[37] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2021. RCC:
Resilient Concurrent Consensus for High-Throughput Secure Transac-
tion Processing. In 37th IEEE International Conference on Data Engineer-
ing, ICDE 2021. IEEE, 1392–1403. https://doi.org/10.1109/ICDE51399.
2021.00124

[38] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad
Sadoghi. 2020. ResilientDB: Global Scale Resilient Blockchain Fabric.
Proc. VLDB Endow. 13, 6 (2020), 868–883. https://doi.org/10.14778/
3380750.3380757

[39] Suyash Gupta, Sajjad Rahnama, Erik Linsenmayer, Faisal Nawab, and
Mohammad Sadoghi. 2023. Reliable Transactions in Serverless-Edge
Architecture. In 39th IEEE International Conference on Data Engineering,
ICDE 2023. IEEE.

[40] Suyash Gupta, Sajjad Rahnama, and Mohammad Sadoghi. 2020. Per-
missioned Blockchain Through the Looking Glass: Architectural and
Implementation Lessons Learned. In 40th IEEE International Confer-
ence on Distributed Computing Systems, ICDCS 2020. IEEE, 754–764.
https://doi.org/10.1109/ICDCS47774.2020.00012

[41] Suyash Gupta and Mohammad Sadoghi. 2019. Blockchain Transaction
Processing. In Encyclopedia of Big Data Technologies. Springer, 1–11.
https://doi.org/10.1007/978-3-319-63962-8_333-1

[42] R. Harding, D. Van Aken, A. Pavlo, and M. Stonebraker. 2017. An
Evaluation of Distributed Concurrency Control. Proc. VLDB Endow.
10, 5 (2017), 553–564. https://doi.org/10.14778/3055540.3055548

[43] Manuel Huber, Julian Horsch, and Sascha Wessel. 2017. Protecting
Suspended Devices from Memory Attacks. In Proceedings of the 10th
European Workshop on Systems Security (EuroSec’17). Association for
Computing Machinery, New York, NY, USA, Article 10, 6 pages. https:
//doi.org/10.1145/3065913.3065914

[44] Dakai Kang, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi.
2023. Practical View-Change-Less Protocol through Rapid View Syn-
chronization. CoRR abs/2302.02118 (2023). https://doi.org/10.48550/
arXiv.2302.02118 arXiv:2302.02118

[45] Luyi Kang, Yuqi Xue, Weiwei Jia, Xiaohao Wang, Jongryool Kim,
Changhwan Youn, Myeong Joon Kang, Hyung Jin Lim, Bruce L.

Jacob, and Jian Huang. 2021. IceClave: A Trusted Execution En-
vironment for In-Storage Computing. In MICRO ’21: 54th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM, 199–
211. https://doi.org/10.1145/3466752.3480109

[46] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Si-
mon Kuhnle, Seyed VahidMohammadi,Wolfgang Schröder-Preikschat,
and Klaus Stengel. 2012. CheapBFT: Resource-Efficient Byzantine
Fault Tolerance. In Proceedings of the 7th ACM European Conference on
Computer Systems. Association for Computing Machinery, 295–308.
https://doi.org/10.1145/2168836.2168866

[47] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo
Alvisi, and Mike Dahlin. 2012. All about Eve: Execute-Verify Replica-
tion for Multi-Core Servers. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Implementation. USENIX,
237–250.

[48] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. 2009. Zyzzyva: Speculative Byzantine Fault Tolerance.
ACM Trans. Comput. Syst. 27, 4 (2009), 7:1–7:39. https://doi.org/10.
1145/1658357.1658358

[49] Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News 32,
4 (2001), 51–58. https://doi.org/10.1145/568425.568433 Distributed
Computing Column 5.

[50] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and
Dawn Song. 2020. Keystone: An Open Framework for Architecting
Trusted Execution Environments. In Proceedings of the Fifteenth Euro-
pean Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20).
Association for Computing Machinery, New York, NY, USA, Article
38. https://doi.org/10.1145/3342195.3387532

[51] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Mosci-
broda. 2009. TrInc: Small Trusted Hardware for Large Distributed
Systems. In 6th USENIX Symposium on Networked Systems Design and
Implementation. USENIX Association.

