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Abstract

Most caching policies focus on increasing object hit rate
to improve overall system performance. However, these
algorithms are insufficient for transactional workloads. In
this work, we define a new metric, transactional hit rate, to
capture when caching reduces latency for transactions. We
present DeToX, a caching system that leverages transactional
dependencies to make eviction and prefetching decisions.
DeToX is able to significantly outperform single-object
alternatives on real-world workloads and popular OLTP
benchmarks, providing up to a 1.3x increase in transaction
hit rate and 3.4x improvement in cache efficiency.

1 Introduction

To improve latency at scale, application developers often layer
caching systems, such as Memcached [69] and Redis [2], over
standard data stores. These systems traditionally optimize for
object hit rate, or how often requested objects can be served
from cache. Consequently, current caching policies fail to cap-
ture the transactional nature of many application workloads.
On a production workload from Meta [26], we find that up to
90% of objects cached by least recently used (LRU) and least
frequently used (LFU), two popular caching algorithms, do
not have any impact on latency despite high object hit rates.
Existing policies fail to capture the all-or-nothing property of
transactions: all objects requested in parallel must be present
in cache, or there will be little performance improvement
because latency is dictated by the slowest access.

Accordingly, object hit rate is the wrong objective for
transactional workloads. Instead, we propose a new metric,
transactional hit rate, or how often objects requested in
parallel can all be served from cache. This metric precisely
captures when the cache reduces latency for transactions.

In this paper, we present DeToX, the first high-performance
caching system that optimizes for transactional hit rate. In
accordance with standard caching algorithms, DeToX assigns
scores to objects and evicts those with the lowest values.

As such, its policy is easily adaptable to existing caching
systems. To rank objects in the transactional context, DeToX
leverages the following insight: objects accessed in parallel
within the same transaction should be scored together since
they must all be cached to reduce transactional latency.

While scoring keys together might seem simple, the
structure of transactional workloads complicates matters.
Unlike previous work on caching for parallel jobs [11] and
web applications [7, 10, 18, 90, 91], transactions need to
be modeled as non-trivial directed acyclic graphs (DAGs)
of read and write operations [22, 94]. Crucially, some keys
within a transaction are accessed in parallel, but others are
not. Consequently, a transaction’s latency is determined by
its critical length, or the number of sequential accesses on
its longest, non-cached path (transactional hit rate captures
the reduction of critical length). Rather than considering all
keys in a transaction together, we must focus on caching the
groups of keys that reduce critical length.

Implementing a caching policy based on grouping presents
several significant challenges. (1) For an arbitrary transaction,
there can be an exponential number of groups, making
scoring prohibitively expensive. (2) Identifying groups
requires inferring transactional DAGs through static analysis,
which may not always be possible. (3) Objects that are
accessed by different transactions can belong to different
groups, which have varying latency benefits if cached, and
we need to capture these disparities.

We address each of these issues in DeToX. (1) To reduce the
overhead of an exponential number of groups, we introduce
the notion of interchangeable keys: if two keys can replace
each other in any group and still reduce critical length, then
they can be represented by the same group. Interchangeable
keys drastically curb the number of groups that need to be
scored. (2) When transactional DAGs are not accessible, we
propose a simplified policy that dynamically infers groups
based on which requests are executed in parallel (termed
levels). (3) Finally, we account for group membership when
scoring keys to ensure these values precisely reflect each
object’s contribution to transactional hits.
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Figure 1: GetLinkedAccounts transaction.

Moreover, while our approach is primarily targeted at
eviction, it also enables prefetching (Section 6). Our
prefetching policy tracks dependencies within transactions
to preemptively bring groups of items into the cache.

Our eviction and prefetching algorithms are implemented in
DeToX, which presents a key-value API that supports drivers
for Redis [2], Postgres [3], and TiKV [4]. We evaluate our sys-
tem on real-world workloads from TAOBench [26], a social
network benchmark that models Meta’s production work-
loads, as well as standard OLTP benchmarks (Epinions [37],
SmallBank [87], and TPC-C [33]). Compared to single-object
caching algorithms and systems, including ChronoCache [45],
GDSF [27], LIFE [11], LFU, and LRU, our algorithm can
achieve up to a 1.3x increase in transactional hit rate, leading
to a 3.4x improvement in cache efficiency (defined as the
least amount of cache space required to achieve a particular
transactional hit rate). For a Redis-Postgres setup, this
translates into 31% higher throughput and 30% lower latency.

Our transactional hit rate metric prioritizes latency and ex-
poses a new trade-off in caching enabled by the cloud’s elastic
resources: optimizing for latency versus reducing system load.
In contrast, single-object policies focus on maximizing object
hit rate to decrease load to the data store but do not always
improve transaction request times.

In summary, we make the following contributions:

• We define a new metric, transactional hit rate, to evaluate
the latency reduction of caching for transactions (Section 3).

• We provide the first formalization of transactional caching,
and we prove that the problem is NP-Hard (Section 3.4).

• We present a new caching system, DeToX, that leverages
transactional dependency information to optimize for
transactional hit rate and significantly improve performance
on popular workloads (Sections 4 – 8).

2 Motivation

In this section, we illustrate why single-object eviction
algorithms perform poorly for transactional workloads.
Specifically, we show that a well-known optimality result
in caching does not hold for transactions and that popular
caching algorithms achieve low transactional hit rates.

2.1 Object Hit Rate is Insufficient

Most existing cache eviction algorithms focus on maximizing
object hit rate, or the fraction of single object requests served
from cache. However, this approach fails to capture the
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Figure 2: Single-object policy performance.

inter-object dependencies within transactions. Consider
for example a simple transaction GetLinkedAccounts that
returns secondary bank accounts a2 and a3 linked with a
primary account a1 (Figure 1). This transaction must first
read a1 before accessing both secondary accounts a2 and a3
in parallel. Thus, a1, a2 and a3 are all on the longest path of
the transaction. If we cache a1, we can reduce the end-to-end
latency of the transaction. However, if we additionally cache
a2, the overall latency does not improve because we still need
to access a3 from disk. In fact, caching either a2 or a3 indi-
vidually does not improve performance; transaction latency
remains equal to the case in which neither key was cached. On
the other hand, caching both a2 and a3 does improve latency.

Transactions have an implicit all-or-nothing property on
groups of objects that traditional caching algorithms fail to
capture. This can lead popular eviction algorithms, such as
LRU and LFU, to make poor caching decisions. Consider a
situation in which, over all transactions, a2 is more frequently
accessed than a1 and a3. LFU and LRU would choose to evict
a1 and a3 over a2, resulting in no latency improvement for
this transaction. In this case, a “hot” (frequently accessed) key
a2 is requested in parallel alongside a “cold” (rarely accessed)
key a3. If all accesses of a2 are sent in parallel with requests
to different cold keys, there is no benefit to caching a2 un-
less all these cold keys are cached. In effect, cold keys can
“contaminate” (degrade the cacheability of) hot keys like a2.

Real-world workloads. This observation is not limited
to our simple example: we find that single-object eviction
algorithms also perform poorly for complex, real-world
workloads. Figure 2a illustrates that over 90% of cached keys
do not have any impact on latency (“unhelpful” keys) for
the Product Group 3 workload of TAOBench [26]. The root
cause is simple: these algorithms optimize for object hit rate
(OHR) rather than transactional hit rate (THR). As we see
in Figure 2b, LRU and LFU achieve high object hit rates but
up to 51% lower transactional hit rates. Transactions in this
workload access either a combination of hot keys and warm
keys, or hot keys and cold keys. Single-object algorithms,
which use only individual object features to score keys, retain
only hot keys but evict most warm keys and all cold keys. As
a result, they achieve few transactional hits. A transactionally-
aware policy would instead recognize that cold keys
contaminate their associated hot keys and prioritize retaining
only the hot and warm keys that are accessed together.



T Keys accessed Cache state Optimal cache state
1 a1,a2,a3 - -
2 a4,a5,a6 a1,a2,a3 a1,a2,a3
3 a4,a5,a7 a1,a4,a5 a1,a2,a3
4 a1,a2,a3 a1,a4,a5 a1,a2,a3

Figure 3: Non-optimality of Belady.

2.2 Optimality

Our observations also have theoretical implications. We find
that Belady [16], the offline, optimal eviction algorithm for
uniformly-sized objects does not make the best decisions
for maximizing transactional hit rate. This policy evicts keys
that are accessed furthest in the future but fails to take into
account whether these keys generate transactional hits.

We prove that Belady is not optimal even for the simplest
case of uniformly-sized transactions with uniformly-sized
objects (Figure 3). In this example, we have four transactions
with a cache size of 3. T1 and T4 access keys a1,a2,a3, while T2
accesses a4,a5,a6 and T3 accesses a4,a5,a7. Belady chooses
to first cache a1,a2,a3 and then replaces the last two keys
with a4,a5 since these keys give object hits (but no latency
reduction) for T3. However, keeping a2,a3 in the cache would
lead to a transactional hit (and latency improvement) for T4.

2.3 Towards a new approach

Our results highlight how single-object caching strategies
yield low transactional hit rates by storing many unhelpful
objects. Web caching algorithms suggest a way forward:
they acknowledge the need to cache multiple objects
together (e.g., page-level hit ratio) but only consider flat
dependencies [11, 91]. In contrast, transactions can have
complicated topologies with multiple levels of dependencies.

To develop a transactionally-aware caching system, we
must address three challenges: (1) formalizing caching
in the transactional context, including optimality analysis
(Section 3), (2) identifying which groups of objects lead
to transaction hits, given the potentially complex structure
of transactions (Section 4.1), and (3) scoring the individual
objects in these groups to determine which objects to store
in the cache (Section 4.2). In our design, we are careful to
emphasize compatibility with existing caching systems, such
as Memcached and Redis, so that our approach can be easily
implemented for greater applicability.

3 Transactional Caching

In this section, we formalize the transactional caching
problem. We define a new metric, transactional hit rate, to
capture the latency reduction of caching transactions.

1 id = SELECT cId FROM ACCOUNTS WHERE name = cName
2 s = SELECT savings FROM SAVINGS WHERE cId = id
3 c = SELECT checking FROM CHECKING WHERE cId = id
4 return s + c

Listing 1: Code for Figure 4. The dependencies for Lines 2
and 3 on the output of Line 1 are highlighted in red.

3.1 Transactions

Transactions consist of read and write requests that must
be applied atomically [22]. Some of these operations are
independent and can execute in parallel, while others are
dependent on the result of preceding operations. For instance,
a read operation may query a key determined by the return
value of a previous operation. As a result, these operations
must be run sequentially. In effect, transaction execution
can be captured by a DAG of operations. More formally, we
apply the notion of a logical dependency, generalizing the
model from Wu et al. [94]:
Definition 1 (Logical dependency). Given two operations t p
and t of a transaction, an operation t is logically dependent
on operation p if p determines the key or value accessed by t.

