
Fair Transaction Processing for Multi-Tenant Databases
Audrey Cheng

UC Berkeley
accheng@berkeley.edu

Aaron Kabcenell
Meta

akabcenell@meta.com

Xiao Shi
Unaffliated

xiao.shi@aya.yale.edu

Jolene Huey
UC Berkeley

jolenehuey@berkeley.edu

Peter Bailis
Stanford, Workday

pbailis@cs.stanford.edu

Natacha Crooks
UC Berkeley

ncrooks@berkeley.edu

Ion Stoica
UC Berkeley

istoica@berkeley.edu

ABSTRACT
Multi-tenant transactional databases frequently observe contention
on shared data, leading to a need for performance isolation. Databases
typically provide this via per-tenant request rate limit or quota, but
this approach can lead to system underutilization. Fair sharing has
been widely applied in other domains to achieve both performance
isolation and high utilization. In this paper, we address the problem
of fair sharing for transactions, which present new challenges be-
cause they do not acquire resources all at once. We propose the first
fair transaction scheduling algorithm, DRFT, that ensures both the
share guarantee and strategy-proofness by accurately accounting
for transactional resource usage. We evaluate DRFT on a range of
standard benchmarks and real-world workloads, showing that it
ensures fairness with less than a 5% throughput overhead compared
to state-of-art scheduling policies.

PVLDB Reference Format:
Audrey Cheng, Aaron Kabcenell, Xiao Shi, Jolene Huey, Peter Bailis,
Natacha Crooks, Ion Stoica. Fair Transaction Processing for Multi-Tenant
Databases. PVLDB, 18(8): XXX-XXX, 2025.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/audreyccheng/fair-txn-scheduler.

1 INTRODUCTION
With the rapid growth of data-intensive applications and cloud-
based services [76], databases must increasingly support multi-
tenant workloads, especially ones that share data. For instance,
modern data lakes now support both transactional and analytical
access by different tenants to the same tables [14, 48, 65]. Further-
more, multi-tenant shared databases, such as Meta’s social graph
data store TAO [15] and Databricks SQL [29], serve a variety of
applications (e.g., Facebook, Instagram) that operate on shared data.
As a result, contention between the transactions of different applica-
tions affects both individual tenant and overall system performance.

A key concern of multi-tenant systems is performance isolation—
each tenant should be guaranteed some portion of the resource
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:XX.XX/XXX.XX

regardless of the demand of other tenants. This issue is of partic-
ular concern to applications that share data. For instance, a client
(tenant) can compromise performance isolation by sending a dis-
proportionate number of transactions that access a “hot” (popular)
data item, decreasing the throughput of all the other clients ac-
cessing the same data. Our interviews with several companies that
operate multi-tenant databases confirm that interference due to
transactional contention is a prominent issue in practice (Section 2).

A popular strategy to achieve performance isolation in databases
is to impose a request rate limit (e.g., Cloudflare rate limiting [24])
or resource quota per client (e.g., Amazon RDS quotas [10]). While
this approach provides some protection against cross-application
interference, it can lead to system underutilization: even if there is
only one client sending requests to certain data items, it will still
be restricted by its rate limit, resulting in low overall throughput.

To address this issue, fair sharing has been widely applied to
achieve performance isolation in other domains, such as network-
ing [38] and job processing [39]. The core tenet of fair sharing is
to guarantee that each client its “fair share” of resources (i.e., it
is guaranteed some portion of its desired resource). Any unused
portion of a client’s share is dynamically made available to others,
leading to higher resource utilization. In the transactional setting,
we consider data items to be the logical resources that the database
must manage contention over (e.g., in contrast to physical resources,
such as CPU, disk, memory). These items are often exclusively al-
located (e.g., under two-phase locking [13], only one transaction
can hold the write lock at a time). Moreover, transactions access
multiple data items in the same request. Given this model, we aim
to equalize item usage, or the time that a transaction makes an item
inaccessible to other requests. To provide fairness across multiple
resources, we take as a starting point Dominant Resource Fairness
(DRF) [39], which ensures that each client gets an equal share of
its dominant (i.e., most used) resource over time.

While promising, adopting fair sharing for transactions requires
addressing two challenges: (i) incremental resource acquisition
and (ii) the tension between fairness and high throughput. First,
most prior fair schedulers assume that all resources are acquired
at the beginning of a request (e.g., sufficient CPU and memory are
simultaneously needed for a compute task). In contrast, transactions
acquire resources dynamically throughout execution (e.g., under
two-phase locking [13], locks are usually acquired piecewise as
the transaction proceeds), leading to potential resource wastage.
For instance, if a transaction 𝑇 accesses item 𝑥 and later needs
to access 𝑦, but 𝑦 is being locked by another transaction, then 𝑇

will hold the lock on 𝑥 while it waits for 𝑦 to become available.
This transaction wastes resource 𝑥 without making progress and

https://doi.org/XX.XX/XXX.XX
https://github.com/audreyccheng/fair-txn-scheduler
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

blocks other transactions waiting on 𝑥 . This usage should be taken
into account by a fair scheduler. Second, the system must navigate
between achieving fairness and maximizing throughput. If several
transactions need to be scheduled and one of the requests can run
without conflicting with the current workload, the scheduler would
increase throughput by allowing it to execute first, even though
this may unfairly increase service for its client.

In this work, we introduce the Dominant Resource Fair Trans-
action (DRFT) scheduler to provide fair sharing for transactions.
We describe how DRFT tackles each of these challenges in turn to
ensure both performance isolation and high throughput.

First, DRFT addresses the challenge of incremental resource ac-
quisition by accurately accounting for how transactions can delay
subsequent requests in the schedule. The catch-22 in the transac-
tional setting is that a client’s workload dictates the resulting con-
tention, so item usage depends on the order in which future requests
are executed. To handle this, DRFT first charges each transaction,
independently of other requests, a baseline usage that is based on
the concurrency control protocol. It then retroactively updates each
transaction’s schedule-dependent usage after subsequent conflicting
requests have been scheduled.

Second, DRFT introduces a Δ parameter to enable system opera-
tors to smoothly trade off between fairness and high throughput.
On one hand, we want to equalize usage without delay to achieve
fairness as fast as possible. On the other hand, we aim to increase
system throughput by executing transactions in schedules that max-
imize concurrency. Therefore, if clients can tolerate delays between
periods of service, the system can achieve higher throughput. As
such, we make this delay configurable via our Δ parameter, which
bounds how much usage can differ between clients.

We implement DRFT on RocksDB and evaluate this policy on a
range of standard benchmarks and OLTP workloads. DRFT matches
the performance of a state-of-the-art transaction scheduling policy
(less than 5% difference in throughput) while ensuring fairness.
Furthermore, we demonstrate through extensive experiments that
DRFT provides performance isolation, in contrast to other baseline
methods. Finally, our algorithm imposes minimal overheads, show-
ing less than a 4% drop in throughput on low contention workloads.

In summary, we make the following three contributions:
• We characterize the problem of fair scheduling for trans-

actions, which differs from traditional fair sharing in that
resource acquisition occurs incrementally.

• We propose and provide analysis on the first multi-resource
fair scheduling algorithm for transactions, DRFT, which pro-
vides the standard fairness properties: the share guarantee
and strategy-proofness.

• We evaluate DRFT on a range of workloads and confirm
our algorithm provides fair sharing without significantly
harming overall database throughput.

2 MOTIVATION
As multi-tenant database deployments become increasingly com-
mon, these systems must carefully manage contention on shared
data among diverse application requests—a challenge widely ac-
knowledged in industry [20]. In this section, we present case studies

Time

C1

C2

C1

C2

2

4

4

2

Time

C1

C1

C2

2

4

2

C1 2

(a) (b)

…

5
r(x) w(x)

…

4

r(x) w(x)

Client 1

Client 2

Workload

2

Usage of x
C1: 4, C2: 8

CPU Usage
C1: 14, C2: 8

Usage of x
C1: 6, C2: 4

CPU Usage
C1: 21, C2: 4

Figure 1: Logical contention differs fromphysical contention.

drawn from several production systems on performance interfer-
ence due to logical contention. These scenarios often involve com-
mon application functionality and are hard to avoid. Despite their
prevalence, most existing systems rely on static per-tenant request
rate limits or quotas, which can lead to severe system underutiliza-
tion (up to a 2.0× throughput disparity as we show in Section 7.3).

2.1 Unfairness in Practice
In this paper, we consider the problem of performance isolation
on logical resources (i.e. data items). Prior work has largely fo-
cused on the isolation of physical resources (e.g., CPU, disk, mem-
ory) [44, 51, 64]. However, even if a client is guaranteed a share of
CPU or bandwidth, its isolation can still be compromised due to
transactional contention on data items. Figure 1 highlights how con-
tention can prevent logical resource isolation and how this differs
from physical resource contention. Two clients send transactions to
a database that uses two-phase locking (2PL) [13] to ensure serializ-
ability. For simplicity, we assume each operation takes one unit of
time. Furthermore, we assume both clients send requests at equal
rates and are backlogged (i.e., at least one of its requests is queued)
on item 𝑥 . C1 sends longer transactions, acquiring read locks on five
non-conflicting items (represented by the gray box) before holding
the lock on item 𝑥 while C2 sends shorter transactions that hold
the lock on 𝑥 for four time units. Since both clients contend on 𝑥 ,
access time (e.g., lock hold time) on this item is the performance
bottleneck. Thus, for performance isolation on logical resources,
each client should have equal access time on contended items.

However, standard policies and techniques do not execute re-
quests in a manner that equalizes access time. Databases typically
execute transactions in first-in, first-out (FIFO) order. Under FIFO
in Figure 1a, C1’s and C2’s requests would execute consecutively,
leading to C1 having less access time on 𝑥 . A physical resource
scheduler would also de-prioritize C1’s requests. From a physical
resource standpoint, C1 is using more (CPU, I/O, etc.) resources
since it sends more operations per transaction, so fewer of its re-
quests should execute. From the logical resource perspective, C1’s
requests actually hold 𝑥 ’s lock for less time than that of C2’s. Thus,
we should execute two C1 transactions for every C2 transaction to
equalize access time on 𝑥 for performance isolation.

Case studies. Our conversations with engineers at Databricks,
Meta, and Neo4j reveal that performance interference due to logical
contention is a pervasive and growing issue for real-world systems.
This problem is exacerbated by increasingly diverse workloads (e.g.,
cloud traffic [76]) as well as the convergence of transactional and
analytical processing on shared data (e.g., Snowflake’s Unistore [65]
provides hybrid tables to serve both OLAP and OLTP requests).
Logical contention has led to significant incidents in production,
ranging from end user delays to database outages [20]. Broadly,
we classify problematic access patterns into two categories: large

transactions and bursty workloads.
(1) Large transactions. A frequent source of logical contention

between tenants is large transactions on shared data. At Databricks,
a data analytics platform, data purging tasks, which usually involve
many reads and writes that touch large portions of data, are one
such example. These requests must be transactional to avoid incon-
sistent results while the deletions occur: a task locking a range of
data to decide what to delete would slow down progress of many
concurrent requests trying to access the same data. Engineers often
attempt to mitigate this issue by moving larger requests to the
background, but this can result in starvation, forcing application
developers to manually monitor and intervene in these tasks.

Large transactions also appear in other use cases. Data migra-
tion tasks at Databricks, which acquire exclusive access to items
for extended periods of time, can unfairly stall concurrent user
requests accessing the same data. Furthermore, mammoth transac-
tions (i.e., large read-write requests that are especially prevalent
on graph data [21]) present further examples of performance in-
terference. For instance, pattern matching queries (e.g., large-scale
authorization queries) observed at Neo4j [2] often conflict with
shorter transactions. Balancing larger transactions with the rest of
the workload without starvation or underutilizing system resources
is a significant challenge in practice.