[52] Wenhao Li, Yubin Xia, and Haibo Chen. 2018. Research on ARM
TrustZone. GetMobile Mob. Comput. Commun. 22, 3 (2018), 17–22.
https://doi.org/10.1145/3308755.3308761

[53] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Gün Sirer,
and Peter R. Pietzuch. 2019. Teechain: a secure payment network
with asynchronous blockchain access. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON,
Canada, October 27-30, 2019. ACM, 63–79. https://doi.org/10.1145/
3341301.3359627

[54] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,
Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,
David M. Eyers, Rüdiger Kapitza, Christof Fetzer, and Peter R. Pietzuch.
2017. Glamdring: Automatic Application Partitioning for Intel SGX.
In 2017 USENIX Annual Technical Conference, USENIX ATC 2017, Santa
Clara, CA, USA, July 12-14, 2017. USENIX Association, 285–298.

[55] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and
Marko Vukolic. 2016. XFT: Practical Fault Tolerance beyond Crashes.
In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation. USENIX Association, USA, 485–500.

[56] André Martin, Cong Lian, Franz Gregor, Robert Krahn, Valerio Schi-
avoni, Pascal Felber, and Christof Fetzer. 2021. ADAM-CS: Ad-
vanced Asynchronous Monotonic Counter Service. In 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). 426–437. https://doi.org/10.1109/DSN48987.2021.00053

[57] André Martin, Cong Lian, Franz Gregor, Robert Krahn, Valerio Schi-
avoni, Pascal Felber, and Christof Fetzer. 2021. ADAM-CS: Advanced
Asynchronous Monotonic Counter Service. In 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
426–437. https://doi.org/10.1109/DSN48987.2021.00053

[58] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David
Sommer, Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE:
Rollback Protection for Trusted Execution. In Proceedings of the 26th

https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1109/DSN48063.2020.00063
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://doi.org/10.1145/3293611.3331589
https://doi.org/10.5441/002/edbt.2021.27
https://doi.org/10.2200/S01068ED1V01Y202012DTM065
https://doi.org/10.1109/ICDE51399.2021.00124
https://doi.org/10.1109/ICDE51399.2021.00124
https://doi.org/10.14778/3380750.3380757
https://doi.org/10.14778/3380750.3380757
https://doi.org/10.1109/ICDCS47774.2020.00012
https://doi.org/10.1007/978-3-319-63962-8_333-1
https://doi.org/10.14778/3055540.3055548
https://doi.org/10.1145/3065913.3065914
https://doi.org/10.1145/3065913.3065914
https://doi.org/10.48550/arXiv.2302.02118
https://doi.org/10.48550/arXiv.2302.02118
https://doi.org/10.1145/3466752.3480109
https://doi.org/10.1145/2168836.2168866
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/568425.568433
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3308755.3308761
https://doi.org/10.1145/3341301.3359627
https://doi.org/10.1145/3341301.3359627
https://doi.org/10.1109/DSN48987.2021.00053
https://doi.org/10.1109/DSN48987.2021.00053

Dissecting BFT Consensus:
In Trusted Components we Trust! EuroSys ’23, May 8–12, 2023, Rome, Italy

USENIX Conference on Security Symposium (SEC’17). USENIX Associa-
tion, USA, 1289–1306.

[59] Jämes Ménétrey, Christian Göttel, Marcelo Pasin, Pascal Felber, and
Valerio Schiavoni. 2022. An Exploratory Study of Attestation Mech-
anisms for Trusted Execution Environments. CoRR abs/2204.06790
(2022). https://doi.org/10.48550/arXiv.2204.06790

[60] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash
System. https://bitcoin.org/bitcoin.pdf

[61] Gleb Naumenko, Gregory Maxwell, Pieter Wuille, Alexandra Fedorova,
and Ivan Beschastnikh. 2019. Erlay: Efficient Transaction Relay for
Bitcoin. Association for Computing Machinery, New York, NY, USA,
817–831. https://doi.org/10.1145/3319535.3354237

[62] Faisal Nawab. 2021. WedgeChain: A Trusted Edge-Cloud Store With
Asynchronous (Lazy) Trust. In 37th IEEE International Conference
on Data Engineering, ICDE. IEEE, 408–419. https://doi.org/10.1109/
ICDE51399.2021.00042