Traditionally, these dependencies are not captured by the
system, which observes only sequences of reads and writes.
In practice, these relationships can be captured statically
through program analysis or specified at run time by the
developer. Together, operations and logical dependencies
define a transaction execution graph:
Definition 2 (Transaction execution graph). For transaction
T , a transaction execution graph G=(V,E) is a DAG, where
each vertex in V represents a pair (x,X) of a read or write
operation to key x in table X, and each edge in E represents
a logical dependency between operations.

Each transaction execution graph corresponds to a
transaction type:
Definition 3 (Transaction type). Transactions of the same type
have identical execution graphs when only considering tables.

We infer transaction execution graphs and their resulting
types through static analysis, as done in prior work [36, 94].
Note that we only extract table accesses and graph structure;
the individual keys accessed by transactions are known
only at run time. As such, we make no assumptions about
the DAG structure and support general-purpose, interactive
transactions. For example, the SmallBank workload [87]
contains the transaction types: Amalgamate, Balance,
DepositChecking, SendPayment, TransactSavings, and
WriteCheck. For the Balance transaction (Listing 1), requests
to both the Savings (S) and Checkings (C) tables are
dependent on the result of the read to the Accounts table (A).
The corresponding execution graph consists of three nodes,
one for each operation, and logical dependencies r[A]→r[S]
and r[A]→r[C]. While the reads to S and C are independent
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Figure 4: SmallBank Balance transactions.

and can be executed in parallel, they cannot proceed until
after the read to A finishes. At run time, a Balance transaction
that reads the keys a,s,c from the tables A,S,C respectively
can be mapped onto the same execution graph (Figure 4a).

3.2 Cache

The previous section presents the notion of a transaction, in-
cluding the logical dependencies that constrain its execution.
We now formalize how caching affects transactions, drawing
from Abrams et al. [48] for notation.
Definition 4 (Cache state). A cache state is a set of keys C
for which |C|≤n, where n is the capacity of the cache.

In line with prior work [29], we assume that the cache state
does not change for the duration of each transaction.

By assumption, objects are served with lower latency from
the cache than from the underlying data store. We make
the simplifying assumption that requests served from the
cache have zero latency for notational simplicity (we explore
the effects of varying cache latency in Section 8.6). Under
this model, transaction latency is defined by the number of
sequential, non-cached accesses. This corresponds to the
longest path in the transaction’s execution graph G, excluding
vertices with cached keys.

We formalize this notion as the critical length:
Definition 5 (Critical length). Given a transaction T with
transaction execution graph G, K number of keys, and cache
state C, the critical length is the length of the longest path
from any source vertex (no incoming edges) to any sink vertex
(no outgoing edges), excluding vertices corresponding to keys
in C. We define the function L :G×2K →N for which 2K is the
powerset of all keys, such that L(G,C) is the critical length.

Given a transaction T with execution graph G, L(G, {})
represents the length of the longest path in G when the
cache is empty. For example, Figure 4a has longest paths
{r[a],r[c]} and {r[a],r[s]} with critical length L(G,{}) = 2.
Caching key a (Figure 4b) would shorten the critical length to
L(G,{a})=1, as the longest paths are reduced to {r[c]} and
{r[s]}. However, caching key c (Figure 4c) does not change
the critical length, since {r[a], r[s]} remains the longest
path with L(G,{c})=2. Informally, we refer to each length
reduction as a transactional hit.

3.3 Transactional Hit Rate (THR)

Having defined the necessary formalisms for transaction la-
tency and caching, we can now introduce transactional hit rate.
Informally, this metric captures how much latency improves

when caching for transactions, much like how its single-object
counterpart, object hit rate, does so for individual requests.

We first present THR in the context of a single transaction:
Definition 6 (Individual transactional hit rate). Given
transaction T with execution graph G and cache state C, the
individual transactional hit rate is L(G,{})−L(G,C)

L(G,{}) .

The difference in critical length represents the reduction in
sequential, non-cached accesses after caching. We normalize
this difference by dividing by the total critical length. This
metric captures the impact of caching for the execution of a
single transaction (note that if the transaction execution graph
is a sequential list of dependent reads, then transactional hit
rate is equivalent to object hit rate). We easily extend this
definition to a sequence of transactions:
Definition 7 (Transactional hit rate). Given a sequence
of transactions T1, T2, ... , Tm with execution graphs
G1,G2, ... ,Gm and the respective cache states at the time
of execution C1, C2, ... , Cm, the transactional hit rate is
Σm

i=1(L(Gi,{})−L(Gi,Ci))

Σm
i=1L(Gi,{}) .

3.4 Optimality Analysis

Single-object caching is a well-studied problem and is known
to be NP-Hard in the general case [29]. We show that the
optimal transactional caching is NP-Hard through a reduction
from variable-sized caching of single objects (proof in
Appendix A). In summary, we reduce each variable-sized
object of size X to a transaction with X unit-sized operations.

4 Group Identification and Scoring

Designing an optimal caching policy is impractical for
transactional caching, since it would run in exponential
time. Unfortunately, traditional heuristics perform poorly
for transaction hit rate (Section 2) because they fail to
identify the keys that must be cached as a group in order to
yield a transactional hit. This notion of grouping is central
to developing a transactionally-aware caching policy. We
proceed in two steps: first, we identify which groups of
keys lead to transactional hits when cached together (group
identification). Next, we determine what scores should be
assigned to each key within a group (group scoring).

Figure 5 gives an overview of DeToX. Our system first ex-
tracts transaction execution graphs (Section 3) from applica-
tion code and identifies groups of table accesses (Section 4.1)
at compile time. The number of groups that DeToX needs to
consider can be reduced at compile time through the notion of
interchangeability (Section 5.1). DeToX then scores groups
based on key accesses at run time (Section 4.2). If application
code is not available, DeToX constructs approximate groups
at run time by using levels (Section 5.2).
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Figure 5: Overview of DeToX (gray boxes). Blue edges on the right represent the path taken if application code is not available.

4.1 Group Identification

Intuitively, a group is a set of keys that reduces critical
length if cached together. Specifically, we define a complete
group as one from which we cannot remove any key without
increasing critical length. Completeness optimizes cache
efficiency by storing the minimal subset of keys necessary
to reduce latency. Formally:
Definition 8 (Complete group). Given a transaction T and
its execution graph G, a complete group is a subset of keys
g accessed in T such that ∀g′⊂g, L(G,g)<L(G,g′).

We identify complete groups of table accesses at compile
time, using the transaction execution graphs G extracted via
static analysis, as seen in Figure 5. A simple algorithm to
identify groups is to iterate through the powerset of possible
table accesses and compute their resulting reductions in
critical length. These table accesses are replaced at run time
with key accesses. The application passes along metadata
with requests to indicate the corresponding vertex in the
transaction execution graph of each key access.

Consider Figure 6a, which has a critical length of three
(serial accesses of a,c,d) and seven complete groups ({a},
{c}, {d}, {a,c}, {a,d}, {b,c,d}, {a,b,c,d}). Note that {c,d}
is not a complete group. If c and d are both cached, then the
critical length is two (serial accesses of a,b). However, only
caching c already yields the same critical length (accesses
to a,b,d). Similarly, {a,b} is not a complete group, because
it yields a critical length of two (serial accesses c,d), which
could also be achieved by just caching a.

In the worst case, the number of complete groups can be
exponential in the size of the transaction, even for simple
transaction topologies. Fortunately, many of these groups are,
in fact, equivalent. We describe this notion more precisely
in Section 5.1 and present an optimization that drastically
reduces the number of groups that need to be considered.

4.2 Scoring

Caching policies typically assign scores to keys and evict
keys with lower values. We adopt the same strategy by
mapping complete groups to individual key scores at run
time, as seen in Figure 5. This approach has two benefits:
(1) we can draw from prior work on single-object caching

Parameter Description

SCORE_G(group) Score of a group
Fgroup Set of all key frequencies in a group
Lgroup Transactional hits of a group
Sgroup Sum of key sizes in a group
SCORE_K(key) Score of a key
TSkey Sum of instance scores for a key
Fkey Frequency of a key
Aglobal Global aging factor

Table 1: Scoring parameters.

algorithms, and (2) we minimize implementation changes
needed for real-world caching systems.

4.2.1 Scoring a Group in a Single Transaction

We begin by assigning numerical scores to each group (group
scores) with higher values representing groups that are more
beneficial to cache. We draw inspiration from GDSF, a
high-performing web caching algorithm [27]. GDSF con-
siders three metrics to score keys: frequency (access count),
recency, and size. Specifically, GDSF uses the following
formula: SCOREGDSF(key)=Fkey/Skey+Aglobal , where Fkey is
frequency of the key, Skey is size of the key, and A is a global
recency factor (described in Section 4.2.3). GDSF gives equal
weight to each of these factors, and we follow this approach.
We leverage frequency and size to score each group as follows
(and incorporate recency into key scores in Section 4.2.3):

SCORE_G(group)=
min(Fgroup)×Lgroup

Sgroup

Fgroup is a list of all key frequencies in the group. Lgroup is the
number of transactional hits generated if this group is cached.
Sgroup is the sum of all key sizes in the group. All scoring
parameters can be found in Table 1. For the transactions
in Figure 6 (which will be used as running examples), the
group scores of each complete group for these transactions
are shown in Figures 6b and 6d. The transaction in Figure 6a
has keys a, b, c, d with frequencies of 1, 29, 99, and 50,
respectively and sizes of 1. The score of group {a,b,c,d} is
thus min(1,29,99,50)×3

4 =0.75.
Frequency (Fgroup). Keys within a complete group may vary

in frequency but must all be cached to yield a transactional



Figure 6: Example transactions and scores. Key sizes are 1, cache size is 3, and Aglobal starts at 0. The cache initially stores
{a,b,c}. a is evicted after T1, and d is evicted after T2, with Aglobal updated on each eviction.

hit. For example, if a high-frequency key x is only associated
with a group of keys {y_1, . . . , y_k} (each with much lower
frequency than x), then it is not beneficial to cache x. Essen-
tially, the key with the minimum frequency determines the
cacheability of the entire group. Thus, we take the minimum
of all key frequencies in calculating the group score. Consider
for instance the transaction in Figure 6c: key b is less
frequently accessed than key c and drives down the frequency
of the group {b,c} to min(Fgroup) = min(30,100) = 30. In
this example, b contaminates c.

Critical length reduction (Lgroup). This parameter captures
the reduction in critical length when caching a group
(Lgroup =L(G,{})−L(G,group)). Other factors being equal,
groups with greater reductions are better choices to cache
and should thus be assigned a higher score.

Size (Sgroup). Sgroup represents the cache space needed to
store the group. Since all keys in a group must be present in
cache to generate a transactional hit, THR is maximized by
retaining groups of smaller sizes (more groups can be cached).