(2) Bursty workloads. Bursty workloads are also problematic
for data contention. At Meta, many product teams operate on the
same social graph data (e.g., user profiles) stored in TAO [15]. Un-
expected high traffic periods (e.g., caused by viral videos, posts
by celebrities, etc.) by one application can severely impact others.
A recurring pattern observed at Meta and Databricks is that ap-
plication developers often fail to foresee future contention issues
when initially designing the data model of a product. For example,
a new social media application can quickly gain traction, leading
this application to send a high volume of requests that conflict with
the existing workload. While some systems provide mechanisms
to manage cross-application interference (e.g., TAO’s higher-level
query language [20]), building bespoke infrastructure to ensure
scalability in the face of contention is expensive. As a result, many
engineers start with “ad-hoc” implementations [69] of transactions
that lead to contention bottlenecks as products grow. At this point,
developers need to manually intervene and redesign parts of the
application, which can have significant engineering and monetary
costs. These examples highlight the need for a dynamic mechanism
to fairly serve transactions from different tenants.

2.2 The Status Quo
Despite the prevalence of unfairness due to logical contention, no
database solutions, to the best of our knowledge, provide both per-
formance isolation and high throughput. Most production systems
simply impose a request rate limit or enforce a quota to minimize the
impact of worst-case behavior. For instance, TAO [15] deprioritizes
requests from high QPS clients once they exceed a pre-specified
threshold. However, these static mechanisms can lead to system
underutilization—if a client does not use its reservation, no one
else can, so the system cannot run at full capacity. Furthermore,
request rate limits/quotas often require careful tuning and manual
intervention when client requests exceed these thresholds (e.g.,

companies carefully allocate quotas among various applications on
internal infrastructure [23]). Indeed, we find that the problem of
logical contention is undercharacterized in industry: there are no
formal metrics to measure unfairness of item access, though appli-
cation developers often observe the effects of this issue through
unexpected drops in throughput and/or increases in latency.

Towards this end, our goal in this paper is to provide a mecha-
nism to deliver both performance isolation and high throughput
in the face of transactional contention. Specifically, we aim to en-
sure that each client is guaranteed a minimum share of resources,
regardless of the demand of other clients. Furthermore, a client
should not be able to increase its service at the detriment of others.
Finally, the system should be able to balance between prioritizing
individual client and overall system performance. We achieve these
goals via a trusted scheduler, which we expand upon next.

3 FAIRNESS FOR TRANSACTIONS
To address the challenges caused by logical contention, we start
with fair sharing, a well-known mechanism used in other domains
to provide both performance isolation and high utilization [41]. This
technique ensures that each client is guaranteed a “fair” share of
resources regardless of the demand of other clients (for performance
isolation) and allows these resources to be otherwise distributed
when the client is not active (for high utilization). In this section, we
first describe the properties needed in a fair transaction scheduler
in the context of a single resource, before extending them to the
multi-resource setting with Dominant Resource Fairness. We then
explain the challenges in providing a fair scheduler for transactions.

3.1 A Fair Scheduler for One Resource
When client transactions conflict over shared data, one client can
cause others to receive unfair service. To see this, we revisit the
workload in Figure 1 assuming 2PL. We consider two scenarios to
illustrate what properties a fair scheduler should provide.

Share guarantee. First, we consider how logical resources should
be shared among clients. We denote each item to be a logical re-
source, equivalent to how CPU and memory are treated as physical
resources [39, 55]. Subsequently, we use the term item usage (IU) to
refer to the period of time during which an item is inaccessible by
other requests due to execution constraints (we describe how to cal-
culate IU for different concurrency control protocols in Section 4).
Figure 1a shows the item usage of 𝑥 for two clients under FIFO.
Since the clients send requests at equal rates, their requests execute
roughly in consecutive order, leading to C1 having less usage of 𝑥 .

Intuitively, it would be “fair” to give each client equal access time
on 𝑥 (e.g., C1 executes at twice the rate of C2). This requirement
is captured by the share guarantee, which ensures that each of 𝑛
clients should be guaranteed at least 1

𝑛 fraction of the resource,
regardless of the demand of other clients [55]. This guarantee pro-
vides performance isolation: C1 would be ensured an appropriate
amount of item usage on 𝑥 , regardless of C2’s workload.

Strategy-proofness. Another concern for a fair scheduler is its
vulnerability to manipulation: clients can exploit the scheduler to
receive better service by artificially inflating their demand for re-
sources they do not need (i.e., adding extraneous operations and/or
transactions). Figure 1b shows how FIFO can be manipulated: if C1

Dominant usage: 4

Dominant usage: 3

Dominant usage: 2

T1 …

4
r(x,y) w(x,y)

T2 …

3

r(y) w(y)

x

4

(a)

T1

Client 1

Client 2
y T2

T3

Dominant usage: 4

Dominant usage: 3

Dominant usage: 2

T1
4

r(x) w(x)

T2 …

3

r(y) w(y)

x T1

Client 1

Client 2
y

3
T2

r(y) w(y)
6 Wasted resource

Per-Key View

T3
2

r(x) w(x) T3
2

r(x) w(x)

Client 3 Client 3

8

…r(x,y) w(x,y)T1

T2

T3 r(x)w(x)

…r(y) w(y)

Per-Txn View

Workload
Per-Key View

Workload

(b)

Time

2
T3

r(x) w(x)T1

T2

T3 r(x) w(x)

…r(y) w(y)

Per-Txn View
r(y) w(y)

Schedule: {T1,T2,T3} Schedule: {T1,T2,T3}

1 2 3 4 5 6 7

8
Time

1 2 3 4 5 6 7

8
Time

1 2 3 4 5 6 7
3

2

8
Time

1 2 3 4 5 6 7

Figure 2: Two workloads under 2PL. DRF is insufficient for transactions, which do not access all items at once. In (b), T1 holds
the lock on 𝑥 (due to its conflict with T2) without making any progress, causing additional delays for T3. /* accheng: check
grayscale of colors */

increases its demand by sending three times as many requests as C2,
C1 receives disproportionately more item usage on 𝑥 . A fair sched-
uler should be resistant to such manipulation, which incentivizes
clients to waste resources and lead to lower overall throughput.

Specifically, the scheduler should ensure strategy-proofness: a
client should not be able to finish faster by lying about its resource
demands. While malicious clients are less likely in databases (with
proper authorization and security measures), unintentional sched-
uler manipulation can still occur. For instance, one client may send
many retries for transactions involving hot items, causing feedback
loops that impact the throughput of other clients [46]. Furthermore,
database clients usually monitor only their own applications, so
they are unaware about how their workload affects others.

A fair scheduler. When there is only one contended item, en-
suring both the share guarantee and strategy-proofness is simple:
the scheduler should equalize item usage over time across client
transactions. For the workload in Figure 1, a fair scheduler would
schedule two C1 requests for every C2 request to provide equal item
usage of 𝑥 . Even if C1 sends more requests than C2, it cannot manip-
ulate the scheduler as long as the scheduler tracks the item usage of
each client. As a result, the fair scheduler can ensure performance
isolation between clients while maintaining high utilization.

3.2 Scheduling Over Multiple Resources
In practice, most transactions require more than one resource (i.e.,
item) at a time. The canonical solution to ensure fairness in the pres-
ence of multiple resources is dominant resource fairness (DRF) [39].
DRF equalizes each client’s dominant share, which is the maximum
share that the client has been allocated of any resource. By defini-
tion, a client is bottlenecked by the dominant resource since it uses
this resource the most. Thus, performance depends only on the
dominant share—other resources are irrelevant for fairness because
they are not the bottleneck. In our setting, each item is an exclusive
resource (e.g., only one transaction can write to an item at a time),
so the dominant share of a transaction is its maximum item usage.
DRF ensures both the share guarantee (each client is guaranteed at
least some share of its dominant resource) and strategy-proofness
(artificially increasing the demand for any resource other than the
dominant one has no impact on this client’s service).

Crucially, DRF assumes that each request acquires all resources it
needs before starting execution. For instance, a compute job cannot
begin until sufficient CPU and memory are simultaneously available.
However, this assumption does not hold in our setting. Transactions
acquire resources incrementally as a function of program order and
isolation level guarantees. For example, under 2PL [13], transactions

do not grab all locks before execution but acquire locks gradually.
As a result, we cannot apply DRF directly to transactions. In the rest
of this section, we show several examples to first provide intuition
for DRF before demonstrating why it fails for transactions.

DRF examples. To illustrate how DRF applies to multiple re-
sources, we consider the example workload in Figure 2a. First, we
assume transactions grab exclusive locks for all items they access
simultaneously. Thus, the usage of each item in a given transaction
is the same (and trivially equal to the dominant usage). For instance,
T1’s usage for 𝑥 and for 𝑦 is four time units. Similarly, T2 has a
dominant usage of three units on 𝑦, and T3 has two units on 𝑥 . As
both the per-item and per-transaction views of the schedule show,
T1 occupies 𝑥 and 𝑦 for four time units, conflicting with both T2
and T3. DRF would equalize each client’s dominant usage, which is
based on the individual item usages of each transaction.

Next, we show how DRF can be unfair for standard transactions
that access items incrementally. In Figure 2b, transactions obtain
locks as execution proceeds. Here, T1’s operations on 𝑦 begin after
its 𝑟 (𝑥). When T1 and T2 start simultaneously in this example, T2
occupies the lock on 𝑦 for three units, so T1 must wait until T2
completes before it can proceed. Consequently, T1 occupies the
lock on 𝑥 for six units of time due to its conflict with T2 on 𝑦. For
two of these six units, T1 holds the lock on 𝑥 without making any
progress, wasting this resource and decreasing system throughput.
However, DRF assumes that T1’s dominant usage on 𝑥 is four units
of time because it only considers transactions in isolation. Thus,
DRF underestimates T1’s usage, leading to unfair service.

3.3 Challenges in Fair Transaction Scheduling
As the previous example shows, DRF fails because it does not ac-
count for incremental resource acquisition in transactions. The
main implication of this behavior is that item usage can vary as a
function of the schedule. In the remainder of this section, we high-
light the challenges in scheduling transactions fairly and describe
a performance tradeoff we must navigate.

Share guarantee. This property requires dominant item us-
age to be equalized across clients. Since item usage depends on
the schedule, we cannot determine it only based on an individual
transaction’s operations but also must consider its conflicts with
other requests. Specifically, we need to account for how subsequent
transactions conflict with and are delayed by a given transaction.
However, we do not know which requests will be scheduled in the
future in most databases. Accordingly, we need a way to retroac-
tively account for item usage to ensure fairness between clients.

Strategy-proofness. To guarantee that a client cannot increase
its dominant resource usage by lying about its demand (i.e., adding
extraneous operations and/or transactions), a fair scheduler should
carefully account for how each client’s requests contribute to re-
source wastage. Specifically, a client should not be able to deliber-
ately cause conflicts that increase the item usage of other clients.
This is unaddressed by previous schedulers [38, 39, 55] because
they assume all resources are acquired before request execution.

Tradeoff between fairness and throughput. Achieving fair-
ness can cause overall system throughput to drop, and the database
must handle this tradeoff. At a high level, a scheduler prioritizing
fairness can constrain execution order, while higher throughput
is possible with more flexibility to order transactions in ways that
reduce conflicts. This tradeoff is especially pronounced in transac-
tional workloads for which the schedule can greatly impact perfor-
mance (e.g., up to 3.9x based on prior work [18]). On one hand, we
want to equalize usage across clients as fast as possible to ensure
fairness without delay. This is typically achieved through memory-
less scheduling, where a client’s current share of resources should
be independent of its share in the past. This approach avoids pe-
nalizing clients that were active in the past and reduces workload
burstiness to provide fairness quickly. On the other hand, maximiz-
ing system throughput is essential for high-performance database
systems. However, schedules that maximize concurrency to im-
prove throughput can delay equalizing usage between clients. An
effective scheduling policy should enable system administrators to
balance between these goals depending on workload needs.