[63] Faisal Nawab and Mohammad Sadoghi. 2019. Blockplane: A Global-
Scale Byzantizing Middleware. In 35th International Conference on Data
Engineering (ICDE). IEEE, 124–135. https://doi.org/10.1109/ICDE.2019.
00020

[64] Faisal Nawab and Mohammad Sadoghi. 2023. Consensus in Data
Management: From Distributed Commit to Blockchain. Foundations
and Trends® in Databases 12, 4 (2023), 221–364. https://doi.org/10.
1561/1900000075

[65] Ray Neiheiser, Miguel Matos, and Luís Rodrigues. 2021. Kauri: Scal-
able BFT Consensus with Pipelined Tree-Based Dissemination and
Aggregation. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (Virtual Event, Germany) (SOSP ’21).
Association for Computing Machinery, New York, NY, USA, 35–48.
https://doi.org/10.1145/3477132.3483584

[66] Diego Ongaro and John Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm. In Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference. USENIX, 305–320.

[67] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein.
2017. Eleos: ExitLess OS Services for SGX Enclaves. In Proceedings of
the Twelfth European Conference on Computer Systems. ACM, 238–253.
https://doi.org/10.1145/3064176.3064219

[68] Bryan Parno, Jacob R. Lorch, John R. Douceur, James W. Mickens, and
Jonathan M. McCune. 2011. Memoir: Practical State Continuity for
Protected Modules. In 32nd IEEE Symposium on Security and Privacy,
S&P 2011, 22-25 May 2011, Berkeley, California, USA. IEEE Computer
Society, 379–394. https://doi.org/10.1109/SP.2011.38

[69] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu,
Shujie Cui, Vasily A. Sartakov, and Peter R. Pietzuch. 2019. SGX-
LKL: Securing the Host OS Interface for Trusted Execution. CoRR
abs/1908.11143 (2019). arXiv:1908.11143

[70] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB:
A Secure Database Using SGX. In 2018 IEEE Symposium on Security
and Privacy (SP). 264–278. https://doi.org/10.1109/SP.2018.00025

[71] Sajjad Rahnama, Suyash Gupta, Thamir Qadah, Jelle Hellings, and Mo-
hammad Sadoghi. 2020. Scalable, Resilient and Configurable Permis-
sioned Blockchain Fabric. Proc. VLDB Endow. 13, 12 (2020), 2893–2896.
https://doi.org/10.14778/3415478.3415502

[72] Sajjad Rahnama, Suyash Gupta, Rohan Sogani, Dhruv Krishnan, and
Mohammad Sadoghi. 2022. RingBFT: Resilient Consensus over Sharded
Ring Topology. In Proceedings of the 25th International Conference
on Extending Database Technology, EDBT 2022. OpenProceedings.org,
2:298–2:311. https://doi.org/10.48786/edbt.2022.17

[73] Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel
Castro, Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Cé-
dric Fournet, Matthew Kerner, Sid Krishna, Julien Maffre, Thomas
Moscibroda, Kartik Nayak, Olya Ohrimenko, Felix Schuster, Roy

Schwartz, Alex Shamis, Olga Vrousgou, and Christoph M. Winter-
steiger. 2019. CCF: A Framework for Building Confidential Veri-
fiable Replicated Services. Technical Report MSR-TR-2019-16. Mi-
crosoft. https://www.microsoft.com/en-us/research/publication/ccf-a-
framework-for-building-confidential-verifiable-replicated-services/

[74] J.H. Saltzer and M.D. Schroeder. 1975. The protection of information
in computer systems. Proc. IEEE 63, 9 (1975), 1278–1308. https:
//doi.org/10.1109/PROC.1975.9939

[75] Vasily A. Sartakov, Stefan Brenner, Sonia Ben Mokhtar, Sara
Bouchenak, Gaël Thomas, and Rüdiger Kapitza. 2018. EActors: Fast
and flexible trusted computing using SGX. In Proceedings of the 19th
International Middleware Conference, Paulo Ferreira and Liuba Shrira
(Eds.). ACM, 187–200. https://doi.org/10.1145/3274808.3274823

[76] Vasily A. Sartakov, Daniel O’Keeffe, David M. Eyers, Lluís Vilanova,
and Peter R. Pietzuch. 2021. Spons & Shields: practical isolation for
trusted execution. In VEE ’21: 17th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, Virtual USA, April 16,
2021. ACM, 186–200. https://doi.org/10.1145/3453933.3454024