Next, we describe how to go from group scores to key scores.

4.2.2 Scoring Across Groups in a Single Transaction

Mapping group scores to keys is challenging: for a given
transaction, a key can belong to multiple complete groups,
each with a separate group score (SCORE_G). In this section,
we focus on assigning scores to keys within a single
transaction; we assign each key an instance score (SCORE_I)
based on one of its group scores. We combine instance scores
across transactions in Section 4.2.3.

Our algorithm leverages the insight that out of all the keys
in a transaction, the highest-scoring complete group is the
most beneficial set of keys to cache. Thus, our protocol
first finds the complete group with the highest group score
SCORE_G and sets the instance score of all keys in that group
to SCORE_G. In Figure 6b, {c} has the highest group score
(SCORE_G=99), so c is assigned the instance score of 99. We
then score the remaining keys of the transaction assuming
that keys in the highest-scoring group will be cached.

In subsequent iterations, our algorithm finds the highest-
scoring complete group that is a superset of all keys that

have been assigned instance scores. In Figure 6b, having
scored c, the highest-scoring complete group that subsumes
c is {b,c,d}, with a group score of 19.3. The unscored keys
(b, d) are then assigned the score of this complete group
(19.3). Intuitively, this is the next set of keys that should be
retained assuming that the highest-scoring complete group
is already in cache. Our algorithm captures the fact that, once
c is cached, d should only be cached when b is cached. The
low score of b contaminates d but should not contaminate
c (since c by itself can lead to a transactional hit).

The iterative process described above is repeated until all
keys are scored. For our example, the next highest-scoring
complete group that is a superset of {b,c,d} is {a,b,c,d}, with
a group score of 0.75, which is assigned to key a, completing
the scoring protocol for Figure 6b. Note that all keys will even-
tually be scored by this algorithm, since they are all part of the
trivial complete group containing every key in the transaction.

4.2.3 Scoring Across Transactions

Finally, we describe how to integrate instance key scores
across multiple transactions into an aggregate value. This
final score will be used by the system to decide which keys
to evict from the cache. We adopt the following formula:

SCORE_K(key)=
TSkey

Fkey
+Aglobal

TSkey is the sum of all instance scores from Section 4.2.2
across all transactions accessing this key. Fkey is the frequency
of this key. Aglobal is the global aging factor.

Averaging instance scores. To combine instance key scores
into a single value for a given key, we take the running av-
erage of these scores. Each time a key is accessed, we add
its instance score to the total score TSkey and increment Fkey
before calculating a new aggregate score. Figure 6e gives the
key scores of a,b,c,d after the execution of the transaction
in Figure 6a, assuming that the aging factor is initialized to
0, key size is 1, and the previous TSkey values are 0, 30, 200,
and 70 respectively. For example, c has an instance score
of 99 (Figure 6b) for the transaction in Figure 6a, a previ-
ous TSkey of 200, and frequency of 99, giving SCORE_K(c)=



200+99
99 +0=3.02 in Figure 6e. Taking the average allows us

to account for contamination between different groups.

Recency. To account for shifts in object access distributions
over time, GDSF, along with other algorithms [8], uses an
aging factor to capture object recency. Since previously
popular objects can remain in the cache for extended periods
of time (due to their high frequencies) and prevent newly
popular objects from being stored, the scores of more recent
objects should be higher than those of older objects. Towards
this end, GDSF applies Aglobal , a global value that is added
to the score of a key upon each access to increase the scores
of more recently accessed objects and age older objects out
of cache. The value of Aglobal is updated each time an object
is evicted and set as that object’s score. Thus, the factor
increases monotonically and ensures that all accesses after
this eviction will have scores higher than the last evicted
key. In essence, this factor acts as a “reset” on key scores.
In Figure 6, a is evicted after the transaction in Figure 6a
executes, and Aglobal is set to a’s score (0.75). This value
is then added to SCORE_K for each key accessed in the
subsequent transaction (Figure 6c). For example, c has an
instance score of 15 (Figure 6d), a previous TSkey of 299,
frequency of 100, and Aglobal of 0.75, giving c an aggregate
key score of SCORE_K(c)= 299+15

100 +0.75=3.89 in Figure 6f.

5 Optimizations

While our current approach precisely captures the cacheability
of each group, it can be prohibitively expensive when the num-
ber of complete groups is exponential for some transaction
topologies. We address this problem in two ways. First, we
observe that many complete groups capture redundant infor-
mation and introduce interchangeable groups to avoid scoring
all complete groups, reducing run time overhead. Second, we
present a restricted form of grouping, levels, that dynamically
approximates groups at run time. This technique also enables
us to score keys when we do not have access to transaction
code (i.e., we do not know the transaction execution graphs).

5.1 Interchangeability

We find that the number of complete groups can be exponen-
tial with respect to transaction size, even for simple topologies.
For example, the TPC-C Order-Status transaction in Fig-
ure 7a has a depth of three, and the number of complete
groups for this transaction is exponential with respect to its
depth: {c}, {o}, {ol1,ol2}, {c,o}, {o,ol1,ol2}, {c,ol1,ol2},
{c,o,ol1,ol2} make up 23−1=7 complete groups.

We observe that transactions often contain complete groups
that differ by only a single key. For instance, for every group
in which c is present in Figure 7a, there exists an identical
group in which o replaces c (and vice-versa). In effect, these
keys can be “swapped” with each other and still produce a

c o

ol1

ol2

(a)

a b c d

e f g h

(b)

Figure 7: Transactions to demonstrate interchangeability.
Figure 7a is a TPC-C Order-Status transaction.

complete group. This interchangeability property is powerful:
if two keys can be exchanged in any complete group, then de-
ciding to cache one key over the other is entirely dependent on
the individual scores of these keys, as all other parameters are
shared. Consequently, we do not need to calculate the scores
of each their complete groups in order to score each key. Con-
sider the groups {c,ol1,ol2} and {o,ol1,ol2} for the TPC-C
Order-Status transaction in Figure 7a, assuming c has a
higher individual score than o. Since c and o are interchange-
able, we know that {c,ol1,ol2} must have a higher group score
than {o,ol1,ol2}, as all other parameters (the scores of ol1 and
ol2) are shared. Our scoring algorithm favors caching groups
with higher scores, so we can avoid calculating the score of
{o,ol1,ol2} at run time while determining the score for o.

We can further generalize the idea of interchangeability
to sets of keys that can also be “swapped” with each other.
Continuing the example above, the set of keys {ol1,ol2} is in-
terchangeable with {c}, because any complete group that con-
tains {ol1,ol2} will remain a complete group if {ol1,ol2} is
swapped with {c}. We call such sets interchangeable groups:
Definition 9 (Interchangeable groups). Let s1 and s2 be
distinct sets of keys in a transaction with execution graph G.
We define s1 and s2 to be interchangeable if
(1) ∀ complete groups g1 such that s1 ⊆ g1 and
s2 ∩ g1 = ∅, g′1 = g1 \ s1 ∪ s2 is also a complete group
and L(G,g1)=L(G,g′1), and
(2) ∀ complete groups g2 such that s2 ⊆ g2 and
s1 ∩ g2 = ∅, g′2 = g2 \ s2 ∪ s1 is also a complete group
and L(G,g2)=L(G,g′2).

Like complete groups, interchangeable groups of table ac-
cesses can be identified at compile time, as seen in Figure 5.
Key accesses are mapped to the vertices at run time. Compu-
tationally, interchangeability allows us to reduce the number
of complete groups that need to be scored. We compress the
representation of complete groups and reduce run time com-
plexity of the scoring algorithm as follows, using Figure 7b
as a running example:

• (Compile time) Find all interchangeable groups
of vertices from the set of complete groups. The com-
plete groups are: {a, e}, {b, f}, {c, g}, {d, h}, {a, e, b, f},
{c, g, b, f}, {d, h, b, f}, {a, e, c, g}, {a, e, d, h}, {c, g, d, h},
{a,e,b, f ,c,g}, {a,e,b, f ,d,h}, {a,e,c,g,d,h}, {c,g,b, f ,d,h},
{a,e,b, f ,c,g,d,h}. Consider replacing {a,e} with {d,h} in
any complete group; the resulting group is still complete.
Thus, {a,e} and {d,h} are interchangeable. Using the same



logic, we find that {a,e},{b, f},{c,g},{d,h} are all mutually
interchangeable.

• (Compile time) Compress complete groups. Denote
an access to any one of the mutually interchangeable
groups—{a, e},{b, f},{c,g},{d,h}—as [C]. For example,
{a,e,b, f ,d,h} becomes [C,C,C]. In this particular example,
all groups of size four can be written as [C,C], groups of size
six as [C,C,C], and groups of size eight as [C,C,C,C]. We call
these representations compressed groups.

• (Run time) Score compressed groups by replacing
vertices with individual keys in each group. Recall from
Section 4.2.2 that our instance scoring algorithm scores all
complete groups before greedily selecting the highest-scoring
ones. With interchangeability, we no longer need to score
all complete groups. Assume the minimum scores of the
following interchangeable groups are: {a, e} : 1, {b, f} :
10,{c,g} : 30,{d,h} : 50. Since we know that {a, e} and
{d,h} are interchangeable and that {d,h} has a higher score,
for any complete group containing {a, e}, there must be
another complete group containing {d,h} that has the same
(or higher) score. Applying this intuition, the highest-scoring
complete group corresponding to the compressed group [C,C]
must be composed of the highest and second-highest-scoring
interchangeable groups, {d,h} and {c,g} respectively.

In this example, interchangeability decreases the number of
groups that need to be considered at run time from fifteen
to four. Overall, interchangeability drastically reduces the
number of complete groups that must be scored, lowering run
time overhead.

5.2 Levels

For cases when we do not have access to transaction code,
we design a simplified protocol to dynamically infer groups.
We first define a level to be a set of keys in a transaction
that are sent to the data store in parallel; a similar definition
is used to group tasks to optimize caching for parallel
job execution [11]. In practice, many applications batch
parallel reads to the caching system, which often provides
an explicit API to support these requests [2]. We assume
that applications send requests as soon as their logical
dependencies are fulfilled. For instance, the transaction in
Figure 6a has levels {a}, {b,c}, and {d}. We have d as a
standalone level since it can only be requested once the level
containing both b and c has finished executing.

Levels produce identical results to our previous grouping
strategies for transactions in which all keys and groups are
interchangeable (e.g., Figures 7a and 7b). Many real-world
workloads are comprised of such transactions (including all
the ones we evaluate in Section 8). When transactions do not
have these properties, levels can miss out on performance
opportunities since they only capture a subset of all possi-
ble complete groups. For example, in Figure 6a, b and c are
always scored together under levels, lowering c’s score. To

maximize transactional hits, b should instead be scored with d
since both are colder keys, and c should be given a high score
because caching just this key is likely to lead to a transac-
tional hit. We measure the tradeoff between different grouping
strategies in Section 8.