4 ACCOUNTING FOR ITEM USAGE
To ensure fairness, we first need to accurately account for each
transaction’s item usage. Since usage depends not only on a transac-
tion’s own operations but also its conflicts with other requests, we
measure it in two parts: (i) baseline usage (BU), which is known by
the time a transaction finishes execution and is determined based on
the concurrency control protocol and (ii) schedule-dependent usage
(SDU), which reflects how conflicts from subsequent transactions
may increase a transaction’s usage beyond its baseline.

Transactions, schedules, and time. We consider a transaction
to be a set of read and write operations on items with ordering
constraints. Traditionally, database literature discusses transaction
history as the post-facto execution order [6, 12]. We instead define
the transaction schedule, following prior work [18], to be a par-
tially ordered set constrained by (i) operation dependencies within
a transaction and (ii) operation dependencies across transactions,
which are the result of enforcing a given level of isolation via a
specific concurrency control protocol during execution. This en-
ables us to quantify how long schedules take to execute, which we
measure by applying the notion of virtual time from the networking
literature [83]. Virtual time is an abstraction that measures logical
work performed by the system. For simplicity, we assume in this
section that each operation on an item takes one unit of virtual
time (multiple reads can occur during the same time unit). We ex-
plain how we measure real time in Section 6. /* accheng: mention
serializability here? */

Baseline usage. We define baseline usage (BU) as the minimal
possible usage of a given item by a transaction based on the con-
currency control protocol, regardless of the schedule. Specifically,

Definition 1. Baseline usage BU𝑇 (𝑥). For item 𝑥 in transaction
𝑇 , the virtual time interval during which the concurrency control
protocol disallows any other transaction from writing to 𝑥 .

Concurrency control protocols traditionally disallow writes at
two moments: (i) during the physical act of modifying an item and
(ii) when operations to that item by another transaction violate
serializability. For pessimistic protocols, BU begins with lock ac-
quisition and ends when locks are released, representing the time
during which the lock is occupied. For optimistic protocols, we
model BU as the time during which another transaction can cause
an abort to capture the effects of contention. While in the former
we assign BU to the transaction occupying the lock and in the latter
we assign it to the transaction that is aborted due to contention, this
asymmetry enables us to remain consistent in charging higher BU
for transactions with greater potential to conflict. We give examples
for several popular protocols below:
• In 2PL [13], transactions acquire locks as they read/write items

and release those locks after committing. Thus, BU starts from
when the lock is acquired to when the transaction commits.
• In OCC [54], BU encompasses the period between a write to an

item and the end of the validation phase (operations from other
transactions are not allowed since they would cause aborts).

• In MVTSO [12], reads are non-blocking, and operations from
other transactions with higher timestamps can proceed imme-
diately after writes. BU is one unit of time for these operations.
For transactions that read and write to the same item in a single
request, MVTSO would abort other transactions accessing this
item between these operations, so this duration represents BU.
In contrast, MV2PL acquires locks that are held for the duration
of the entire transaction, so BU would end at commit time.
As a concrete example of BU, consider the workload in Figure 3ii

assuming 2PL. Here, BU𝑇 1(𝑥) is the time interval [1 − 2] since 𝑇1
holds the exclusive lock on 𝑥 for this period while BU𝑇 1(𝑦) is [2]. /*
accheng: check example */ /* natacha: the time unit 2 */

Schedule-dependent usage. In contrast to baseline usage, which
is determined solely by the concurrency control protocol, we define
schedule-dependent usage (SDU) to account for additional delays
that result from a given schedule. We calculate the time interval for
which each subsequent conflicting operation is delayed and take
the union of these intervals to obtain the SDU. SDU captures the
effects of data dependencies across multiple items. Precisely calcu-
lating it requires care: overestimating or underestimating SDU can
misrepresent a transaction’s usage and violate the share guarantee.

First, we identify the relevant data dependencies in the schedule.
Namely, for a given item 𝑥 of a given transaction 𝑇 , we determine
the set of transactions scheduled after 𝑇 that contain operations
which conflict on 𝑥 (i.e., two transactions conflict when they access
the same item and at least one of them writes to the item [6]). We
term 𝑇 ’s access to 𝑥 as a succeeding conflicting operation (SCO) if
𝑇 is ordered after 𝑇 in the schedule and conflicts on 𝑥 . Note that
there can be multiple SCOs for 𝑥 as schedules are partially ordered
(e.g., if 𝑥 is a write, there can be several read SCOs). In effect, the
data dependency between 𝑇 ’s operation on 𝑥 and its SCOs blocks

w(y)

w(y)
T1

r(y)T2

= BU = SDULegend:

Time
0 1 2 3

(i) (ii)
w(y)

T1
r(y)T2

(iii)

BUT1(x)=[1,3] SDUT1(x, {T1,T2})=[2]
BUT1(y)=[3]

BUT1(x)=[1-2] BUT1(y)=[2]
r(y)r(a)T2’
r(y)T3 r(b)

Time
0 1 2 3 4

Time
0 1 2 3

T1
BUT1(x)=[1,3] SDUT1(x, {T1,T2’,T3})=[2]

BUT1(y)=[3]
w(y) w(y)w(x)

w(x)
w(x)

Figure 3: BU and SDU for T1 under 2PL for different schedules.

the SCOs from executing until 𝑇 completes its operation.
Next, we define several intermediate notions that quantify the

delay imposed on each SCO:
• Transaction start time (𝑇𝑠𝑡𝑎𝑟𝑡): the virtual time at which

transaction 𝑇 begins execution in the schedule.
• Ideal operation time (𝑜𝑖𝑡𝑖𝑚𝑒): the earliest time at which op-

eration 𝑜 can begin execution when considering only a
transaction’s individual operations, calculated as𝑇𝑠𝑡𝑎𝑟𝑡 plus
duration of operations that precede 𝑜 in 𝑇 . For example, if
an operation 𝑜 is the fifth operation in 𝑇 and 𝑇 starts at
virtual time three, then 𝑜𝑖𝑡𝑖𝑚𝑒 is virtual time eight.

• Actual operation time (𝑜𝑎𝑡𝑖𝑚𝑒): the virtual time at which 𝑜

actually begins execution when accounting for execution
constraints that arise in the schedule.

• Operation delay set (𝑑𝑒𝑙𝑎𝑦𝑜): the time for which SCO is
delayed, calculated as the time interval [𝑜𝑖𝑡𝑖𝑚𝑒 − 𝑜𝑎𝑡𝑖𝑚𝑒−1]
if 𝑜𝑖𝑡𝑖𝑚𝑒 < 𝑜𝑎𝑡𝑖𝑚𝑒 and an empty interval otherwise.

Finally, we define SDU based on the delays of all SCOs:
Definition 2. Schedule-dependent usage SDU𝑇 (𝑥, 𝑆). For item

𝑥 in transaction 𝑇 under schedule 𝑆 , SDU equals:
• For pessimistic protocols, the union of each SCO’s 𝑑𝑒𝑙𝑎𝑦𝑜

(i.e.,
⋃

𝑜∈SCO 𝑑𝑒𝑙𝑎𝑦𝑜) of subsequent items in 𝑇

• For optimistic ones, the union of each SCO’s 𝑑𝑒𝑙𝑎𝑦𝑜 on 𝑥

We note that SDU is calculated only based on the transactions
succeeding 𝑇 that directly conflict with 𝑇 ’s operations (this follows
from the definition of SCO). The benefit of this approach is that we
do not need to maintain the history of transactional conflicts—once
the set of SCOs is scheduled, we only need to calculate SDU once
for this item, enabling us to minimize memory overheads. Further-
more, we take the union across SCOs to avoid double-counting:
this ensures we do not overcharge for the usage of a given request.
We describe how we account for SDU among clients in Section 5.

Figure 3 provides several examples of SDU calculations. Each
subfigure shows BU (solid boxes) and SDU (dashed boxes) for 𝑇1
in different schedules under 2PL. In (i), we have BU𝑇 1 (𝑥)=[1, 3]
since the transaction needs to hold the lock on 𝑥 until commit. We
have SDU𝑇 1 (𝑥, {𝑇 1,𝑇2})=[2] since T1’s progress is delayed by T2
when waiting for the lock on 𝑦 (𝑜𝑖𝑡𝑖𝑚𝑒 for 𝑦 is at time unit two but
𝑜𝑎𝑡𝑖𝑚𝑒 is at time unit three). As a result, it holds the lock on 𝑥 for an
additional time unit. Finally, BU𝑇 1 (𝑦)=[3] since T1 needs to write
to 𝑦 before commit. In (ii), there is no SDU for T1 since 𝑜𝑖𝑡𝑖𝑚𝑒 is
equal to 𝑜𝑎𝑡𝑖𝑚𝑒 for all operations. In (iii), both T2’ and T3 cause T1
to be delayed, leading to SDU𝑇 1 (𝑥, {𝑇 1,𝑇 2′,𝑇 3})=[2].

Item usage. Taking BU and SDU together, we define item usage
to represent the delay imposed by a transaction on a given item:

Definition 3. Item usage IU𝑇 (𝑥, 𝑆). For item 𝑥 in transaction
𝑇 under schedule 𝑆 , the virtual time interval from the union of
BU𝑇 (𝑥) and SDU𝑇 (𝑥, 𝑆) (i.e., 𝐵𝑈𝑇 (𝑥) ∪ 𝑆𝐷𝑈𝑇 (𝑥, 𝑆)).

Our definition of item usage captures the difference between
applying fairness for physical resources and for transactions. Specif-
ically, with SDU, we account for how acquiring resources as a re-
quest executes (rather than all at the start) impacts other requests,
enabling us to quantify any resource wastage. We leverage our
notion of item usage in the next section to design a fair scheduler.

5 ACHIEVING FAIRNESS
We now present our fair scheduler for transactions, DRFT, which
ensures both the share guarantee and strategy-proofness to achieve
performance isolation with high throughput. DRFT schedules re-
quests based on client virtual times, which are calculated based on
dominant item usages. DRFT first accounts for the baseline usage
and retroactively adds schedule-dependent usage once subsequent
conflicting transactions are scheduled. Furthermore, DRFT navi-
gates the tradeoff between memoryless scheduling and improving
throughput by providing a tunable Δ parameter. We first introduce
memoryless DRFT before describing the complete algorithm.

5.1 Memoryless DRFT
In this section, we provide an overview of virtual time fair sched-
ulers before describing how memoryless DRFT adapts virtual time
to schedule transactions in a way that quickly achieves fairness.

Background: virtual time fair schedulers. Virtual time sched-
ulers are a well-established mechanism to ensure fairness on re-
sources that are shared over time (i.e., exclusively accessed re-
sources) [31, 41, 55]. At a high level, the scheduler computes a vir-
tual time per client and uses this value to determine which client’s
requests to execute next. Consider for example 𝑛 clients that share
one exclusive resource, and assume each client request acquires
this resource for one unit of time. The scheduler increments each
client’s virtual time as each request executes. To ensure the share
guarantee, the scheduler equalizes virtual time across clients (i.e.,
choose the client with the lowest virtual time to run next). The
scheduler guarantees strategy-proofness by accounting for the vir-
tual time of the dominant resource of each request.