[77] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using
the State Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (dec
1990), 299–319. https://doi.org/10.1145/98163.98167

[78] Alex Shamis, Peter Pietzuch, Burcu Canakci, Miguel Castro, Cedric
Fournet, Edward Ashton, Amaury Chamayou, Sylvan Clebsch, An-
toine Delignat-Lavaud, Matthew Kerner, Julien Maffre, Olga Vrousgou,
Christoph M. Wintersteiger, Manuel Costa, and Mark Russinovich.
2022. IA-CCF: Individual Accountability for Permissioned Ledgers. In
19th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 22). USENIX Association, Renton, WA, 467–491.

[79] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi
Xu, Yubin Xia, and Shoumeng Yan. 2020. Occlum: Secure and Efficient
Multitasking Inside a Single Enclave of Intel SGX. Association for
Computing Machinery, New York, NY, USA, 955–970.

[80] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. 2022.
State Machine Replication Scalability Made Simple. In Proceedings of
the Seventeenth European Conference on Computer Systems. Association
for Computing Machinery, New York, NY, USA, 17–33. https://doi.
org/10.1145/3492321.3519579

[81] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang,
Lorenzo Alvisi, and Natacha Crooks. 2021. Basil: Breaking up BFT
with ACID (Transactions). In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (SOSP ’21). Association for
Computing Machinery, New York, NY, USA, 1–17. https://doi.org/10.
1145/3477132.3483552

[82] Jörg Thalheim, Harshavardhan Unnibhavi, Christian Priebe, Pramod
Bhatotia, and Peter R. Pietzuch. 2021. rkt-io: a direct I/O stack for
shielded execution. In EuroSys ’21: Sixteenth European Conference on
Computer Systems, Online Event, United Kingdom, April 26-28, 2021.
ACM, 490–506. https://doi.org/10.1145/3447786.3456255

[83] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani,
Lau Cheuk Lung, and Paulo Verissimo. 2013. Efficient Byzantine
Fault-Tolerance. IEEE Trans. Comput. 62, 1 (2013), 16–30. https:
//doi.org/10.1109/TC.2011.221

[84] Wenbin Wang, Chaoshu Yang, Runyu Zhang, Shun Nie, Xianzhang
Chen, and Duo Liu. 2020. Themis: Malicious Wear Detection and
Defense for Persistent Memory File Systems. In 2020 IEEE 26th In-
ternational Conference on Parallel and Distributed Systems (ICPADS).
140–147. https://doi.org/10.1109/ICPADS51040.2020.00028

[85] Gavin Wood. 2015. Ethereum: A secure decentralised generalised
transaction ledger. http://gavwood.com/paper.pdf

[86] Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and Michael Re-
iter. 2021. Brief Announcement: Communication-Efficient BFT Using
Small Trusted Hardware to Tolerate Minority Corruption. In 35th
International Symposium on Distributed Computing (DISC 2021) (Leib-
niz International Proceedings in Informatics (LIPIcs), Vol. 209). Schloss

https://doi.org/10.48550/arXiv.2204.06790
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/3319535.3354237
https://doi.org/10.1109/ICDE51399.2021.00042
https://doi.org/10.1109/ICDE51399.2021.00042
https://doi.org/10.1109/ICDE.2019.00020
https://doi.org/10.1109/ICDE.2019.00020
https://doi.org/10.1561/1900000075
https://doi.org/10.1561/1900000075
https://doi.org/10.1145/3477132.3483584
https://doi.org/10.1145/3064176.3064219
https://doi.org/10.1109/SP.2011.38
https://doi.org/10.1109/SP.2018.00025
https://doi.org/10.14778/3415478.3415502
https://doi.org/10.48786/edbt.2022.17
https://www.microsoft.com/en-us/research/publication/ccf-a-framework-for-building-confidential-verifiable-replicated-services/
https://www.microsoft.com/en-us/research/publication/ccf-a-framework-for-building-confidential-verifiable-replicated-services/
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1145/3274808.3274823
https://doi.org/10.1145/3453933.3454024
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/3492321.3519579
https://doi.org/10.1145/3492321.3519579
https://doi.org/10.1145/3477132.3483552
https://doi.org/10.1145/3477132.3483552
https://doi.org/10.1145/3447786.3456255
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/ICPADS51040.2020.00028
http://gavwood.com/paper.pdf