6 Prefetching

Prefetching is a popular technique to reduce the client-
perceived latency of requests by caching items before they
are requested [10, 24, 44, 45, 90]. We revisit this strategy
in the context of transactions and design a new prefetching
algorithm that uses logical dependencies to minimize latency.

Our policy leverages conditional probabilities: once key a
is accessed, it may be very likely that key b will also be
requested in the same transaction. Consider for example
GetLinkedAccounts in Figure 1: the access to a primary
account is almost always followed by requests to the same
subsidiary accounts. Our prefetching algorithm tracks these
correlated accesses and preemptively brings dependent ob-
jects into the cache (a2 and a3 are requested alongside the
read to a1). Specifically, DeToX stores, for every request r,
sets of keys in subsequent accesses that are logically depen-
dent on r. DeToX also tracks the frequency of each set and
preemptively fetches in the most popular set into cache along-
side r. To bound memory overheads, we restrict the number of
dependency sets that can be stored per key and set a frequency
threshold below which we do not retain prefetching metadata.

7 Implementation

In this section, we describe our implementation of DeToX,
which consists of 7K lines of Java. We adopt a standard
two-tier architecture in which we layer a Redis (7.0) cache
on top of a data store (Postgres (12.10) and TiKV (5.4.3)
are supported). A shim layer routes requests, manages
concurrency control, and enables prefetching.

7.1 Shim Layer

All client requests are directed to our shim layer, which medi-
ates accesses to the cache and data store to support serializable
transactions. Read requests go first to Redis. In the absence of
a cache hit, the shim forwards the request to the data store and
updates the cache with the result. All writes are sent directly
to the data store. While our shim layer currently supports a
key-value API, we can convert SQL queries to this format, as
previous systems have done [34, 35, 47, 58–61, 65–67, 78, 81–
84, 92, 98]. We choose to implement a stand-alone shim layer
since there is limited open-source support for concurrency
control between caching systems and data stores [9, 43, 45,
46, 75, 76, 85, 88]. Furthermore, our shim layer allows us to



easily plug in different systems. We will explore integrating
transactional caching directly into systems in future work.

Concurrency control. We implement two-phase lock-
ing [22] with timeout-based deadlock detection in the shim
layer to ensure serializability. The system maintains the
following invariant: values in the cache will either 1) reflect
the value committed in the (serializable) data store or 2) be
protected by an exclusive write lock.

To achieve this, the shim acquires locks on individual ob-
jects before sending requests to either storage system. Writes
are buffered at the shim layer until commit. Once values are
committed in the data store, they are updated in the cache
before write locks are released. To handle crashes, we rely
on the data store as the source of truth, similar to previous
work [46, 75, 76], and we clear the cache after failures to pre-
vent stale reads. We view applying transaction caching to mul-
tiversioned systems as a promising avenue for future work.

Extracting transaction types and execution graphs. We
leverage prior work [36, 94] to obtain transaction execution
graphs with table accesses from application code. The
widespread adoption of JDBC-style drivers presents a com-
mon interface for extracting transactions across applications.

7.2 Eviction

Our eviction policy scores keys as a function of their groups
as well as their frequency, size, and recency. The latter three
are all features that are already available in Redis, which
natively supports LRU and LFU. We reuse these metrics to
minimize code changes when implementing our algorithm.
We make two primary modifications to Redis: we add (1)
a global aging factor that is updated during eviction (as
detailed in Section 4.2.3) and (2) support for scoring groups
of keys. Specifically, we modify the existing method Redis
provides for fetching multiple objects to delineate which
keys are accessed together. We update key scores only
after a transaction has completed so that we have sufficient
information to calculate all group scores. Our changes
involve less than 100 lines of code and suggest that DeToX
can be easily integrated into any caching system. We also
implement a trace-driven simulator in Python to evaluate the
offline Belady and Transactional Belady algorithms.

8 Evaluation

In this section, we evaluate DeToX against existing caching
policies on a range of different workloads. Specifically, we
aim to answer the following questions:
• How does DeToX compare to single-object algorithms in

terms of transactional hit rate and cache efficiency?
• What is the impact of our grouping techniques?
• What is the tradeoff between optimizing for object hit rate

and transactional hit rate?

8.1 Experimental Setup

We run our shim layer and Postgres on separate c5a.4xlarge
Amazon EC2 instances (16 CPUs, 32GB RAM) and use a
memory-optimized r5.4xlarge machine (16 CPUs, 128GB
RAM) for Redis. Clients run on c5a.16xlarge instances (64
CPUs, 128GB RAM). We host all machines in the same re-
gion with low network latency (0.2ms). For our experiments,
we report the average of three 5-minute runs with 60 seconds
of warm-up time. When an eviction is needed, we score 10
random samples and choose one to evict among these can-
didates. This strategy removes the overhead of maintaining
a sorted list of keys without degrading performance and is
popular in many caching systems [2, 79], including Redis.

Benchmarks. We evaluate DeToX against single-object
baselines as well as the policies developed in PACMan [11]
(their LFU-F is equivalent to our LFU; we evaluate their
LIFE algorithm) and ChronoCache [45], a state-of-the-art
prefetching system that leverages transactional dependen-
cies. We measure performance on a range of workloads.
TAOBench [26] is an open-source social network benchmark
based on Meta’s production traces. We run the Product
Group 1, 2, and 3 workloads, which represent distinct sets of
(anonymized) applications at Meta that share data and use the
same product infrastructure. All workloads are read-heavy
and skewed, typical of most social networks. They contain
point reads and writes (inserts, updates, and deletes) as well
as read-only and write-only transactions. All transactions
are “flat” (they contain no logical dependencies). Since
transaction code is not available for this benchmark, we use
levels to score groups for eviction. 1 We run experiments
with 100M objects for a total data size of around 1 TB.
Epinions [37] consists of nine transaction types that represent
behavior observed on a consumer reviews website. We run
the benchmark with 2M user and 1M items for a total data
size of roughly 1 TB. SmallBank [87] contains six types
of transactions that model a simple banking application.
We configure it to run with 500M (uniformly accessed)
accounts (total size of 1 TB). TPC-C [33], a standard OLTP
benchmark, simulates the business logic of e-commerce
suppliers with five types of transactions. We configure TPC-C
to run with 100 warehouses (total size of 8GB). In line with
prior transactional key-value stores [34, 81], we use a separate
table as a secondary index on the Order table to locate a
customer’s latest order in the Order-Status transaction,
and on the Customer table to look up customers by their last
names (for the Order-Status and Payment transactions).

8.2 Application Benchmark Results

We show THR over different cache sizes for all benchmark
workloads in Figures 8 and 10. We omit some throughput and

1TAOBench [26] chooses to model workloads using probability
distributions rather than fixed query types for adaptability.
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Figure 8: TAOBench THR results.
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Figure 9: TAOBench PG2 results.

latency graphs for space but describe results in text. Since
all transactions in these workloads have symmetric structures,
there is no difference in performance between our various
grouping techniques. We detail the tradeoffs between these
optimizations in the next section.

TAOBench. DeToX obtains up to 76% higher transactional
hit rates on the TAOBench PG2 and PG3 workloads compared
to single-object caching algorithms (Figures 8a and 8b).
DeToX achieves this with better cache efficiency: at the 25%
cache size relative to data size (a common setup following the
“80-20 rule”), the protocol achieves an 88% transactional hit
rate while the best single-object algorithm requires 3.4x more
cache space to attain the same result on PG2. Results are
similar for PG3 for which the system requires a 2.2x smaller
cache. Throughput increases by 31% (from 18K txns/s to
24 txns/s) for PG2 and 30% for PG3 (from 31K txns/s to 40
txns/s), while latency decreases by 30% (4.6ms to 3.2ms) for
PG2 (Figure 9b) and 29% for PG3 (2.3ms to 1.6ms).

PG2 is read-dominant (>96%) with a mix of point reads,
short transactions (<10 operations), and larger read trans-
actions that span up to 40 keys. The point reads and shorter
transactions make up 60% of the workload and largely access
a small group of hot keys. Consequently, all algorithms
achieve a THR of over 45% for small cache sizes (10%
relative size). The longer read transactions follow one of two
patterns: transactions access either a combination of hot and
warm keys (25%), or hot and cold keys (11%). Transactions
from the first category are more beneficial to cache since
their keys are more frequently accessed and more likely to
lead to transactional hits. There is little benefit in caching
any of the keys in the second category since the cold keys
contaminate all the other ones.

Under DeToX, the cache initially chooses to cache keys that
belong to transactions in the first category. Thus, transactional
hit rate improves as the cache size increases from 10% to

40% (Figure 8a). Past this point, the cache begins to retain
more keys from transactions in the second category, but the
performance benefit is limited since these requests rarely lead
to transactional hits. In contrast, single-object algorithms use
only individual object features to score keys, so they retain hot
keys from transactions in both categories. Transactional hit
rate increases slowly up to the 55% cache size at which point
the cache becomes large enough to begin storing the warm
keys from the first transaction category. Since the TAOBench
workloads have no temporal patterns, GDSF and LFU provide
slightly higher hit rates compared to LRU for all cache sizes.
While LIFE uses levels, it performs poorly because it only
uses the size of levels to make eviction decisions.

Similarly, in PG3, DeToX achieves better cache efficiency
by not retaining contaminated keys. This workload has a
smaller portion of point reads and shorter transactions (50%),
so hit rates at smaller cache sizes are lower for all policies.
Longer read transactions span up to 60 items and also fall
into two categories. There are more transactions in the first
category (33% compared to 25% in Product Group 2), so
transactional hit rates grow more slowly with respect to cache
size since more warm keys need to be cached.

In contrast to the other workloads, PG1 (Figure 8c) consists
mainly of point reads and some short read transactions (of size
four or smaller), which together make up over 97% of all re-
quests. Our algorithm does not improve transactional hit rate
over single-object policies because most hits result from stan-
dalone requests and short read transactions to a set of highly
popular keys, which single-object algorithms already cache ef-
fectively. Throughput increases by 2% (from 82K txn/s to 84K
txn/s), and latency decreases by 2% (from 0.61ms to 0.60ms).

ChronoCache has similar hit rates to single-object algo-
rithms since there are no dependencies within transactions
for this benchmark; the results simply reflect its eviction
policy, LRU. The middleware layer, which does dependency
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Figure 10: OLTP benchmark THR results.
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Figure 11: SmallBank results.

analysis at run time, quickly becomes the bottleneck.

Epinions. Epinions centers around user interactions and
item reviews. It contains five read-only transactions and four
update transactions. Users have both an n-to-m relationship
with items (i.e., representing user reviews and ratings of
items) and an n-to-m relationship with other users. There are
no logical dependencies in the transactions of this workload
(all operations can be parallelized).