Memoryless scheduling. Memoryless DRFT is a virtual time
fair scheduler for transactions that achieves fairness with minimal
delay by quickly equalizing virtual times between clients. For each
transaction, the scheduler assigns a virtual start time upon its arrival
and later uses this value to calculate a virtual finish time. The finish
time is then used to determine the client’s virtual time. Accordingly,
we schedule at the granularity of transactions (not operations) and
account for resource usage after each transaction has executed. For
memoryless scheduling, the scheduler picks the client with the
lowest virtual time to be scheduled next: this ensures that usage is
equalized as quickly as possible across clients. We also ensure that
a client is not penalized for using more resources in the past when
fewer client were active to prevent starvation [55].

We adapt standard definitions and assumptions from the fair
sharing literature [38]. We assume a set of 𝑛 clients that share a

Table 1: Main notation for DRFT algorithm.

Notation Description

𝑇𝑐,𝑗 𝑗𝑡ℎ transaction of client 𝑐
𝑎𝑐,𝑗 Arrival time of transaction 𝑇𝑐,𝑗
𝑏𝑐,𝑗,𝑘 Baseline usage of 𝑇𝑐,𝑗 on item 𝑘
𝑑𝑐,𝑗,𝑘 Schedule-dependent usage of 𝑇𝑐,𝑗 on item 𝑘
𝑉 (𝑐, 𝑡) Virtual time of client 𝑐 at time 𝑡
𝑆 (𝑇𝑐,𝑗) Virtual start time of transaction 𝑇𝑐,𝑗
𝐹 (𝑇𝑐,𝑗) Virtual finish time of transaction 𝑇𝑐,𝑗

set of 𝑚 items 𝑘 , (1 ≤ 𝑘 ≤ 𝑚). A client 𝑐 issues a sequence of
transactions𝑇𝑐,1,𝑇𝑐,2,𝑇𝑐,3, The client is backlogged during a time
interval if it has at least one outstanding request queued at any
time. We assume work-conservation: as long as there are requests in
the queue, the system is not idle. Let 𝑇𝑐,𝑗 be the 𝑗𝑡ℎ transaction of
client 𝑐 . Upon 𝑇𝑐,𝑗 ’s arrival, the scheduler will assign a virtual start
time 𝑆 (𝑇𝑐,𝑗) and finish time 𝐹 (𝑇𝑐,𝑗) to this request. The client’s
virtual time at real time 𝑡 is given by 𝑉 (𝑐, 𝑡). For simplicity, we
assume each operation takes one unit of time and explain how we
measure real time in Section 6. We also support weighted workloads:
if a client 𝑐 is given weight 𝑤𝑐 , it takes 1

𝑤𝑐
virtual time units to

execute each of its operations [31]. Weighted workloads are useful
in the transactional context because certain applications may have
business-critical tasks that require higher priority.

Transaction virtual start time. Under memoryless scheduling,
a client’s current usage should not depend on its past usage to avoid
starving existing clients when new ones enter the system. We cal-
culate virtual times accordingly. Specifically, we determine a trans-
action’s virtual start time based on whether the client that issues
the transaction is backlogged (i.e., active). For a non-backlogged
client, the start time of its transaction is based on the virtual time
of the request currently being executed by the system [41]. As a
result, this newly active client will not receive preferential service
just because it was not active in the past. For a backlogged client,
a transaction’s virtual start time is simply the virtual finish time
of the previous transaction of this client (we discuss how to com-
pute finish time next) since this request must wait on preceding
requests from this client to complete. Formally, the virtual start of
transaction 𝑇𝑐,𝑗 is calculated as:

𝑆 (𝑇𝑐,𝑗) = max
(
𝐴(𝑎𝑐,𝑗), 𝐹 (𝑇𝑐,𝑗−1)

)
where 𝑎𝑐,𝑗 is the real arrival time of the transaction and 𝐴(𝑎𝑐,𝑗) is
the virtual start time of the transaction currently being executed
by the system at real time 𝑎𝑐,𝑗 . Using real arrival time is a standard
choice for fair schedulers [38, 41].

Transaction virtual finish time. A transaction’s virtual fin-
ish time is determined by its item usage. To ensure fairness, we
equalize usage of dominant resources (i.e., the resource that each
transaction requires the most time on) across clients. Since the
dominant resource can change across transactions, we calculate it
on a per-request basis, inline with prior work [38]. The primary
challenge in our setting is that item usage (and thus, the dominant
resource) can change as a function of the schedule. To deal with
this, we first account for the baseline usage and then retroactively
update its schedule-dependent usage (potentially multiple times)
as subsequent transactions are scheduled. Accordingly, the finish

time is determined after transaction execution. Once each trans-
action has executed, we first calculate the baseline usage, denoted
𝑏𝑐,𝑗,𝑘 = |𝐵𝑈𝑇𝑐,𝑗 (𝑘) |, for each item that transaction 𝑇𝑐,𝑗 accesses. As
conflicting transactions are scheduled after transaction 𝑇𝑐,𝑗 in the
schedule 𝐻 , we calculate the schedule-dependent usage, denoted
𝑑𝑐,𝑗,𝑘 = |𝐼𝑈𝑇𝑐,𝑗 (𝑘, 𝐻) | − 𝑏𝑐,𝑗,𝑘 , for each conflicting item.

𝐹 (𝑇𝑐,𝑗) = 𝑆 (𝑇𝑐,𝑗) +max
𝑘

{
𝑏𝑐,𝑗,𝑘 +

𝑑𝑐,𝑗,𝑘

𝑙𝑘

}
× 1
𝑤𝑐

where 𝑙𝑘 is the number of transactions that conflict on item 𝑘 .
After the dominant resource is determined for this transaction,

we also add 𝑑𝑐,𝑗,𝑘
𝑙𝑘

to the virtual times of its conflicting transac-
tions (i.e., requests corresponding to the SCOs of this item). By dis-
tributing SDU across all involved requests, DRFT ensures strategy-
proofness: even if a client tries to add extraneous operations/trans-
actions to increase the usage of other clients, it will not be better
off because it would observe an identical increase in virtual time.
We note that since SDU cannot be computed until after conflicting
transactions are scheduled, there can be a delay until the usage of a
given transaction is fully accounted for. We discuss why this delay
is unavoidable and its implications at the end of this section.

Client virtual time. Finally, we define a client’s virtual time,
denoted 𝑉 (𝑐, 𝑡) for client 𝑐 as the virtual finish time of its most
recently committed transaction at real time 𝑡 . Formally,

𝑉 (𝑐, 𝑡) = 𝐹 (arg max
𝑗

(𝐶 (𝑇𝑐,𝑗) < 𝑡))

where 𝐶 (𝑇𝑐,𝑗) returns the commit time of transaction 𝑇𝑐,𝑗 .
DRFT uses client virtual times to decide which request to sched-

ule: it picks the client with the lowest virtual time to execute next
to keep usages across clients as equal as possible.

Scheduling based on virtual time. We discuss the implications
of using virtual time in DRFT. The primary advantage of how we
compute this value (following prior work [38, 41]) is that the system
does not need to know the operations of a transaction a priori.
The virtual start time of transaction 𝑇𝑐,𝑗 depends only on the start
times of the currently executing transactions and the finish time
of the previous transaction, 𝐹 (𝑇𝑐,𝑗−1), of this client. This makes
DRFT suitable for interactive transactions (i.e., data accesses are
not known beforehand), which are the default in most databases.

The retroactive nature of SDU calculation means that a client’s
virtual time may not immediately reflect the final usage of some
transactions and may be adjusted multiple times as subsequent
conflicting requests are scheduled. This delay in fully accounting for
usage is unavoidable: unless we know precisely which transactions
will arrive and be scheduled in the future, we cannot calculate SDU
a priori. While we cannot achieve instantaneous fairness, we ensure
the share guarantee as quickly as possible with DRFT.

5.2 Generalized DRFT
While memoryless scheduling achieves fairness quickly, it often
does not result in schedules that maximize throughput. To balance
between memoryless scheduling and improving overall utilization,
we now introduce the full version of DRFT. This refinement enables
system operators to control the degree to which we can delay
fairness through a Δ parameter. Such customization is important
in practice to cater to diverse workload requirements (Section 2).

Algorithm 1: DRFT /* accheng: check this */
1 Data structures
2 Δ: delta parameter
3 txn_sched: schedule of transactions
4 client_item_usages: item usages, per client
5

6 procedure SCHED_NEXT_TXN():
7 if GET_MAX_VT_DIFF() ≤ Δ then
8 txn_sched.add(SMF_SCHEDULER())
9 else

10 txn_sched.add(GET_TXN_WITH_MIN_VT())
11

12 procedure UPDATE_BU(txn : transaction, c : client):
13 // Update baseline usage of this txn
14 𝑠_𝑡𝑖𝑚𝑒 ← GET_START_TIME(c)
15 𝑓 _𝑡𝑖𝑚𝑒 ← GET_FINISH_TIME(s_time, txn)
16 client_item_usages[𝑐] = 𝑓 _𝑡𝑖𝑚𝑒
17

18 procedure UPDATE_SDU(txn : transaction, c : client):
19 // Update usages of txns earlier in the schedule
20 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡_𝑖𝑡𝑒𝑚𝑠 ←

GET_CONFLICT_ITEMS(txn, txn_sched)
21 for 𝑘 ∈ 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡_𝑖𝑡𝑒𝑚𝑠 do
22 𝑝𝑟𝑒𝑣_𝑡𝑥𝑛, 𝑠_𝑡𝑖𝑚𝑒, 𝑐𝑙𝑖𝑒𝑛𝑡_ 𝑗 ← GET_PREV_TXN(k)
23 𝑠𝑑𝑢 ← GET_SDU(prev_txn, txn, txn_sched)
24 client_item_usages[𝑐𝑙𝑖𝑒𝑛𝑡_ 𝑗].update_ft(𝑠𝑑𝑢)
25 client_item_usages[𝑐].update_ft(𝑠𝑑𝑢)
26

27 procedure COMMIT_TXN(txn : transaction, c : client):
28 UPDATE_BU(txn, c)
29 UPDATE_SDU(txn, c)
30 success← DB_COMMIT(𝑡𝑠)
31 return success

The Δ parameter bounds the maximum allowable divergence
between virtual times of active clients in the system. Specifically,
the virtual time of any client can never differ by more than Δ:

max
𝑐≠𝑐′
{𝑉 (𝑐) −𝑉 (𝑐′)} ≤ Δ

This grants the system flexibility in choosing what to schedule
while ensuring that client virtual times will be eventually equalized:
the scheduler can defer serving a client with the lowest virtual
time if scheduling another client’s transaction would lead to better
throughput. A larger Δ means clients may need to tolerate longer
delays between periods of service.

As an example, we consider Figure 4, which shows two schedules
from the workload in Figure 2b. We assume the current virtual times
of clients C1, C2, and C3 are 0, 1, and 2, respectively. If Δ = 0, then
DRFT must schedule T1 first since C1 has the lowest virtual time,
leading to a schedule that executes in eight units of time (Figure 4a).
However, if Δ > 2, then DRFT can run T3 before T1, leading to a
schedule that finishes in only six units of time (Figure 4b). While
C1’s transaction executes later in Figure 4b, C1 eventually gets its
fair share, and the system observes higher throughput since the
same number of transactions execute in a shorter period of time.

To select transactions that enhance throughput, DRFT integrates
the Shortest Makespan First (SMF) algorithm [18], a state-of-the-art
scheduling policy that minimizes the delays caused by conflicts
for fast schedules. DRFT uses SMF to schedule transactions unless
there is a client with a virtual time Δ less than any other client. In

x T1

y
3

T2

6

8

Per-Key View

Time

2
T3

𝚫 = 𝟎,	Schedule: {T1,T2,T3}

1 2 3 4 5 6 7

x T1

y

4

8

Per-Key View

Time

𝚫 > 𝟐,	Schedule: {T2,T3,T1}

1 2 3 4 5 6 7
3

T2

2
T3

r(x) w(x)T1

T2

T3
r(x) w(x)

…r(y) w(y)

Per-Txn View
r(y) w(y)

8
Time

1 2 3 4 5 6 7

r(x) w(x)
T1

T2 …r(y) w(y)

Per-Txn View
r(y) w(y)

8
Time

1 2 3 4 5 6 7

T3 r(x) w(x)

(a) (b)

Wasted resource

Starting client virtual times: C1=0, C2=1, C3=2

Figure 4: Two schedules of the workload in Figure 2b. The
schedule in (b) provides higher throughput compared to (a).

this case, this client’s transaction is automatically scheduled next
to ensure bounded fairness. We note that memoryless DRFT is a
special case of the full policy when Δ = 0 since this algorithm
always chooses the client with the smallest virtual time.