EuroSys ’23, May 8–12, 2023, Rome, Italy Suyash Gupta†, Sajjad Rahnama, Shubham Pandey, Natacha Crooks†, Mohammad Sadoghi

Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 62:1–
62:4. https://doi.org/10.4230/LIPIcs.DISC.2021.62

[87] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and
Ittai Abraham. 2019. HotStuff: BFT Consensus with Linearity and
Responsiveness. In Proceedings of the ACM Symposium on Principles
of Distributed Computing. ACM, 347–356. https://doi.org/10.1145/
3293611.3331591

[88] Haifeng Yu, Ivica Nikolic, RuomuHou, and Prateek Saxena. 2020. OHIE:
Blockchain Scaling Made Simple. In 2020 IEEE Symposium on Security
and Privacy. IEEE, 90–105. https://doi.org/10.1109/SP40000.2020.00008

[89] Rui Yuan, Yubin Xia, Haibo Chen, Binyu Zang, and Jan Xie. 2018.
ShadowEth: Private Smart Contract on Public Blockchain. J. Comput.
Sci. Technol. 33, 3 (2018), 542–556. https://doi.org/10.1007/s11390-018-
1839-y

[90] Gengrui Zhang, Fei Pan, Michael Dang’ana, Yunhao Mao, Shashank
Motepalli, Shiquan Zhang, and Hans-Arno Jacobsen. 2022. Reaching
Consensus in the Byzantine Empire: A Comprehensive Review of
BFT Consensus Algorithms. CoRR abs/2204.03181 (2022). https:
//doi.org/10.48550/arXiv.2204.03181 arXiv:2204.03181

A Artifact Appendix

This paper argues that existing trust-bft protocols have tar-
geted the wrong metric: while reducing the replication factor
to 2f + 1 may seem appealing from a resource efficiency or
management overhead standpoint, it, paradoxically, comes
at a significant performance cost. Nonetheless, trusted com-
ponents can still bring huge benefits to bft consensus when
they use 3f + 1 replicas. We propose a novel suite of consen-
sus algorithms (Flexible Trusted bft (FlexiTrust)), which
address the aforementioned limitations. These protocols are
always responsive and achieve high throughput as they (1)
make minimal use of trusted components (once per client
operation and at the primary replica only), and (2) support
parallel consensus invocations. Both these properties are
made possible by the ability to use large quorums (of size
2f + 1) when using 3f + 1 replicas.

Our techniques can be used to convert any trust-bft pro-
tocol into a FlexiTrust protocol. We provide as examples
two such conversions: Flexi-BFT and Flexi-ZZ, two proto-
cols based on MinBFT [83] and Zyzzyva [48], respectively.
We evaluate our FlexiTrust variants against five proto-

cols: three trust-bft and two bft systems. For fair eval-
uation, we implement these protocols on the open-source
ResilientDB fabric [38]. Our evaluation on a real-world
setup of 97 replicas and up to 80 k clients shows that our
FlexiTrust protocols achieve up to 185% and 100% more
throughput than their trust-bft and bft counterparts, re-
spectively. Further, we show that our FlexiTrust protocols
continue outperforming these protocols even when replicas
are distributed across six locations in four continents.

A.1 Abstract

The aim of this artifact is to demonstrate the performance of
our FlexiTrust protocols and evaluate them against their
bft and trust-bft counterparts. This artifact will help to

prove two of our key claims: (1) Existing trust-bft proto-
cols, despite needing only 2f+1 replicas, yield lower through-
puts and higher latencies than their bft counterparts. (2)
The use of trusted components, such as Intel SGX, can help
to design efficient versions of existing bft protocols.

As described in the paper, we provide access to two proto-
cols from our suite of FlexiTrust protocols: Flexi-BFT and
Flexi-ZZ. We evaluate these protocols against six other pro-
tocols: Pbft [15], Zyzzyva [48], Pbft-EA [21], MinBFT [83],
MinZZ [83], and Opbft-ea, a variation of Pbft-EA we de-
velop that supports parallel consensus invocations.