DeToX provides up to 41% increase in transactional hit rate
(Figure 10a), translating into 29% improvement in throughput
(from 12K txn/s to 17K txn/s) and 25% decrease in latency
(from 6.9ms to 5.5ms). At the 25% cache size, DeToX is 1.6x
more efficient than the other algorithms. The transactions in
Epinions request some group of objects related to a particular
user or item (e.g., get all the reviews from one user), so our
policy is able to successfully capture the n-to-m relationships
in the data with its scoring mechanism. In contrast, the
single object policies focus on caching individually popular
keys without taking into account correlation between
accesses. Since there are no dependencies between or within
transactions for this workload, ChronoCache is unable to
successfully prefetch objects.

SmallBank. SmallBank consists of requests to the Accounts,
Checking, and Savings tables with six transaction types. Its
transactions are relatively small, involving four distinct keys
at most. Roughly two-thirds of operations are reads. Each cus-
tomer account is materialized as three separate entries in each
table and is accessed with a uniform distribution. There is high
correlation between accesses to a customer’s row in the Ac-
counts table and the customer’s rows in the other two tables.

Our algorithm provides up to a 1.3x increase in transactional
hit rate (Figure 10b). The absolute hit rates remain relatively
low for smaller cache sizes because of the uniform access dis-
tribution to customer accounts. Transactional hit rate increases
linearly for all algorithms since more cache space directly

results in more hits. DeToX is 1.6x more efficient than the
next best-performing algorithm at the 25% cache size.

We observe up to a 28% increase in throughput (from 12K
txn/s to 16K txn/s) and 26% decrease in latency (from 6.8ms
to 5.4ms) on this workload (Figures 11a and 11b). The long
tail in access patterns and short transactions of this workload
limit the benefits of our eviction algorithm over single-object
alternatives, which all have similar performance.

For this workload, around two-thirds of performance im-
provement can be attributed to prefetching. We compare our
eviction algorithm without prefetching (DeToX-E), LRU with
prefetching (LRU-P), and our full policy (DeToX). DeToX-E
increases throughput by 9%, LRU-P by 19%, and DeToX by
28% (graph omitted for space).

TPC-C. TPC-C is notably write-heavy and has transactions
that can span over 50 items. Its requests tend to fall into two
categories: either they access a small set of popular keys
(i.e., those in the Warehouse and District tables) or a larger
range of keys from a distribution with a long tail (Customer,
Item, Stock). Single-object caching algorithms are designed
to cache the former while the latter almost always results
in transactional misses. For instance, New-Order accesses
a key in each of the Warehouse, District, and Customer tables
before requesting 10 to 15 items from the Item and Stock
tables, which are chosen from a skewed distribution.

Consequently, TPC-C cannot benefit from transactional
caching: most transactions access a small set of hot keys that
are already in the cache (the object hit rate is >50% with
a 10% cache size in Figure 10c) along with a larger set of
cold keys that are unlikely to be cached and contaminate the
other keys (hit rate grows slowly as cache size increases).
Moreover, transactions tend to access keys in quick succes-
sion (e.g., once an order is placed, it is then processed, paid
for, and delivered), so recency is especially important in this
workload. All algorithms incorporate recency in some form,
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Figure 12: (a),(b),(c). Microbench. 1 (d) Microbench. 2.

so performance is similar across these policies, with up to
9K txns/s and 27ms avg. latency. DeToX performs on par
with single-object policies.

8.3 The Need for Dependency Analysis

In this section, we investigate the relative merits of our
grouping optimizations. The dependency analysis required for
complete groups can impose overheads in two ways: (1) the
cost of updating the scores of each key in each group and (2)
metadata overhead associated with scoring. Interchangeability
can reduce the number of groups that need to be scored, lead-
ing to better performance. On the other hand, levels discount
unbalanced topologies while T-DeToX, a baseline that scores
all keys of a transaction together, ignores dependencies. These
simpler policies reduce overhead in some cases but restrict the
groups that keys can belong to, leading to worse performance.

Performance impact. Microbenchmark 1 intentionally
captures the worst-case scenario for grouping. We run a single
transaction type with the topology in Figure 6a, and we extend
the right branch of the graph for larger transaction sizes.
Each read uniformly accesses keys at random among 10M
objects. We measure throughput and latency as we increase
transaction size up to 60 (equivalent to the largest transactions
in the TAOBench workloads). Figures 12a and 12b show
that performance for complete groups decreases dramatically
as transaction size increases due to the exponential number
of complete groups: for a transaction of size 15, over 16K
groups have to be scored. Note that the bars for throughput
and latency are omitted for complete groups for transaction
sizes greater than 15 since these experiments did not finish in
reasonable amount of time. In contrast, performance degrada-
tion is minimal with interchangeable groups (<5% difference
compared to LRU at size 60). There are only a linear number
of groups that must be scored with respect to transaction
size since all keys in the right branch of this topology are
interchangeable. Finally, levels offer similar performance to
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Figure 13: Scoring heuristics

LRU. Each key can only belong to one level per transaction,
so larger transaction sizes do not increase overhead. The
run time CPU overhead of both interchangeable groups and
levels is within 5% of that of single-object algorithms for all
microbenchmarks and previous benchmark workloads.

Moreover, the one-off cost of finding complete and inter-
changeable groups at compile time remains low: transactions
of size 60 (with 100K+ groups due to worst-case topologies)
require less than five minutes to process (Figure 12c). All
benchmark workloads require less than 30 seconds for
dependency analysis.

While dependency analysis incurs a static cost, it can lead
to significant benefits compared to more basic forms of
grouping (levels and T-DeToX), which ignore some or all
dependency information. Microbenchmark 2 quantifies the
worst-case scenarios for levels and T-DeToX. We run a single
transaction type with the topology in Figure 6a in which the
keys in vertices a and c are hot keys chosen from a Zipfian
distribution while keys in b and d are cold keys chosen from
a uniform distribution over 10M objects. Using levels causes
keys in b and c to be scored together. However, keys in b are
rarely accessed, and contaminate keys in c. T-DeToX makes
even worse eviction decisions since it scores all keys in a, b,
c, and d together. Using complete and interchangeable groups
would instead cause keys in b and d to be scored together,
enabling the algorithm to capture the fact that caching c
individually reduces critical length. We find that complete
and interchangeable groups significantly outperform levels
(53% increase) and T-DeToX (139% increase) for THR
(Figure 12d). Complete and interchangeable groups offer
similar performance to LRU since these policies cache keys
in c, which are frequently accessed.

Memory overheads. Metadata overhead in DeToX is low.
Our algorithm stores two additional counters (total group
score, individual score) per key and a global aging factor
for eviction. While prefetching, DeToX stores dependency
sets. On TAOBench, additional metadata takes up less than
1% of the cache space. For workloads in which prefetching
is more prevalent, metadata overheads increase slightly. For
example, in SmallBank, additional metadata grows to 2%.
DeToX must store the dependency set associated with each
transaction (1.5 keys on average).
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Figure 14: Object (a) and transactional (b) hit rates.

8.4 Scoring Heuristics
We evaluate different heuristics for calculating instance
(FXNF ) and aggregate scores (FXNKS). DeToX uses the min-
imum frequency of keys in a group for the instance score, and
averages instance scores to compute an aggregate score (Sec-
tion 4.2). We measure transactional hit rates for simple func-
tions (average, maximum, median, minimum) in Figure 13
for the PG3 workload (results are similar across workloads).

For assigning key instance scores, we find that, as expected,
Min provides the best performance (Figure 13a). Since
we only get a transactional hit if all keys of a group are
cached, the key with the smallest frequency should have
outsized impact on the group score. The other functions
discount this information and thus perform worse. However,
these functions still encode the all-or-nothing property of
transactions to some extent since they assign the same
instance scores to all keys in a particular group. As a result,
we still observe higher hit rates than single-object policies.

Average and Median are the most effective functions for
calculating aggregate key score (Figure 13b). Max yields
a lower hit rate since it assigns each key the score of its
highest-scoring group, but this may not be the most frequent
group that contains this key. Min provides markedly lower
performance (up to 64% lower hit rates). Each key is assigned
the score of its lowest-scoring group, so most scores converge
to the lowest group score (the smallest frequency of any key).
As a result, most scores are low and do not differ by much.

8.5 OHR versus THR
There is a tradeoff between optimizing for latency and for
system load. Figure 14 shows the OHR and THR of online
algorithms as well as Belady and Transactional Belady
(see Appendix A). As expected, Belady outperforms other
algorithms for object hit rate. Conversely, DeToX and
Transactional Belady give some of the lowest object hit rates.
However, these two algorithms significantly outperform the
other policies for transactional hit rate (and result in better
throughput and latency as shown in Section 8.2). While
we focus on PG3 here, we find similar results on the other
workloads (omitted due to lack of space).

The difference between OHR and THR illustrates a tradeoff
between reducing I/O bandwidth and optimizing for latency.
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Figure 15: Network latency (a), (b) and simulation (c) results.

OHR prioritizes the absolute number of requests that can be
served from cache, minimizing requests to disk. In contrast,
THR focuses on the number of latency reductions for
transactions, leading to lower latency and higher throughput.
There are practical motivations for choosing THR as the
caching objective: with increasing elasticity from cloud
resources, applications often focus on latency optimization
for which large wins are possible with DeToX.

8.6 Transactional Hit Rate

Transactional hit rate is independent of system specifics; only
relative throughput and latency gains differ when cache / sys-
tem latency changes. We confirm this by (1) varying this ratio
(both experimentally and through simulation) and (2) eval-
uating DeToX with an alternative key-value store, TiKV [4].

Network latency. We inject latency between the shim layer
and data store to simulate scenarios in which the latter is
hosted in a remote cloud region. Figure 15 shows that the
performance improvement with DeToX grows as network
latency increases. With no additional network latency (0ms),
there is a 30% increase in throughput and 29% decrease in
latency between DeToX and the best single-object policy for
PG3. With a WAN delay of 10ms, there is a 61% increase
in throughput and 47% decrease in latency.

Simulation results. To illustrate the impact of cache and
data store request times, we provide results for the TAOBench
PG2 workload. At the 25% cache size, the THR for this
workload is around 90% for DeToX and 50% for the other
policies (Section 8.2). We vary request times for the cache
and the data store (DB), using arbitrary units to represent
latency. As we increase the ratio of DB to cache latency in
Figure 15c, we find that the difference in request latency
between LRU and DeToX increases from 0% to 65% as
request times to the data store lengthen.

Transactional key-value store. We confirm that both
the difference in transactional hit rate and gains in cache



1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0
20
40
60
80

100

Tx
na

lH
it

Ra
te

(%
)

15102540557085100
Cache Size Relative to Data Size (%)

0

1e4

2e4

3e4

�
ro

ug
hp

ut
(tx

n/
s)

ChronoCache GDSF LFU LIFE LRU DeToX

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0

2

4

Av
g.