Setting Δ. Determining an appropriate Δ value depends on how
much a system administrator prioritizes overall system performance
compared to client tail latencies. A higher Δ typically leads to higher
throughput but also increased latencies since clients can be delayed
for longer periods of time. In general, setting Δ depends mainly
on the average transaction duration (e.g., if requests take 10ms
on average, then Δ=100ms means that DRFT has the flexibility to
choose among roughly 10 different clients at a time). We find that
tuning Delta to allow the system to choose among five or more
clients enables us to attain high throughput (Section 7.2).

DRFTwalkthrough. We provide an overview of the transaction
lifecycle under DRFT in Algorithm 1. When a transaction arrives in
the system, it is queued to be scheduled. To pick the next transaction
to execute (line 6), DRFT checks if there exists a client with a
virtual time Δ less than any other client (line 7). If so, this client’s
transaction is automatically scheduled next (line 10). Otherwise,
DRFT uses SMF to choose the next transaction to run (line 8). After
each transaction executes, we update usages at commit time (line
27). Specifically, we update the baseline usage of this transaction
(line 12) and the schedule-dependent usages of transactions earlier
in the schedule that conflict with this transaction (line 18).

5.3 Fairness Properties
We present the formal properties (share guarantee and strategy-
proofness) provided by DRFT. We also discuss the bounds on fair-
ness under our policy. Due to space constraints, we defer the proofs
to the extended version of our paper [8].

Theorem 1. DRFT provides the share guarantee (a backlogged
client should receive an equal share, i.e., item usage, of one of the
resources it uses, regardless of the demand of other clients.).

The share guarantee is essential for performance isolation. DRFT
provides it for transactions, ensuring that every client makes progress.

Theorem 2. DRFT ensures strategy-proofness (a client cannot
increase its dominant resource usage by lying about its demand, i.e.,
by adding extraneous operations and/or transactions).

Strategy-proofness prevents clients from “gaming” the sched-
uler [39]. As detailed in Section 5.1, DRFT achieves this by distribut-
ing SDU across all transactions involved in a conflict. As a result,

start Ti,
hints

Storage

Ti started Ti : r(x)

Ti : w(y)

value of x

w(y) completed

1

2

3

Scheduler: DRFT
Client
Virtual
Times

Scheduling
Policy

RocksDB

Concurrency Control:
MVSchedO, Lock, OCC

Figure 5: Overview of DRFT implementation in RocksDB.

any increased item usage a client attempts to cause via conflicts
also impacts its own virtual time. Thus, it is impossible for a client
to improve its own performance at the detriment of others.

DRFT also provides theoretical bounds on (i) the maximum dif-
ference in usage between any two backlogged clients and (ii) the
maximum delay a client can observe. These bounds are standard for
fair schedulers in other domains [38] and prevent starvation. We
present them in the extended version of our paper [8]. /* accheng:
do we want the tput bound? */

5.4 Discussion
We discuss the implications of applying fairness in the transactional
setting for two performance properties.

Sharing incentive. In prior work, fair schedulers typically pro-
vide (via the share guarantee) sharing incentive: each client is better
off sharing the resource rather than taking turns exclusively using
the entire resource. For example, each of 𝑛 clients should receive
at least as much service as if it were the only client sending re-
quests to the resource for 1

𝑛 of the time. However, guaranteeing
the sharing incentive is not always possible in the transactional
setting because some schedules lead to worse overall throughput
due to conflicts. For example, Figure 4a shows a schedule in which
C1’s transaction is delayed due to its conflict with another client’s
request, leading to worse performance than if C1 had exclusive
access to 𝑥 and 𝑦 for one-third of the time. If client workloads are
arbitrarily delayed, we can control what share each client will have,
so we can asymptotically achieve the sharing incentive with DRFT
as Δ goes to infinity. More generally, DRFT’s Δ parameter enables
system administrators to determine how much delay clients can
tolerate to achieve a guaranteed level of service.

Performance predictability. As is true in prior work [39, 55],
ensuring fairness does not automatically provide predictable per-
formance, which is often a desirable goal for multi-tenant systems
(e.g., database SLAs [22]). To understand why, we consider a simple
example: if the current number of clients are receiving a guaran-
teed level of service and the system has no additional capacity, we
cannot admit another client into the system without impacting the
performance of existing clients. For predictability, we need not only
the share guarantee but also admission control (which we discuss
further in Section 8) to limit the number of clients in the system.

6 IMPLEMENTATION
We implement DRFT in RocksDB, an open-source transactional
key-value store [32] from Meta that is used in a number of produc-
tion systems [62]. Figure 5 illustrates how DRFT schedules requests
before passing them to the concurrency control and storage. We
require minimal changes to existing database architectures to en-
hance DRFT’s potential for adoption.

DRFT. DRFT requires several pieces of metadata for scheduling.
First, DRFT requires a client identifier for each transaction. We
assume that this information is available and note that, in prac-
tice, most database requests contain application identifiers (e.g.,
via metadata, routing information, etc.) even if connection pool-
ing or DB proxies are used [63, 70]. In RocksDB, we modify the
transaction START function to take in a clientID. Second, we must
measure item usages for transactions and update client usages with
these values. To reduce overheads, we optimize DRFT to only track
the usage for items that observe many conflicts (i.e., hot items).
We dynamically track hot items with a count min-sketch [26], a
probabilistic data structure with bounded error. Most transactional
workloads have a small group of hot items [18], so this optimiza-
tion reduces the overheads of tracking item usages. To quantify
item usage in an online system (given variance in the system and
workload), we record the real time of operations. In RocksDB, we
store this information in each transaction’s metadata.

SMF. DRFT integrates SMF [18], which is a scheduler that orders
requests to maximize throughput. SMF consists of two main com-
ponents: a KNN classifier and a scheduling policy. The classifier
is trained on a trace of requests for each workload to predict the
set of hot items that input transactions will access. For inference,
the classifier takes in application metadata (the transaction type
and any items available upon instantiation) for each transaction
and outputs a label corresponding to a set of hot items (labels are
mapped to sets of hot items during training) that this request is
likely to access. SMF’s scheduling policy estimates the makespan
(i.e., overall execution time) impact of different candidate transac-
tions. Specifically, it samples a number of unscheduled transactions
and computes the projected incremental makespan increase if each
is added to the schedule. This accounts for the cost of potential
conflicts that the unscheduled transaction has with the current
ordering. DRFT passes transaction metadata to SMF and uses it to
choose transactions that improve performance when Δ > 0.

Concurrency control. We demonstrate DRFT’s versatility by
combining it with three concurrency control protocols. First, we sup-
port MVSchedO, a scheduling-optimized concurrency control [18]
that augments MVTSO by queuing operations to follow the order
established by the scheduler. We also layer our scheduler on top
of the Locking and OCC protocols in RocksDB via a “bolt-on” ap-
proach with minimal modifications. Transactions are queued upon
arrival and begin execution once they are scheduled by DRFT.

7 EVALUATION
In this section, we evaluate DRFT on a range of workloads. Specifi-
cally, we aim to answer the following questions:

• What is the impact of fair scheduling on performance?
• What are the tradeoffs between memoryless scheduling and

maximizing throughput?
• What are the overheads of fair scheduling?

7.1 Experimental Setup
We implement various baselines in RocksDB (8.5) [34]. We run our
database and clients on separate c5ad.16xlarge EC2 instances with
64 vCPUs, 128GB RAM, and local NVMe-based SSDs in the same

Epinions SmallBank TAOBench TPC-C YCSB0

4K

8K

12K
�

ro
ug

hp
ut

(tx
ns

/s
)

Epinions SmallBank TAOBench TPC-C YCSB
¢ (ms)

0

4K

8K

12K

�
ro

ug
hp

ut
(tx

ns
/s

)

MVTSO MVSchedO DRFT (¢=0) SMF-MVSchedO DRFT (¢=100)

Epinions SmallBank TAOBench TPC-C YCSB
¢ (ms)

0

4K

8K

12K

�
ro

ug
hp

ut
(tx

ns
/s

)

MVTSO MVSchedO DRFT (¢=0) SMF-MVSchedO DRFT (¢=100)

Figure 6: DRFT performance on application benchmarks.

region. Clients run in a closed-loop fashion with exponential back-
off (accounting for aborts and retries when measuring latency), and
we report the average of three 90 second runs with 30 seconds of
warm-up each. For each workload, we tune the number of client and
worker threads to ensure system saturation. For RocksDB param-
eters [5], we change several default values: we set the LRU (read)
cache to 16GB, write buffer size to 64MB, level 0 compaction trigger
to 4, level 1 buffer size to 256MB, and level 0 stop writes trigger to 36.
We evaluate the following baselines (other than SMF-MVSchedO,
all baselines use FIFO scheduling):
1. RocksDB Optimistic Concurrency Control (OCC). Rocks-

DB’s Optimistic transactions [34] provide up to Snapshot Isola-
tion (SI) using optimistic concurrency control.

2. RocksDB Locking (Lock). RocksDB’s Pessimistic transactions
use a locking protocol [34] that only holds write locks and reads
from snapshots to provide SI.

3. RocksDB Multi-Version Timestamp Ordering (MVTSO).
We implement MVTSO [12] in RocksDB to provide serializability.

4. MVSchedO. We implement MVSchedO, a state-of-the-art con-
currency control protocol that provides serializability [18].

5. Shortest Makespan First (SMF-MVSchedO). We implement
SMF [18], a high-performance transaction scheduling policy.
Benchmarks. We evaluate the performance of our schedulers

on a diverse set of standard benchmarks and real-world workloads.
Our benchmarking implementation consists of 7K lines of Java.
Epinions [30] consists of nine transaction types (78% reads) for a
consumer reviews website. We run the benchmark with 2M users
and 1M items (total data size of 50GB) with a Zipfian distribution
(𝜃 = 0.90). SmallBank [71] contains six types of transactions (75%
reads) that model a simple banking application. We configure it
to run with 1M accounts (total data size of 50GB) with a Zipfian
distribution (𝜃 = 0.90). TPC-C [27], a standard OLTP benchmark,
simulates the business logic of e-commerce suppliers with five types
of transactions. We run the workload under high contention with 10
Warehouses (total data size of 2GB, 68% reads). TAOBench [19] is
a social network benchmark based on Meta’s production traces. We
run Workload T (>90% reads), which captures the full transactional
workload on TAO, Meta’s social graph database. We configure this
benchmark to run with 10M objects (total data size of 100GB). YCSB
is a microbenchmarking suite that generates read and write oper-
ations, which we group into sets of 16 for transactions following
past work [17]. We use Workload B (95% reads, 5% writes) with a
Zipfian distribution, and load 1M objects (total data size of 10GB).