A.2 Description & Requirements

To recreate the same experimental setup as used in the pa-
per, we provide access to necessary binaries, scripts, and
the complete codebase. This has been open-sourced at https:
//doi.org/10.5281/zenodo.7734495, and is freely available for
anyone to access or download. In the git repository, we pro-
vide a README file that includes step-by-step instructions
to install and run the experiments.
Note. As we ran all our experiments on Oracle Cloud

Infrastructure (OCI), to facilitate artifact evaluation, we also
provide two images, which reviewers can use if they have
access to OCI. These images reduce the installation and setup
time to zero as we have pre-built all the dependencies and
all the scripts are pre-loaded. The steps to use these images
are provided in the README.

A.2.1 How to access. To access to artifact, please fol-
low the following open-sourced link: https://doi.org/10.5281/
zenodo.7734495.

A.2.2 Hardware dependencies. None.

A.2.3 Software dependencies. Following software de-
pendencies need to be installed prior to running any exper-
iment: (1) Intel SGX, (2) Boost, (3) Crypto++, (4) Jemalloc,
(5) NNG, and (6) SQLite. Steps to download and install, Intel
SGX dependencies are provided in the README. For other
dependencies, we have packaged them into a folder deps
and they need to be simply untarred.

A.2.4 Benchmarks. None.

A.3 Set-up

Please follow the steps stated in the README file.

A.4 Evaluation workflow

In our paper, we run a variety of experiments that help to
gauge the performance of our FlexiTrust protocols against
existing trust-bft and bft protocols.

A.4.1 Major Claims. Following are the major claims of
our paper:

https://doi.org/10.4230/LIPIcs.DISC.2021.62
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1109/SP40000.2020.00008
https://doi.org/10.1007/s11390-018-1839-y
https://doi.org/10.1007/s11390-018-1839-y
https://doi.org/10.48550/arXiv.2204.03181
https://doi.org/10.48550/arXiv.2204.03181
https://doi.org/10.5281/zenodo.7734495
https://doi.org/10.5281/zenodo.7734495
https://doi.org/10.5281/zenodo.7734495
https://doi.org/10.5281/zenodo.7734495

Dissecting BFT Consensus:
In Trusted Components we Trust! EuroSys ’23, May 8–12, 2023, Rome, Italy

• (C1): How do our FlexiTrust protocol perform and scale?
In our paper, we run a series of experiments to illus-
trate that our FlexiTrust protocols outperform ex-
isting trust-bft and bft protocols. We do this in
Sections 9.4 to 9.5. For example, Figures 6(i) shows
that our Flexi-BFT and Flexi-ZZ protocols instead
achieve up to 22% and 58% higher throughput than
Pbft, (and up to 87% and 77% higher throughput over
MinBFT and MinZZ).

• (C2): What is the impact of failures? The aim of this
experiment is to illustrate that despite failures, our
trust-bft and bft protocols continue yielding high
throughput and low latencies under a single failure,
while protocols like MinZZ and Zyzzyva observe a
drop in their throughputs. We illustrate this in Section
9.8 of the paper.

A.4.2 Experiments. To certify our claims, the reviewers
can run experiments that help to re-plot graphs in Figures
6(i) to (iii) and Figure 7. Each figure would require around
3.5–4 hours for setup, compile, and deployment, while it
would require 2.5-3 hours to execute. We provide in the repo
explicit configuration parameters for each protocol. Further,
we have provided a directory that lists down configuration
parameters to run each experiment.

A.5 General Notes

While running experiments for the paper, we averaged runs
over at least three runs. We have often observed that in large-
scale deployments, like ours where there can be up to 60
replicas, the results vary over runs. Hence, we had to tune
up different parameters to find the peak throughput in each
case. We would be happy to answer any queries regarding
this artifact evaluation phase.

	Abstract
	1 Introduction
	2 System model and notations
	3 Primer on bft Consensus
	4 Trusted BFT Consensus
	4.1 Trusted Component Implementations
	4.2 trust-bft protocol

	5 Restricted Responsiveness
	6 Lack of Safety under Rollbacks
	7 black Lack of Parallelism
	8 FlexiTrust Protocols
	8.1 Designing a FlexiTrust protocol
	8.2 Case Study: Flexi-BFT
	8.3 Case Study: Flexi-ZZ

	9 Proofs
	10 Evaluation
	10.1 Implementation
	10.2 Evaluation Setup

	11 Related Work
	12 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 General Notes