La
te

nc
y

(m
s)

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0

1e4

2e4

3e4

�
ro

ug
hp

ut
(tx

n/
s)

Figure 16: TAOBench PG2 results on TiKV.

efficiency (3.4x) remains identical when executing atop TiKV,
demonstrating that these metrics are independent of the setup
chosen (Figure 16). In contrast, as TiKV exhibits higher
throughput and lower latency than Postgres, throughput and
latency gains fall to 19% and 15% respectively.

9 Related Work

Eviction. There is a wide range of research on single-object
caching policies that consider frequency [23, 40, 41, 53, 63],
recency [32, 42, 52, 70], the number of unique keys
between accesses [14, 50, 57, 64, 73], the variable sizes of
objects [5, 25], and combinations of these features [6, 7, 12,
13, 15, 18, 20, 28, 49, 51, 56, 77, 80, 99]. Some specialized
eviction policies optimize for flash storage [74], adapt to
changing workloads [17, 19, 21, 30, 31, 39, 89], or consider
network bandwidth and download time for proxy caches [93].
These previous efforts do not explicitly address how caching
should be optimized for parallel accesses in transactions.

PACMan [11] presents eviction algorithms targeted towards
job processing based on the all-or-nothing property: for
jobs that issue tasks in parallel, latency only improves if all
parallel tasks are cached. Similarly, existing literature on web
caching [7, 18, 91] focuses on maximizing the page hit rate
since latency is reduced only when all parts of a page are
cached. Transactional hits in DeToX are based on a similar
insight. However, DeToX addresses the issue of complex,
unbalanced dependency graphs and recognizes that keys can
be shared across many transactions.

Admission algorithms. In contrast to eviction algorithms,
admission policies decide what to allow into the cache by en-
forcing a threshold based on object scores. These algorithms
have often been applied alongside eviction policies [7, 21, 40,
52, 62]. While we focus on eviction and prefetching in this
paper, our grouping and scoring strategies can feasibly extend
to admission, which we will explore in future work.

Prefetching. Prefetching has been applied extensively
to web caching [10, 90]. Past work focuses on web page
analysis [38, 55, 68, 71, 86, 95, 96], which most stand-alone
caches do not support [2, 69]. Other research [24, 44, 45, 72]
centers around reducing the latency of query execution
using dependency analysis. These works assume that each
client issues queries sequentially, so any cache hit can

improve latency. Instead, DeToX caches in order to maximize
transactional hit rate. Furthermore, none of these systems
provide isolation guarantees or consider how eviction policies
should be modified to handle transactions.

Cache coherence. Previous work combining transactions
and caching focuses on maintaining isolation guarantees
for cache coherency [1, 54, 76, 97]. In contrast, we focus
on what objects to cache for performance. DeToX ensures
serializability while optimizing for transactional hit rate.

10 Conclusion

In this paper, we study the problem of transactional caching.
Standard caching policies fail to account for the all-or-nothing
property of transactions, resulting in inefficient choices for
which objects to retain in cache. In light of this issue, we
provide a formal framework to quantify the latency impact of
caching for transactions and introduce transactional hit rate as
the key metric for this setting. We then present DeToX, a novel
caching system targeting at transactional workloads. DeToX
maximizes transactional hit rate by centering its caching pol-
icy around scoring groups of keys together. We consider how
keys are accessed in parallel through complete groups and
introduce interchangeable keys as an optimization to reduce
the overhead of having to score many groups at run time. We
also describe levels as a technique for cases when transac-
tion code is not available. Our implementation is lightweight
and deployable on a range of existing caching systems and
data stores. DeToX improves THR by up to 1.3x and cache
efficiency by up to 3.4x. This work demonstrates that many ap-
plications can benefit measurably from transactional caching.

Acknowledgements

We thank Matt Burke, our anonymous reviewers, and our
shepherd Wyatt Lloyd for their insightful feedback as well as
Akshay Ravoor for his engineering contributions. This work
is supported by NSF CISE Expeditions Award CCF-1730628,
NSF GRFP Award DGE-1752814, a Meta Next-Generation
Infrastructure award, and gifts from Amazon, Astronomer,
Google, IBM, Intel, Lacework, Microsoft, Nexla, Samsung
SDS, and VMWare.



References

[1] Amazon elasticache, November 2021.

[2] Redis, February 2021.

[3] Postgresql, 2022.

[4] Tikv, 2022.

[5] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla,
Edward A. Fox, and Stephen Williams. Removal poli-
cies in network caches for world-wide web documents.
In Conference Proceedings on Applications, Technolo-
gies, Architectures, and Protocols for Computer Com-
munications, SIGCOMM ’96, page 293–305, New York,
NY, USA, 1996. Association for Computing Machinery.

[6] Marc Abrams, Charles R Standridge, Ghaleb Abdulla,
Stephen Williams, and Edward A Fox. Caching proxies:
Limitations and potentials. 1995.

[7] Charu Aggarwal, Joel L. Wolf, and Philip S. Yu.
Caching on the world wide web. 11(1):94–107, jan
1999.

[8] Jose Aguilar and Ernst L. Leiss. A web proxy cache
coherency and replacement approach. In Proceedings of
the First Asia-Pacific Conference on Web Intelligence:
Research and Development, WI ’01, page 75–84, Berlin,
Heidelberg, 2001. Springer-Verlag.

[9] Marcos K. Aguilera, Joshua B. Leners, and Michael Wal-
fish. Yesquel: Scalable sql storage for web applications.
In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, page 245–262, New York,
NY, USA, 2015. Association for Computing Machinery.

[10] Waleed Ali, Siti Mariyam Shamsuddin, Abdul Samad
Ismail, et al. A survey of web caching and prefetching.
Int. J. Advance. Soft Comput. Appl, 3(1):18–44, 2011.

[11] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang,
Dhruba Borthakur, Srikanth Kandula, Scott Shenker, and
Ion Stoica. Pacman: Coordinated memory caching for
parallel jobs. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation,
NSDI’12, page 20, USA, 2012. USENIX Association.

[12] Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich
Friedrich, and Tai Jin. Evaluating content management
techniques for web proxy caches. SIGMETRICS
Perform. Eval. Rev., 27(4):3–11, mar 2000.

[13] Hyokyung Bahn, Kern Koh, S.H. Noh, and S.M. Lyul.
Efficient replacement of nonuniform objects in web
caches. Computer, 35(6):65–73, 2002.

[14] Sorav Bansal and Dharmendra S. Modha. CAR: Clock
with adaptive replacement. In 3rd USENIX Conference
on File and Storage Technologies (FAST 04), San
Francisco, CA, March 2004. USENIX Association.

[15] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
LHD: Improving cache hit rate by maximizing hit den-
sity. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), pages 389–403,
Renton, WA, April 2018. USENIX Association.

[16] L. A. Belady. A study of replacement algorithms for
a virtual-storage computer. IBM Systems Journal,
5(2):78–101, 1966.

[17] Daniel S Berger. Towards lightweight and robust
machine learning for cdn caching. In Proceedings of
the 17th ACM Workshop on Hot Topics in Networks,
pages 134–140, 2018.

[18] Daniel S. Berger, Nathan Beckmann, and Mor Harchol-
Balter. Practical bounds on optimal caching with
variable object sizes. Proc. ACM Meas. Anal. Comput.
Syst., 2(2), jun 2018.

[19] Daniel S. Berger, Benjamin Berg, Timothy Zhu,
Siddhartha Sen, and Mor Harchol-Balter. RobinHood:
Tail latency aware caching – dynamic reallocation from
Cache-Rich to Cache-Poor. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 18), pages 195–212, Carlsbad, CA, October
2018. USENIX Association.

[20] Daniel S Berger, Sebastian Henningsen, Florin Ciucu,
and Jens B Schmitt. Maximizing cache hit ratios by
variance reduction. ACM SIGMETRICS Performance
Evaluation Review, 43(2):57–59, 2015.

[21] Daniel S. Berger, Ramesh K. Sitaraman, and Mor
Harchol-Balter. AdaptSize: Orchestrating the hot object
memory cache in a content delivery network. In 14th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 483–498, Boston,
MA, March 2017. USENIX Association.

[22] Philip A. Bernstein, Vassos Hadzilacos, and Nathan
Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[23] Aaron Blankstein, Siddhartha Sen, and Michael J.
Freedman. Hyperbolic caching: Flexible caching for
web applications. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 499–511, Santa
Clara, CA, July 2017. USENIX Association.

[24] Ivan T. Bowman and Kenneth Salem. Optimization
of query streams using semantic prefetching. In
Proceedings of the 2004 ACM SIGMOD international



conference on Management of data - SIGMOD '04.
ACM Press, 2004.

[25] Pei Cao and Sandy Irani. Cost-aware www proxy
caching algorithms. In USENIX Symposium on Internet
Technologies and Systems (USITS 97), 1997.

[26] Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa
Lawande, Hamza Qadeer, Jason Chan, Harrison
Tin, Ryan Zhao, Peter Bailis, Mahesh Balakrishnan,
Nathan Bronson, Natacha Crooks, and Ion Stoica.
Taobench: An end-to-end benchmark for social network
workloads. Proceedings of the VLDB Endowment,
15(12):1965–1977, 2022.

[27] Ludmila Cherkasova. Improving WWW proxies perfor-
mance with greedy-dual-size-frequency caching policy.
Hewlett-Packard Laboratories Palo Alto, CA, 1998.

[28] Ludmila Cherkasova and Gianfranco Ciardo. Role
of aging, frequency, and size in web cache replace-
ment policies. In International Conference on
High-Performance Computing and Networking, pages
114–123. Springer, 2001.

[29] Marek Chrobak, Gerhard J. Woeginger, Kazuhisa
Makino, and Haifeng Xu. Caching is hard—even in the
fault model. Algorithmica, 63(4):781–794, March 2011.

[30] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh,
and Sachin Katti. Dynacache: Dynamic cloud caching.
In 7th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 15), Santa Clara, CA, July 2015.
USENIX Association.

[31] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Cliffhanger: Scaling performance cliffs
in web memory caches. In 13th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 16), pages 379–392, Santa Clara, CA, March
2016. USENIX Association.

[32] Fernando J Corbato. A paging experiment with the
multics system. Technical report, MASSACHUSETTS
INST OF TECH CAMBRIDGE PROJECT MAC, 1968.

[33] The Transaction Processing Performance Council.
Tpc-c, 2021.

[34] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar
Harel, Rachit Agarwal, and Lorenzo Alvisi. Obladi:
Oblivious serializable transactions in the cloud. In Pro-
ceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation, OSDI’18, page
727–743, USA, 2018. USENIX Association.

[35] Natacha Crooks, Youer Pu, Nancy Estrada, Trinabh
Gupta, Lorenzo Alvisi, and Allen Clement. TARDiS.

In Proceedings of the 2016 International Conference
on Management of Data. ACM, June 2016.