7.2 Fairness on Application Benchmarks
We evaluate DRFT on the five application benchmarks (Figure 6)
and finds that it provides high throughput while ensuring fairness
between clients. For this set of experiments, we assume that each
thread is a distinct client, ranging from 12 to 32 clients on these
benchmarks to reach saturation due to contention (CPU usage

Epinions SmallBank TAOBench TPC-C YCSB0

4K

8K

�
ro

ug
hp

ut
(tx

ns
/s

)

Epinions SmallBank TAOBench TPC-C YCSB
¢ (ms)

0

4K

8K

12K

�
ro

ug
hp

ut
(tx

ns
/s

)

OCC DRFT-OCC (¢=0) SMF-OCC DRFT-OCC (¢=100)

Epinions SmallBank TAOBench TPC-C YCSB
¢ (ms)

0

4K

8K

12K

�
ro

ug
hp

ut
(tx

ns
/s

)

OCC DRFT-OCC (¢=0) SMF-OCC DRFT-OCC (¢=100)

Figure 7: Bolt-on performance on application benchmarks.

and disk bandwidth remain low for all benchmarks). Each client
sends the same workload per benchmark. As observed in prior
work [31, 38, 39, 41], ensuring fairness can result in lower perfor-
mance since fair schedules do not always maximize throughput.
The key benefit of DRFT is that it provides the crucial fairness
properties (share guarantee and strategy-proofness) with minimal
throughput degradation. On all benchmarks, memoryless DRFT
(Δ = 0) has less than a 3% throughput difference with MVSchedO,
which executes requests under FIFO. This is expected as memory-
less DRFT approximates FIFO order since it picks the transaction of
the client with lowest virtual start time, which alternates between
all clients. DRFT has higher performance than MVTSO since it is
implemented on top of MVSchedO, which prevents unnecessary
aborts [18]. DRFT with Δ = 100ms has less than a 5% throughput
difference with SMF-MVSchedO. With a larger Δ, DRFT has the
flexibility to schedule transactions that maximize concurrency. We
find that DRFT’s performance does not change significantly for Δ
values beyond 100ms on these workloads, indicating this bound is
sufficient for DRFT to attain throughput gains via SMF.

7.2.1 Bolt-on Results. To demonstrate DRFT’s extensibility, we
evaluate it layered on top of RocksDB’s OCC (DRFT-OCC) and
Lock (DRFT-Lock) protocols (Figure 7). This set of experiments also
assumes each thread is a distinct client, ranging from 10 to 28 clients
for system saturation. Across all benchmarks, OCC and Lock have
the same performance because they encounter similar conflicts
when processing requests in FIFO order and abort at nearly equal
rates (DRFT-OCC and DRFT-Lock also have equal performance),
so we omit Lock results from Figure 7 due to space constraints.
Memoryless DRFT-OCC has similar performance to the OCC base-
line since OCC follows FIFO order, and DRFT-OCC mostly does
as well while ensuring fairness across clients. DRFT-OCC with
Δ = 100ms has nearly identical performance with SMF-OCC. Both
show throughput improvements over the baseline (ranging from
2.0× for SmallBank to 3.3× for TAOBench) since they prevent many
conflicts and aborts. Both DRFT-OCC and SMF-OCC have lower
throughput than SMF-MVSchedO because they only delay the trans-
action start while SMF-MVSchedO utilizes fine-grained operation
scheduling to extract bigger wins. Overall, these results confirm
that DRFT can be directly applied to existing concurrency control
protocols with minimal changes to ensure fairness.

7.3 Fairness Properties
Next, we evaluate DRFT’s ability to provide performance isolation
and high utilization. We also test its performance under weighted,
bursty, and mammoth workloads. Since OLTP benchmarks gener-
ally do not specify different clients, we construct client delineations
without changing workloads. Specifically, we assign different re-
quest rates of the same underlying benchmark to clients.

0 30 60 90
Time (s)

0

500

1K
�

ro
ug

hp
ut

(tx
n/

s)

0 30 60 90
Time (s)

0

500

1K

�
ro

ug
hp

ut
(tx

n/
s)

(a) FIFO (MVSchedO) (b) DRFT (Δ=0)

0 30 60 90
Time (s)

0

500

1K

�
ro

ug
hp

ut
(tx

n/
s)

C1 C2 Other clients

Figure 8: DRFT ensures equal usage across clients.

0 30 60 90
Time (s)

0

1K

2K

3K
�

ro
ug

hp
ut

(tx
n/

s)

0 30 60 90
Time (s)

0

1K

2K

3K

�
ro

ug
hp

ut
(tx

n/
s)

(a) Request Rate Limit (SMF) (b) DRFT (Δ=100)

0 30 60 90
Time (s)

0

1K

2K

3K

�
ro

ug
hp

ut
(tx

n/
s)

C1 C2 C3

Figure 9: DRFT ensures high resource utilization.

Performance isolation. First, we demonstrate that DRFT en-
sures performance isolation. For this set of experiments, we have
each client send a constant stream of requests from the Epinions
benchmark, which has contention bottlenecks on popular users
and items. We configure 16 clients (one thread per client), and we
have half the clients send twice as many requests. Figure 8 shows
the throughput of all clients over time (the aggregate throughput is
identical to the results in Section 7.2). We highlight the performance
of two clients, where C1 sends twice the number of requests as
C2. Since more of C1’s requests arrive and queue in the system,
the baseline protocol (MVSchedO) executes more of C1’s requests
than C2’s under FIFO, leading to C1 having double the throughput
of C2. In contrast, the clients have equal throughput under DRFT
(Δ = 0); this is fair because the item usage of each client’s trans-
actions is equal. These results show that FIFO is unable to ensure
performance isolation while DRFT provides the share guarantee.

High utilization. Next, we show that DRFT provides high uti-
lization. We perform experiments on the TPC-C workload, which
mainly conflicts on the Warehouse and District items in the New-
Order and Payment transactions. We have two clients, C1 and C2,
which are bottlenecked on conflicts to these items. We compare
the performance of a request rate limit baseline using SMF, where
each client is allocated half of the maximum possible throughput
to ensure performance isolation (Figure 9). When C2 stops sending
requests after 45s, DRFT (Δ = 100) dynamically adjusts C1’s share
to maximize usage of the hot items. On the other hand, the request
rate limit is brittle: once C2 stops sending requests, C1 still has the
same throughput since each client is assigned a static rate limit,
leading to 50% lower overall system throughput. These results show
that request rate limits can lead to severe resource underutilization
while DRFT ensures high utilization while serves requests fairly.

Weighted workloads. In production, multi-tenant databases
often need to prioritize certain application requests. DRFT supports
this functionality via weighted workloads. We demonstrate this
on YCSB with two clients, C1 and C2, sending the same workload.
C1 is assigned a weight twice that of C2. Figure 10 shows that
DRFT (Δ = 0) respects the weights of each client’s workload: since
C1 has twice the weight of C2, its throughput is twice as high.

(a) FIFO (MVSchedO) (b) DRFT (Δ=0)

0 30 60 90
Time (s)

0

1K

2K

3K

�
ro

ug
hp

ut
(tx

n/
s)

Total C1 (weight=2) C2 (weight=1)

0 30 60 90
Time (s)

0

1K

2K

�
ro

ug
hp

ut
(tx

n/
s)

0 30 60 90
Time (s)

0

1K

2K

�
ro

ug
hp

ut
(tx

n/
s)

Figure 10: DRFT respects request weights.

0 30 60 90
Time (s)

0

2K

4K

6K

�
ro

ug
hp

ut
(tx

n/
s)

0 30 60 90
Time (s)

0

2K

4K

6K

�
ro

ug
hp

ut
(tx

n/
s)

(a) SMF (b) DRFT (Δ=100)

0 30 60 90
Time (s)

0

1K

2K

3K

�
ro

ug
hp

ut
(tx

n/
s)

C1 C2 C3

Figure 11: DRFT dynamically adjusts each client’s share.

0 30 60 90
Time (s)

0

1K

2K

�
ro

ug
hp

ut
(tx

n/
s)

0 30 60 90
Time (s)

0

1K

2K

�
ro

ug
hp

ut
(tx

n/
s)

0 30 60 90
Time (s)

0

20

40

60

80

100

CP
U

Us
ag

e
(%

)

Total C1 C2

(a) FIFO (MVSchedO) (b) DRFT (Δ=0)

Figure 12: DRFT ensures that mammoths execute fairly.

In contrast, MVSchedO executes an equal number of C1 and C2
requests, resulting in identical throughput for the clients, since it
uses FIFO and does not account for weighted workloads.

Bursty workloads. Real-world applications frequency exhibit
bursty workloads that often lead to logical contention (Section 2).
We model this scenario with the SmallBank workload, which has
contention on “hot” accounts. In this set of experiments, there
is initially one active client (C1). Two other clients, C2 and C3,
then join the system but send requests at half the rate of C1. The
workload mixture of all clients is identical, and their requests are
backlogged on the hot items. Figure 11 shows the results of DRFT
(Δ = 100) and SMF. DRFT ensures that C2 and C3 get their fair
shares. When C2 becomes active at 15s, the throughput of C1 drops
by half; this is fair since each client’s workload has equal hot item
usage. C3 also gets its fair share when it joins at 30s. In contrast, SMF
does not ensure the share guarantee, so C1 has twice the throughput
of the other clients when they are active. Notably, DRFT’s total
throughput is nearly equal to that of SMF. Since Δ = 100, DRFT
has sufficient flexibility to schedule transactions that maximize
throughput while still providing fairness.

Mammoth transactions.To evaluate DRFT under long-running
requests, we measure performance on mammoth transactions (>60
operations) from TAOBench. Specifically, C1 sends the benchmark
workload excluding mammoths while C2 sends only mammoths,
with both at equal rates. Under FIFO, C2 requests run more fre-
quently (though C1 still has higher throughput since its requests
are shorter and conflict less), leading to lower overall system per-
formance since mammoths block the progress of other requests.

0 20 40 60 80 100
¢ (ms)

0

1K

2K

3K
�

ro
ug

hp
ut

(tx
ns

/s
)

0 20 40 60 80 100
¢ (ms)

0

1K

2K

3K

�
ro

ug
hp

ut
(tx

ns
/s

)
Cloud Spanner Workload A

FIFO (MVSchedO) SMF DRFT (¢=100)

Figure 13: Performance of DRFT increases with Δ.

In contrast, DRFT (Δ = 0) fairly accounts for the usage of mam-
moths and reduces the rate at which C2’s requests execute (by 42%)
in equalizing client usage. As a result, the system has 56% higher
overall throughput when each client gets its fair share.

7.4 The Impact of Δ
To quantify the tradeoff between fairness and throughput, we vary
Δ on the TAOBench benchmark (Figure 13). We assume each thread
is a separate client (12 clients total), and client workloads are iden-
tical. Since item accesses are drawn from probability distributions
in this workload, hot items are not requested in a fixed order, as in
many of the other benchmarks. Consequently, naively ordering re-
quests in arrival order (as the baselines do) results in slow schedules
and many aborts. However, intelligently scheduling these transac-
tions can substantially increase performance. We compare DRFT
with FIFO and SMF; all scheduling policies use MVSchedO as the
underlying concurrency control protocol to isolate the impact of
scheduling. Under memoryless DRFT (Δ = 0), scheduling proceeds
in roughly FIFO order since all clients have the same workload, so
we observe a similar throughput to FIFO. As we increase Δ, DRFT’s
throughput increases until it is less than 5% different from that of
SMF. As we allow DRFT more flexibility in scheduling (and longer
delays in achieving fairness), we observe higher overall throughput.