[36] Mohammad Dashti, Sachin Basil John, Amir Shaikhha,
and Christoph Koch. Transaction repair for multi-
version concurrency control. In Proceedings of the
2017 ACM International Conference on Management
of Data, SIGMOD ’17, page 235–250, New York, NY,
USA, 2017. Association for Computing Machinery.

[37] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino,
and Philippe Cudre-Mauroux. Oltp-bench: An exten-
sible testbed for benchmarking relational databases.
volume 7, pages 277–288. VLDB Endowment, 2013.

[38] Josep Domenech, Jose A. Gil, Julio Sahuquillo, and
Ana Pont. Using current web page structure to
improve prefetching performance. Comput. Netw.,
54(9):1404–1417, jun 2010.

[39] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben
Manes. Adaptive software cache management. In
Proceedings of the 19th International Middleware
Conference, pages 94–106, 2018.

[40] Gil Einziger, Roy Friedman, and Ben Manes. Tinylfu:
A highly efficient cache admission policy. ACM
Transactions on Storage (ToS), 13(4):1–31, 2017.

[41] Bin Fan, Hyeontaek Lim, David G. Andersen, and
Michael Kaminsky. Small cache, big effect: Provable
load balancing for randomly partitioned cluster services.
In Proceedings of the 2nd ACM Symposium on Cloud
Computing, SOCC ’11, New York, NY, USA, 2011.
Association for Computing Machinery.

[42] Nicolas Gast and Benny Van Houdt. Transient and
steady-state regime of a family of list-based cache
replacement algorithms. SIGMETRICS Perform. Eval.
Rev., 43(1):123–136, jun 2015.

[43] Shahram Ghandeharizadeh, Jason Yap, and Hieu
Nguyen. Strong consistency in cache augmented SQL
systems. In Proceedings of the 15th International
Middleware Conference on - Middleware '14. ACM
Press, 2014.

[44] Brad Glasbergen, Michael Abebe, Khuzaima Daudjee,
Scott Foggo, and Anil Pacaci. Apollo: Learning query
correlations for predictive caching in geo-distributed
systems, 2018.

[45] Brad Glasbergen, Kyle Langendoen, Michael Abebe,
and Khuzaima Daudjee. Chronocache: Predictive and
adaptive mid-tier query result caching. In Proceedings
of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’20, page 2391–2406,
New York, NY, USA, 2020. Association for Computing
Machinery.



[46] Priya Gupta, Nickolai Zeldovich, and Samuel Madden.
A trigger-based middleware cache for orms. In Proceed-
ings of the 12th International Middleware Conference,
Middleware ’11, page 320–339, Laxenburg, AUT, 2011.
International Federation for Information Processing.

[47] Jeffrey Helt, Matthew Burke, Amit Levy, and Wyatt
Lloyd. Regular sequential serializability and regular
sequential consistency. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems
Principles CD-ROM. ACM, October 2021.

[48] Saied Hosseini-Khayat. Investigation of Generalized
Caching. PhD thesis, USA, 1998. UMI Order No.
GAX98-07761.

[49] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou,
Yingwei Luo, Chen Ding, Song Jiang, and Zhenlin
Wang. LAMA: Optimized locality-aware memory
allocation for key-value cache. In 2015 USENIX Annual
Technical Conference (USENIX ATC 15), pages 57–69,
Santa Clara, CA, July 2015. USENIX Association.

[50] Song Jiang, Feng Chen, and Xiaodong Zhang. Clock-
pro: An effective improvement of the clock replacement.
In USENIX Annual Technical Conference, General
Track, pages 323–336, 2005.

[51] Shudong Jin and Azer Bestavros. Greedydual⋆ web
caching algorithm: exploiting the two sources of
temporal locality in web request streams. Computer
Communications, 24(2):174–183, 2001.

[52] Theodore Johnson and Dennis Shasha. 2q: A low over-
head high performance buffer management replacement
algorithm. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94,
page 439–450, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

[53] George Karakostas and Dimitrios N Serpanos. Ex-
ploitation of different types of locality for web caches.
In Proceedings ISCC 2002 Seventh International
Symposium on Computers and Communications, pages
207–212. IEEE, 2002.

[54] Bryan Kate, Eddie Kohler, Michael S. Kester, Neha
Narula, Yandong Mao, and Robert Morris. Easy
freshness with pequod cache joins. In Proceedings of
the 11th USENIX Conference on Networked Systems
Design and Implementation, NSDI’14, page 415–428,
USA, 2014. USENIX Association.

[55] Bin Lan, Stephane Bressan, Beng Chin Ooi, and
Kian-Lee Tan. Rule-assisted prefetching in web-server
caching. In Proceedings of the Ninth International Con-
ference on Information and Knowledge Management,

CIKM ’00, page 504–511, New York, NY, USA, 2000.
Association for Computing Machinery.

[56] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H
Noh, Sang Lyul Min, Yookun Cho, and Chong Sang Kim.
On the existence of a spectrum of policies that subsumes
the least recently used (lru) and least frequently used
(lfu) policies. In Proceedings of the 1999 ACM SIGMET-
RICS international conference on Measurement and
modeling of computer systems, pages 134–143, 1999.

[57] Cong Li. Dlirs: Improving low inter-reference recency
set cache replacement policy with dynamics. In
Proceedings of the 11th ACM International Systems
and Storage Conference, pages 59–64, 2018.

[58] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris.
In Proceedings of the 26th Symposium on Operating
Systems Principles. ACM, October 2017.

[59] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky,
and David G. Andersen. Stronger semantics for
low-latency geo-replicated storage. In 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), pages 313–328, Lombard, IL,
April 2013. USENIX Association.

[60] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai
Mu, and Wyatt Lloyd. The SNOW theorem and
Latency-Optimal Read-Only transactions. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 135–150, Savannah,
GA, November 2016. USENIX Association.

[61] Haonan Lu, Siddhartha Sen, and Wyatt Lloyd.
Performance-Optimal Read-Only transactions. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 333–349. USENIX
Association, November 2020.

[62] Bruce M. Maggs and Ramesh K. Sitaraman. Algorith-
mic nuggets in content delivery. SIGCOMM Comput.
Commun. Rev., 45(3):52–66, jul 2015.

[63] Dhruv Matani, Ketan Shah, and Anirban Mitra. An o
(1) algorithm for implementing the lfu cache eviction
scheme. arXiv preprint arXiv:2110.11602, 2021.

[64] Nimrod Megiddo and Dharmendra S. Modha. ARC: A
Self-Tuning, low overhead replacement cache. In 2nd
USENIX Conference on File and Storage Technologies
(FAST 03), San Francisco, CA, March 2003. USENIX
Association.

[65] Syed Akbar Mehdi, Cody Littley, Natacha Crooks,
Lorenzo Alvisi, Nathan Bronson, and Wyatt Lloyd. I
can’t believe it’s not causal! scalable causal consistency



with no slowdown cascades. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 453–468, Boston, MA, March 2017.
USENIX Association.

[66] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd,
and Jinyang Li. Extracting more concurrency from
distributed transactions. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 479–494, Broomfield, CO, October 2014.
USENIX Association.

[67] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li.
Consolidating concurrency control and consensus for
commits under conflicts. In 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 16), pages 517–532, Savannah, GA, November
2016. USENIX Association.

[68] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. A
data mining algorithm for generalized web prefetch-
ing. IEEE Transactions on Knowledge and Data
Engineering, 15(5):1155–1169, 2003.

[69] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing memcache at facebook. In 10th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 13), pages 385–398, Lombard, IL, April 2013.
USENIX Association.

[70] Elizabeth J O’neil, Patrick E O’neil, and Gerhard
Weikum. The lru-k page replacement algorithm
for database disk buffering. Acm Sigmod Record,
22(2):297–306, 1993.

[71] Venkata N. Padmanabhan and Jeffrey C. Mogul.
Using predictive prefetching to improve world wide
web latency. SIGCOMM Comput. Commun. Rev.,
26(3):22–36, jul 1996.

[72] Mark Palmer and Stanley B Zdonik. Fido: A cache
that learns to fetch. Brown University, Department of
Computer Science, 1991.

[73] Sejin Park and Chanik Park. Frd: A filtering based
buffer cache algorithm that considers both frequency
and reuse distance. In Proc. of the 33rd IEEE Inter-
national Conference on Massive Storage Systems and
Technology (MSST), 2017.

[74] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang,
Jin-soo Kim, and Joonwon Lee. Cflru: A replacement
algorithm for flash memory. In Proceedings of the 2006
International Conference on Compilers, Architecture

and Synthesis for Embedded Systems, CASES ’06, page
234–241, New York, NY, USA, 2006. Association for
Computing Machinery.

[75] Francisco Perez-Sorrosal, Marta Patiño Martinez,
Ricardo Jimenez-Peris, and Bettina Kemme. Elastic
si-cache: Consistent and scalable caching in multi-tier
architectures. The VLDB Journal, 20(6):841–865, dec
2011.

[76] Dan R. K. Ports, Austin T. Clements, Irene Zhang,
Samuel Madden, and Barbara Liskov. Transactional
consistency and automatic management in an ap-
plication data cache. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, page 279–292, USA, 2010.
USENIX Association.

[77] Luigi Rizzo and Lorenzo Vicisano. Replacement
policies for a proxy cache. IEEE/ACM Transactions
on networking, 8(2):158–170, 2000.

[78] Weihai Shen, Ansh Khanna, Sebastian Angel, Sid-
dhartha Sen, and Shuai Mu. Rolis. In Proceedings of
the Seventeenth European Conference on Computer
Systems. ACM, March 2022.

[79] Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt
Lloyd. Learning relaxed belady for content distribution
network caching. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 529–544, Santa Clara, CA, February 2020.
USENIX Association.

[80] David Starobinski and David Tse. Probabilistic
methods for web caching. Performance evaluation,
46(2-3):125–137, 2001.

[81] Chunzhi Su, Natacha Crooks, Cong Ding, Lorenzo
Alvisi, and Chao Xie. Bringing modular concurrency
control to the next level. In Proceedings of the 2017
ACM International Conference on Management of Data,
SIGMOD ’17, page 283–297, New York, NY, USA,
2017. Association for Computing Machinery.

[82] Florian Suri-Payer, Matthew Burke, Zheng Wang,
Yunhao Zhang, Lorenzo Alvisi, and Natacha Crooks.
Basil. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles CD-ROM.
ACM, October 2021.

[83] Adriana Szekeres, Michael Whittaker, Jialin Li,
Naveen Kr. Sharma, Arvind Krishnamurthy, Dan R. K.
Ports, and Irene Zhang. Meerkat. In Proceedings of the
Fifteenth European Conference on Computer Systems.
ACM, April 2020.



[84] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael
Walfish. Cobra: Making transactional Key-Value stores
verifiably serializable. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 63–80. USENIX Association, November
2020.

[85] Chuzhe Tang, Zhaoguo Wang, Xiaodong Zhang,
Qianmian Yu, Binyu Zang, Haibing Guan, and Haibo
Chen. Ad hoc transactions in web applications: The
good, the bad, and the ugly. In Proceedings of the 2022
International Conference on Management of Data,
SIGMOD ’22, page 4–18, New York, NY, USA, 2022.
Association for Computing Machinery.

[86] Na Tang and V. Rao Vemuri. An artificial immune sys-
tem approach to document clustering. In Proceedings
of the 2005 ACM Symposium on Applied Computing,
SAC ’05, page 918–922, New York, NY, USA, 2005.
Association for Computing Machinery.

[87] The H-Store team. Smallbank benchmark, 2013.

[88] Boyu Tian, Jiamin Huang, Barzan Mozafari, and Grant
Schoenebeck. Contention-aware lock scheduling
for transactional databases. Proc. VLDB Endow.,
11(5):648–662, jan 2018.

[89] Giuseppe Vietri, Liana V Rodriguez, Wendy A Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami, Ming
Zhao, and Giri Narasimhan. Driving cache replacement
with {ML-based}{LeCaR}. In 10th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage
18), 2018.

[90] Jia Wang. A survey of web caching schemes for
the internet. SIGCOMM Comput. Commun. Rev.,
29(5):36–46, oct 1999.

[91] Justin Wang, Benjamin Berg, Daniel S. Berger, and
Siddhartha Sen. Maximizing page-level cache hit ratios
in largeweb services. SIGMETRICS Perform. Eval.
Rev., 46(2):91–92, jan 2019.

[92] Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo
Chen, and Jinyang Li. Scaling multicore databases via
constrained parallel execution. In Proceedings of the
2016 International Conference on Management of Data.
ACM, June 2016.

[93] Roland P. Wooster and Marc Abrams. Proxy caching
that estimates page load delays. Computer Networks
and ISDN Systems, 29(8-13):977–986, 1997.

[94] Yingjun Wu, Chee-Yong Chan, and Kian-Lee Tan.
Transaction healing: Scaling optimistic concurrency
control on multicores. In Proceedings of the 2016
International Conference on Management of Data,

SIGMOD ’16, page 1689–1704, New York, NY, USA,
2016. Association for Computing Machinery.

[95] Lifang Xu, Hongwei Mo, Kejun Wang, and Na Tang.
Document clustering based on modified artificial
immune network. In Guo-Ying Wang, James F. Peters,
Andrzej Skowron, and Yiyu Yao, editors, Rough Sets
and Knowledge Technology, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[96] Qiang Yang, Haining Henry Zhang, and Tianyi Li.
Mining web logs for prediction models in www caching
and prefetching. KDD ’01, page 473–478, New York,
NY, USA, 2001. Association for Computing Machinery.

[97] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez,
Larry Rudolph, and Srinivas Devadas. Sundial:
Harmonizing concurrency control and caching in a
distributed oltp database management system. Proc.
VLDB Endow., 11(10):1289–1302, jun 2018.

[98] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan R. K. Ports. Building
consistent transactions with inconsistent replication.
volume 35, New York, NY, USA, December 2018.
Association for Computing Machinery.

[99] Yuanyuan Zhou, James Philbin, and Kai Li. The
Multi-Queue replacement algorithm for second level
buffer caches. In 2001 USENIX Annual Technical
Conference (USENIX ATC 01), Boston, MA, June 2001.
USENIX Association.

A Appendix

We prove the optimal offline transactional caching problem is
NP-Hard. We begin by providing intuition for how and why
traditional optimal offline caching policies fail to translate
to transactional caching.

A.1 Transactional Belady

We straightforwardly adapt Belady’s optimal caching pol-
icy [16] to the transactional context by defining Transactional
Belady, a caching policy that evicts keys that result in
transactional hits furthest in the future. While this extension
is intuitive, it does not offer optimal performance even for
flat, uniformly-sized transactions that access equally-sized
objects, as we prove below.

Consider the execution trace in Figure 17 with cache capac-
ity of 5. All transactions access three keys, either all from set
S1: {t,u,v,t ′,u′} or set S2: {x,y,z,x′,y′}. T1 and T2 access only
keys from the former group, while T3 and T4 access only keys
from the latter. T5 and T6 access keys from S1 and overlap
in v, while T7,T8,T9 overlap in x′,y,z from S2. Transactional



T Keys accessed Cache state Optimal cache state
1 t,u,v - -
2 t ′,u′,v t,u,v -
3 x,y,z t,u,v,t ′,u′ -
4 x′,y′,z t,u,v,t ′,u′ x,y,z
5 t,u,v t,u,v, t ′,u′ x,y,z,x′,y′

6 t ′,u′,v t,u, v,t ′,u′ x,y,z,x′,y′

7 x,y,z t,u,v,t ′,u′ x,y,z, x′,y′

8 x′,y,z t,u,v,t ′,u′ x, y,z,x′, y′

9 x′,y′,z t,u,v,t ′,u′ x,y, z,x′,y′

Figure 17: Non-optimality of Transactional Belady. Red keys
indicate ones that lead to transactional hits.

Belady evicts keys that yield a transactional hit furthest in the
future. After T3’s execution, the algorithm evicts x,y,z as they
would first yield a hit at T7 while the other keys would lead
a hit at T5 and T6. A similar reasoning leads the algorithm
to evict x′,y′,z′ after T4 executes. This strategy yields two
transactional hits (for T5 and T6). Unfortunately, evicting
x,y,z after T3 is the wrong decision. Keeping all keys of set
S2 in the cache yields three transactional hits T7, T8, T9. As a
result, Transactional Belady achieves only two transactional
hits, while an optimal caching policy would achieve three.

Transactional Belady does not account for shared keys
across transactions. It caches set S1, which is shared across
two transactions, instead of keys in set S2, which is shared
across three transactions. Belady assumes that a cache hit
closer in the future is always as valuable as a cache hit further
out. This assumption holds when a single cached object pro-
vides a single object hit but breaks down when keys are shared
across transactions. In these cases, an equal number of cached
objects can produce varying numbers of transactional hits.

A.2 Optimal Offline Transactional Caching is
NP-Hard

We demonstrate that the optimal offline transactional caching
problem (TxPolicy) is NP-Hard through a reduction from
the variable-sized caching problem, CACHING(FAULT,
OPTIONAL), introduced in [29].

We first provide intuition for our reduction. A page hit is only
possible if the entire page is present in the cache, regardless
of its size. The objective of CACHING(FAULT, OPTIONAL) is
to minimize the number of page faults, or the number of pages
accessed and missed. We convert each page of size X into a
transaction without dependencies that accesses X operations.
Therefore, there is only a transaction hit when the entire
transaction is in the cache. This transforms CACHING(FAULT,
OPTIONAL) into an easier version of TxPolicy with two sim-
plifying assumptions: (1) all transactions will use unique keys,
so that retaining a key in the cache from any single transaction
provides no benefit to any other transaction, and (2) there are
no logical dependencies. If an optimal offline transactional

caching policy exists, then through this reduction, we have
the optimal policy for CACHING(FAULT, OPTIONAL).

We now formally describe CACHING(FAULT, OPTIONAL)
from [29]. CACHING(FAULT, OPTIONAL) asks,

Given a set of pages p1,...,pk with sizes

SIZE(p1),...,SIZE(pk), request sequence r1,...,rm
∈ {p1,...,pk}, cache size C, and cost bound F , is
there a replacement policy that serves r1,...,rm with
cache size C and incurs a total fault cost at most F?

A fault is incurred when ri ̸∈Ci, where the FAULT parameter
states that each fault has cost 1. The OPTIONAL parameter
requires that ∀i>1, Ci⊆{Ci−1∪ri}; informally, the caching
policy does not have to admit the most recent page.

We formally define the offline transactional caching
problem, based on our formalisms from Section 3.
Definition 10 (Offline transactional caching policy). An
offline transactional caching policy is a function P that takes
a sequence of transactions T1,T2, ... ,Tm, cache size n, and
outputs a sequence of cache states C1,C2, ... ,Cm, with the
following restrictions:

1. C1=∅.
2. ∀i>1, Ci⊆{Ci−1∪Ti−1}.

TxPolicy asks,

Given a set of transactions T1, ... , Tm, cache
size C, is there an offline transactional caching
policy that serves T1,...,Tm with cache size C and
incurs at most F transactional misses? We define
transactional misses as the number of i where
Ti ̸⊆Ci, or the number of transactions that cannot
be served from cache.

Theorem 1. The optimal offline transactional caching
problem is NP-Hard.

Proof. We reduce CACHING(FAULT, OPTIONAL) to TxPol-
icy through the following polynomial-time reductions. Each
page pi is reduced to a transaction Ti. SIZE(pi) new tables
are created per transaction, each with only one key. Let X be
one such table. A read operation on the sole key of that table
x∈X is inserted into the transaction Ti. There are no logical
dependencies. Cache size C is preserved. The maximum fault
cost F is converted to the maximum number of transactional
misses. If there exists a policy solving the offline transactional
caching problem, run it with these parameters. Its output is
the output to the CACHING(FAULT, OPTIONAL) problem.
CACHING(FAULT, OPTIONAL) is NP-Hard; therefore, the
offline transactional caching problem is NP-Hard.



B Artifact Appendix

Abstract

DeToX is a transactional caching system that leverages in-
sights on transactional hit rate to improve caching perfor-
mance for transactional workloads. DeToX is implemented as
a shim layer that integrates with caching and database systems.
In addition to DeToX, the artifact contains several other imple-
mentations. First, there is a modified version of ChronoCache,
a middleware predictive query caching system, that measures
transactional hit rate, integrates with Redis, and supports sev-
eral benchmarks not available for the original system. There is
also a modified version of Redis that supports several eviction
algorithms, including DeToX’s eviction algorithm and LIFE
from the PACMan paper. Finally, there is a caching simulator
that takes transaction traces as input and outputs hit rates for
the offline Belady and Transactional Belady algorithms.

Scope

The artifact enables others to run DeToX directly. All code
used in the paper is made available.

Contents

The artifact consists of a Github repository hosted at
https://github.com/audreyccheng/detox. The repository is
structured as follows:

• /chronocache - the codebase for ChronoCache
• /oltpbench-chronocache - the benchmarks for ChronoCache
• /redis - the modified version of Redis supporting

transactional caching algorithms
• /simulator - the caching simulator for offline policies
• /sys - the transactional caching system

– /benchmarks - the benchmarks for running DeToX
– /src - the implementation of the DeToX shim layer

Hosting

The artifact is hosted at https://github.com/audreyccheng/
detox on the main branch at commit 604c9bd.

Requirements

The following packages are required to run the codebase.

• mvn 3.8.5
• build-essential
• Java 17

For specific installation guides for each system, please see
the Github repository.
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