7.5 Fairness Overheads
To understand the overheads of ensuring fairness, we measure
DRFT’s performance under low (𝜃 = 0.10), medium (𝜃 = 0.50), and
high (𝜃 = 0.90) contention on the YCSB workload (Figure 14). We
assume each thread is a separate client, and we compare a read-
dominant workload (95% reads) as well as a write-intensive work-
load (80% writes). Overall, DRFT has throughput no lower than 4%
compared to the MVSchedO baseline across all workloads, regard-
less of 𝜃 . DRFT’s overheads are more apparent under low contention
(for which scheduling does not materially affect performance), but
they are minimal: these overheads result from scheduling based
on client usages and SMF computational costs from considering
different candidate transactions to find fast schedules [18]. Once
there is some contention (𝜃 = 0.5), both DRFT (Δ = 100) and SMF
show throughput improvements compared to the baseline. The
memory overheads of DRFT are minimal (and bounded) since we
maintain only a small amount of metadata per client for item us-
age. The overheads of our scheduler are mitigated by the fact that
we operate in a disk-based system; we view extending DRFT to
in-memory databases as an interesting avenue for future work.

8 RELATEDWORK
Fair scheduling. This paper builds a long line of work on fair
scheduling, including start-time fair queuing (SFQ) [41], weighted
fair queuing (WFQ) [31, 55], and many other algorithms [11, 40].

0.10 0.50 0.90 0.10 0.50 0.900

5K

10K

15K

�
ro

ug
hp

ut
(tx

ns
/s

)

Read-heavy Write-heavy

0.10 0.50 0.90 0.10 0.50 0.90
Skew (µ)

0

5K

10K

15K

�
ro

ug
hp

ut
(tx

ns
/s

)

Epinions SmallBank TAOBench TPC-C YCSB
¢ (ms)

0

4K

8K

12K

�
ro

ug
hp

ut
(tx

ns
/s

)

MVTSO MVSchedO DRFT (¢=0) SMF-MVSchedO DRFT (¢=100)

Figure 14: The overheads of DRFT are minimal.

For multi-resource settings, DRF [39] is a widely adopted standard,
offering both the share guarantee and strategy-proofness. Other
algorithms, such as Competitive Equilibrium from Equal Incomes
(CEEI) [75], have been proposed, but they are not strategy-proof.
Dominant Resource Fair Queuing (DRFQ) [38] extends DRF princi-
ples to ensure fair allocation over multiple (exclusive) resources for
network packets and shares several features with DRFT. However,
both DRFQ and DRF fall short for transactional workloads because
they do not account for incremental resource acquisition.

DB resource allocation. A range of work [7, 42, 44, 51, 52, 59,
64, 72, 77] addresses multi-resource allocation for databases. Prior
research concentrates on physical resource isolation [51, 64], intra-
application interference [44], and fixed resource reservations for
SQL stores [52]. However, these do not address logical resource
contention and how transactions acquire resources gradually. Other
related efforts aim for performance isolation via latency SLAs [22]/
SLOs [9]. Predictable performance [47, 68], often via admission
control techniques [25, 80], is another area of focus that is comple-
mentary to the problem we address with fair sharing.

Transaction scheduling. Transaction scheduling has predomi-
nantly been tackled through the lens of concurrency control [12, 13,
54, 57] to improve performance. Most of these techniques operate
within the (often implicit) constraint of arrival order (FIFO) and
react to conflicts as they appear [1, 3, 4, 43, 45, 49, 53, 66, 67, 74,
78, 79, 81]. Some methods address the transaction schedule more
explicitly by reordering the schedule after transaction commit [50]
and/or abort [16, 33] but do not address performance isolation. De-
terministic databases, which assume access to the full read-write
sets of transactions, also schedule batches of requests explicitly
via FIFO order [35–37, 73] or by partitioning workloads based on
hot items [28, 56, 58, 60, 61, 82] for performance rather than fair-
ness. DRFT complements these approaches by ensuring fair sharing
for transactions. In particular, DRFT integrates a state-of-the-art
scheduling policy, SMF [18] to achieve high throughput.

9 CONCLUSION
In this paper, we address the problem of fair sharing for transac-
tions. We illustrate how ensuring fairness in this setting differs
from prior work and highlight the challenges to providing both the
share guarantee and strategy-proofness. We subsequently propose
the Dominant Resource Fair Transaction (DRFT) scheduler, which
accurately accounts for the item usage of each request to provide
fairness between clients. DRFT also navigates the tradeoff between
fairness and throughput, offering the flexibility for system oper-
ators to adapt to diverse workload needs. We evaluate DRFT on
a range of workloads, showing that it ensures fairness with high
performance and minimal overheads.

ACKNOWLEDGMENTS
We thank Dave Cecere, Shilpa Lawande, members of the Sky Lab,
and the VLDB anonymous reviewers for their insightful feedback.
This work is supported by gifts from Accenture, AMD, Anyscale,
Google, IBM, Intel, Mohamed Bin Zayed University of Artificial
Intelligence, Samsung SDS, SAP, and VMware.

REFERENCES
[1] 2020. MySQL Transactional and Locking Statements. https://dev.mysql.com/

doc/refman/8.0/en/sql-transactional-statements.html
[2] 2021. Sharding Graph Data with Neo4j Fabric. https://neo4j.com/developer/

neo4j-fabric-sharding/
[3] 2024. CockroachDB Transaction Layer. https://www.cockroachlabs.com/docs/

stable/architecture/transaction-layer
[4] 2024. PostgreSQL. https://www.postgresql.org/
[5] 2024. RocksDB Tuning Guide. https://github.com/facebook/rocksdb/wiki/

RocksDB-Tuning-Guide
[6] Atul Adya, Barbara Liskov, and Patrick O’Neil. 2000. Generalized Isolation Level

Definitions. (2000), 67–78.
[7] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, and Eno

Thereska. 2014. End-to-end performance isolation through virtual datacenters.
In Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation (Broomfield, CO) (OSDI’14). USENIX Association, USA, 233–248.

[8] Anonymous. 2024. Artifact link. https://github.com/audreyccheng/fair-txn-
scheduler

[9] Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J. Franklin,
and David A. Patterson. 2011. PIQL: success-tolerant query processing in the
cloud. Proc. VLDB Endow. 5, 3 (nov 2011), 181–192.

[10] AWS. 2024. Quotas and constraints for Amazon RDS. https://docs.aws.amazon.
com/AmazonRDS/latest/UserGuide/CHAP_Limits.html

[11] Jon C. R. Bennett and Hui Zhang. 1996. WF2Q: worst-case fair weighted fair
queueing. In Proceedings of the Fifteenth Annual Joint Conference of the IEEE
Computer and Communications Societies Conference on The Conference on Com-
puter Communications - Volume 1 (San Francisco, California) (INFOCOM’96). IEEE
Computer Society, USA, 120–128.

[12] Philip A Bernstein and Nathan Goodman. 1983. Multiversion concurrency
control—theory and algorithms. ACM Transactions on Database Systems (TODS)
8, 4 (1983), 465–483.

[13] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

[14] BigQuery. 2024. BigQuery Multi-statement Transactions. https://cloud.google.
com/bigquery/docs/transactions

[15] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.
TAO: Facebook’s distributed data store for the social graph. In 2013 USENIX
Annual Technical Conference (USENIX ATC ’13). 49–60.

[16] Matthew Burke, Florian Suri-Payer, Jeffrey Helt, Lorenzo Alvisi, and Natacha
Crooks. 2023. Morty: Scaling Concurrency Control with Re-Execution. In Pro-
ceedings of the Eighteenth European Conference on Computer Systems (Rome,
Italy) (EuroSys ’23). Association for Computing Machinery, New York, NY, USA,
687–702.

[17] Yang Cao, Wenfei Fan, Weijie Ou, Rui Xie, and Wenyue Zhao. 2023. Transaction
Scheduling: From Conflicts to Runtime Conflicts. Proc. ACM Manag. Data 1, 1,
Article 26 (may 2023), 26 pages.

[18] Audrey Cheng, Aaron Kabcenell, Xiao Shi, Jason Chan, Peter Bailis, Natacha
Crooks, and Ion Stoica. 2024. Towards Optimal Transaction Scheduling. Proc.
VLDB Endow. 17, 4 (jul 2024).

[19] Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa Lawande, Hamza Qadeer, Jason
Chan, Harrison Tin, Ryan Zhao, Peter Bailis, Mahesh Balakrishnan, Nathan
Bronson, Natacha Crooks, and Ion Stoica. 2022. TAOBench: An End-to-End
Benchmark for Social Network Workloads. Proc. VLDB Endow. 15, 9 (may 2022),
1965–1977.

[20] Audrey Cheng, Xiao Shi, Lu Pan, Anthony Simpson, Neil Wheaton, Shilpa
Lawande, Nathan Bronson, Peter Bailis, Natacha Crooks, and Ion Stoica. 2021.
RAMP-TAO: Layering Atomic Transactions on Facebook’s Online TAO Data
Store. Proceedings of the VLDB Endowment 14, 12 (2021), 3014–3027.

[21] Audrey Cheng, Jack Waudby, Hugo Firth, Natacha Crooks, and Ion Stoica. 2024.
Mammoths are Slow: The Overlooked Transactions of Graph Data. Proc. VLDB
Endow. 17, 4 (mar 2024), 904–911.

[22] Yun Chi, Hyun Jin Moon, and Hakan Hacigümüş. 2011. iCBS: incremental cost-
based scheduling under piecewise linear SLAs. Proc. VLDB Endow. 4, 9 (jun 2011),
563–574.

[23] Google Cloud. 2024. Strategic Cloud Capacity Planning Using the Google
Cloud Architecture Framework. https://www.googlecloudcommunity.com/
gc/Community-Blogs/Strategic-Cloud-Capacity-Planning-Using-the-Google-

Cloud/ba-p/178296
[24] Cloudflare. 2024. Introducing Advanced Rate Limiting. https://blog.cloudflare.

com/advanced-rate-limiting/
[25] CockroachDB. 2024. Admission Control in CockroachDB: How It Protects

Against Unexpected Overload. https://www.cockroachlabs.com/blog/admission-
control-unexpected-overload/

[26] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-
mary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[27] The Transaction Processing Performance Council. 2021. TPC-C. http://www.
tpc.org/tpcc/

[28] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: A
Workload-Driven Approach to Database Replication and Partitioning. Proc.
VLDB Endow. 3, 1–2 (sep 2010), 48–57.

[29] Databricks. 2024. Databricks SQL. https://www.databricks.com/product/
databricks-sql

[30] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. Oltp-bench: An Extensible Testbed for Benchmarking Relational
Databases. Proceedings of the VLDB Endowment 7, 4, 277–288.

[31] Danny Dolev, Dror G. Feitelson, Joseph Y. Halpern, Raz Kupferman, and Nathan
Linial. 2012. No justified complaints: on fair sharing of multiple resources. In
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference
(Cambridge, Massachusetts) (ITCS ’12). Association for Computing Machinery,
New York, NY, USA, 68–75.

[32] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor,
and Michael Strum. 2017. Optimizing Space Amplification in RocksDB.. In CIDR,
Vol. 3. 3.

[33] Zhiyuan Dong, Zhaoguo Wang, Xiaodong Zhang, Xian Xu, Changgeng Zhao,
Haibo Chen, Aurojit Panda, and Jinyang Li. 2023. Fine-Grained Re-Execution
for Efficient Batched Commit of Distributed Transactions. Proc. VLDB Endow. 16,
8 (apr 2023), 1930–1943.

[34] Facebook. 2023. RocksDB Github. https://github.com/facebook/rocksdb
[35] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking Serializable Multiversion

Concurrency Control. Proc. VLDB Endow. 8, 11 (jul 2015), 1190–1201.
[36] Jose M Faleiro, Daniel J Abadi, and Joseph M Hellerstein. 2017. High performance

transactions via early write visibility. Proceedings of the VLDB Endowment 10, 5
(2017).

[37] Jose M Faleiro, Alexander Thomson, and Daniel J Abadi. 2014. Lazy evaluation
of transactions in database systems. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. 15–26.

[38] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. 2012. Multi-resource
fair queueing for packet processing (SIGCOMM ’12). Association for Computing
Machinery, New York, NY, USA, 1–12.

[39] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. 2011. Dominant resource fairness: fair allocation of multiple
resource types. In Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation (Boston, MA) (NSDI’11). USENIX Association, USA,
323–336.

[40] S Jamaloddin Golestani. 1994. A self-clocked fair queueing scheme for broadband
applications. In Proceedings of INFOCOM’94 Conference on Computer Communi-
cations. IEEE, 636–646.

[41] Pawan Goyal, Harrick M. Vin, and Haichen Chen. 1996. Start-time fair queue-
ing: a scheduling algorithm for integrated services packet switching networks.
SIGCOMM Comput. Commun. Rev. 26, 4 (aug 1996), 157–168.

[42] Ajay Gulati, Arif Merchant, and Peter J. Varman. 2010. mClock: handling through-
put variability for hypervisor IO scheduling. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (Vancouver, BC,
Canada) (OSDI’10). USENIX Association, USA, 437–450.

[43] Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu. 2021. Releasing locks as early
as you can: Reducing contention of hotspots by violating two-phase locking. In
Proceedings of the 2021 International Conference on Management of Data. 658–670.

[44] Yigong Hu, Gongqi Huang, and Peng Huang. 2023. Pushing Performance Isola-
tion Boundaries into Application with pBox. In Proceedings of the 29th Symposium
on Operating Systems Principles (Koblenz, Germany) (SOSP ’23). Association for
Computing Machinery, New York, NY, USA, 247–263.

[45] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: A Raft-Based HTAP
Database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[46] Lexiang Huang, Matthew Magnusson, Abishek Bangalore Muralikrishna, Salman
Estyak, Rebecca Isaacs, Abutalib Aghayev, Timothy Zhu, and Aleksey Charapko.
2022. Metastable Failures in the Wild. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad,
CA, 73–90.

[47] Virajith Jalaparti, Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Antony
Rowstron. 2012. Bazaar: Enabling predictable performance in datacenters. Mi-
crosoft Res., Cambridge, UK, Tech. Rep. MSR-TR-2012-38 (2012).

[48] Delta Lake. 2024. Delta Lake Transactions. https://delta-io.github.io/delta-
rs/how-delta-lake-works/delta-lake-acid-transactions/

https://dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.html
https://neo4j.com/developer/neo4j-fabric-sharding/
https://neo4j.com/developer/neo4j-fabric-sharding/
https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer
https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer
https://www.postgresql.org/
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/audreyccheng/fair-txn-scheduler
https://github.com/audreyccheng/fair-txn-scheduler
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Limits.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Limits.html
https://cloud.google.com/bigquery/docs/transactions
https://cloud.google.com/bigquery/docs/transactions
https://www.googlecloudcommunity.com/gc/Community-Blogs/Strategic-Cloud-Capacity-Planning-Using-the-Google-Cloud/ba-p/178296
https://www.googlecloudcommunity.com/gc/Community-Blogs/Strategic-Cloud-Capacity-Planning-Using-the-Google-Cloud/ba-p/178296
https://www.googlecloudcommunity.com/gc/Community-Blogs/Strategic-Cloud-Capacity-Planning-Using-the-Google-Cloud/ba-p/178296
https://blog.cloudflare.com/advanced-rate-limiting/
https://blog.cloudflare.com/advanced-rate-limiting/
https://www.cockroachlabs.com/blog/admission-control-unexpected-overload/
https://www.cockroachlabs.com/blog/admission-control-unexpected-overload/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
https://www.databricks.com/product/databricks-sql
https://www.databricks.com/product/databricks-sql
https://github.com/facebook/rocksdb
https://delta-io.github.io/delta-rs/how-delta-lake-works/delta-lake-acid-transactions/
https://delta-io.github.io/delta-rs/how-delta-lake-works/delta-lake-acid-transactions/

[49] Hyeontaek Lim, Michael Kaminsky, and David G Andersen. 2017. Cicada: De-
pendably fast multi-core in-memory transactions. In Proceedings of the 2017 ACM
International Conference on Management of Data. 21–35.

[50] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: A Fast and Practical
Deterministic OLTP Database. Proc. VLDB Endow. 13, 12 (jul 2020), 2047–2060.

[51] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. 2015.
Retro: Targeted resource management in multi-tenant distributed systems. In
Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation (Oakland, CA) (NSDI’15). USENIX Association, USA, 589–603.

[52] Vivek Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, and Sura-
jit Chaudhuri. 2013. SQLVM: Performance Isolation in Multi-Tenant Relational
Database-as-a-Service. In CIDR 2013 (cidr 2013 ed.). 6th Biennial Conference on
Innovative Data Systems Research.

[53] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast serializ-
able multi-version concurrency control for main-memory database systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. 677–689.

[54] Christos H Papadimitriou. 1979. The Serializability of Concurrent Database
Updates. Journal of the ACM (JACM) 26, 4 (1979), 631–653.

[55] Abhay K. Parekh and Robert G. Gallager. 1992. A generalized processor sharing
approach to flow control in integrated services networks—the single node case.
In Proceedings of the Eleventh Annual Joint Conference of the IEEE Computer
and Communications Societies on One World through Communications (Vol. 2)
(Florence, Italy) (IEEE INFOCOM ’92). IEEE Computer Society Press, Washington,
DC, USA, 915–924.

[56] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP systems. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data. 61–72.

[57] Dan R. K. Ports and Kevin Grittner. 2012. Serializable snapshot isolation in
PostgreSQL. Proc. VLDB Endow. 5, 12 (aug 2012), 1850–1861.

[58] Guna Prasaad, Alvin Cheung, and Dan Suciu. 2020. Handling highly contended
OLTP workloads using fast dynamic partitioning. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 527–542.

[59] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica. 2016. FairRide:
near-optimal, fair cache sharing. In Proceedings of the 13th Usenix Conference
on Networked Systems Design and Implementation (Santa Clara, CA) (NSDI’16).
USENIX Association, USA, 393–406.

[60] Thamir M Qadah and Mohammad Sadoghi. 2018. Quecc: A queue-oriented,
control-free concurrency architecture. In Proceedings of the 19th International
Middleware Conference. 13–25.

[61] Dai Qin, Angela Demke Brown, and Ashvin Goel. 2021. Caracal: Contention
management with deterministic concurrency control. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. 180–194.

[62] RocksDB. 2025. RocksDB Users and Use Cases. https://github.com/facebook/
rocksdb/wiki/RocksDB-Users-and-Use-Cases

[63] Yangjun Sheng, Anthony Tomasic, Tieying Zhang, and Andrew Pavlo. 2019.
Scheduling OLTP Transactions via Learned Abort Prediction. In Proceedings of
the Second International Workshop on Exploiting Artificial Intelligence Techniques
for Data Management (Amsterdam, Netherlands) (aiDM ’19). Association for
Computing Machinery, New York, NY, USA, Article 1, 8 pages.

[64] David Shue, Michael J. Freedman, and Anees Shaikh. 2012. Performance Isolation
and Fairness for Multi-Tenant Cloud Storage. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12). USENIX Association,
Hollywood, CA, 349–362.

[65] Snowflake. 2024. Snowflake Unistore. https://www.snowflake.com/en/data-
cloud/workloads/unistore/

[66] Chunzhi Su, Natacha Crooks, Cong Ding, Lorenzo Alvisi, and Chao Xie. 2017.
Bringing modular concurrency control to the next level. In Proceedings of the
2017 ACM International Conference on Management of Data. 283–297.

[67] Chunzhi Su, Natacha Crooks, Cong Ding, Lorenzo Alvisi, and Chao Xie. 2017.
Bringing modular concurrency control to the next level. In Proceedings of the

2017 ACM International Conference on Management of Data. 283–297.
[68] Zilong Tan and Shivnath Babu. 2016. Tempo: robust and self-tuning resource

management in multi-tenant parallel databases. Proc. VLDB Endow. 9, 10 (jun
2016), 720–731.

[69] Chuzhe Tang, Zhaoguo Wang, Xiaodong Zhang, Qianmian Yu, Binyu Zang, Haib-
ing Guan, and Haibo Chen. 2022. Ad Hoc Transactions in Web Applications: The
Good, the Bad, and the Ugly. In Proceedings of the 2022 International Conference
on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for
Computing Machinery, New York, NY, USA, 4–18.

[70] Dixin Tang, Hao Jiang, and Aaron J. Elmore. 2017. Adaptive Concurrency Control:
Despite the Looking Glass, One Concurrency Control Does Not Fit All. In CIDR,
Vol. 2.

[71] The H-Store team. 2013. SmallBank Benchmark. http://hstore.cs.brown.edu/
documentation/deployment/benchmarks/smallbank/

[72] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony Row-
stron, Tom Talpey, Richard Black, and Timothy Zhu. 2013. IOFlow: a software-
defined storage architecture. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13). Associa-
tion for Computing Machinery, New York, NY, USA, 182–196.

[73] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Partitioned
Database Systems (SIGMOD ’12). Association for Computing Machinery, New
York, NY, USA, 1–12.

[74] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles. 18–32.

[75] Hal R Varian. 1973. Equity, envy, and efficiency. (1973).
[76] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,

Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In Proceedings of the
2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA,
1041–1052.

[77] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Randy Katz, and Ion
Stoica. 2012. Cake: enabling high-level SLOs on shared storage systems. In Pro-
ceedings of the Third ACM Symposium on Cloud Computing (San Jose, California)
(SoCC ’12). Association for Computing Machinery, New York, NY, USA, Article
14, 14 pages.

[78] Jia-Chen Wang, Ding Ding, Huan Wang, Conrad Christensen, Zhaoguo Wang,
Haibo Chen, and Jinyang Li. 2021. Polyjuice: High-Performance Transactions
via Learned Concurrency Control. In OSDI. 198–216.

[79] Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, and Jinyang Li. 2016.
Scaling multicore databases via constrained parallel execution. In Proceedings of
the 2016 International Conference on Management of Data. 1643–1658.

[80] Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Calton Pu, and
Hakan HacigümüŞ. 2011. ActiveSLA: a profit-oriented admission control frame-
work for database-as-a-service providers. In Proceedings of the 2nd ACM Sym-
posium on Cloud Computing (Cascais, Portugal) (SOCC ’11). Association for
Computing Machinery, New York, NY, USA, Article 15, 14 pages.

[81] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. Tic-
toc: Time traveling optimistic concurrency control. In Proceedings of the 2016
International Conference on Management of Data. 1629–1642.

[82] Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim Kraska. 2020. Chiller:
Contention-centric transaction execution and data partitioning for modern net-
works. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 511–526.

[83] L. Zhang. 1990. Virtual clock: a new traffic control algorithm for packet switching
networks. In Proceedings of the ACM Symposium on Communications Architectures
& Protocols (Philadelphia, Pennsylvania, USA) (SIGCOMM ’90). Association
for Computing Machinery, New York, NY, USA, 19–29.

https://github.com/facebook/rocksdb/wiki/RocksDB-Users-and-Use-Cases
https://github.com/facebook/rocksdb/wiki/RocksDB-Users-and-Use-Cases
https://www.snowflake.com/en/data-cloud/workloads/unistore/
https://www.snowflake.com/en/data-cloud/workloads/unistore/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Unfairness in Practice
	2.2 The Status Quo

	3 Fairness for Transactions
	3.1 A Fair Scheduler for One Resource
	3.2 Scheduling Over Multiple Resources
	3.3 Challenges in Fair Transaction Scheduling

	4 Accounting for Item Usage
	5 Achieving Fairness
	5.1 Memoryless DRFT
	5.2 Generalized DRFT
	5.3 Fairness Properties
	5.4 Discussion

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Fairness on Application Benchmarks
	7.3 Fairness Properties
	7.4 The Impact of
	7.5 Fairness Overheads

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

