
GlobalStore: Cost-Optimized Object Storage Across
Regions and Clouds

Shu Liu1, Xiangxi Mo1, Moshik Hershcovitch2, Henric Zhang1, Audrey Cheng1

Guy Girmonsky2, Gil Vernik2, Michael Factor2, Tiemo Bang1, Soujanya Ponnapalli1
Natacha Crooks1, Joseph E. Gonzalez1, Danny Harnik2, Ion Stoica1

1UC Berkeley 2IBM Research

ABSTRACT
Modern applications span multiple clouds to reduce costs, avoid
vendor lock-in, and leverage low-availability resources in another
cloud. However, standard object stores operate within a single cloud,
forcing users to manually manage data placement across clouds,
i.e., navigate their diverse APIs and handle heterogeneous costs for
network and storage. This is often a complex choice: users must
either pay to store objects in a remote cloud, or pay to transfer them
over the network based on application access patterns and cloud
provider cost offerings. To address this, we present GlobalStore, a
unified object store that addresses cost-optimal data management
across regions and clouds. GlobalStore introduces a virtual object
and bucket API to hide the complexity of interacting with mul-
tiple clouds. At its core, GlobalStore has a novel TTL-based data
placement policy that dynamically replicates and evicts objects
according to application access patterns while optimizing for lower
cost. Our evaluation shows that across various workloads, Global-
Store reduces the overall cost by up to 6× over academic baselines
and commercial alternatives like AWS multi-region buckets. Glob-
alStore also has comparable latency, and its availability and fault
tolerance are on par with standard cloud offerings.

PVLDB Reference Format:
Shu Liu1, Xiangxi Mo1, Moshik Hershcovitch2, Henric Zhang1, Audrey
Cheng1, Guy Girmonsky2, Gil Vernik2, Michael Factor2, Tiemo Bang1,
Soujanya Ponnapalli1, and Natacha Crooks1, Joseph E. Gonzalez1, Danny
Harnik2, Ion Stoica1 . GlobalStore: Cost-Optimized Object Storage Across
Regions and Clouds. PVLDB, 14(1): XXX-XXX, 2025.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/lynnliu030/vldb25.

1 INTRODUCTION
In the rapidly evolving landscape of cloud computing, applications
increasingly span multiple regions and clouds. Organizations adopt
multi-cloud software to reduce costs, avoid vendor lock-in, im-
prove fault tolerance, increase the availability of specific capabil-
ities beyond a single region or cloud, or support geo-distributed
services [35, 54, 57]. For instance, deploying a model serving service
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit to view a copy of this license. For any use beyond those covered by this
license, obtain permission by emailing info@vldb.org. Copyright is held by the
owner/author(s). Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

on multiple clouds reduces monetary costs by up to 50% on low-
availability resources (e.g., GPUs) compared to a single cloud [56].
Today, these applications rely on object storage services (e.g., Ama-
zon S3, Google Cloud Storage, Azure Blob Storage, and IBM Cloud
Object Store [11–14]) to manage vast amounts of data.

Unfortunately, existing object stores operate within their respec-
tive clouds and typically limit their operations to specific regions;
commercial systems like AWS and GCP only support multi-region
but not multi-cloud replication [17]. As a result, users manually
handle data placement across clouds or regions, and their solutions
cluster around two extremes: store locally or replicate everywhere.
While storing all data in a single region simplifies data management
and reduces storage costs, it increases egress expenses when data
is accessed from another cloud region [2, 3, 8, 54]. On average, data
transfers across clouds cost 23× more compared to transfers within
the same cloud. On the other hand, replicating data to multiple re-
gions and clouds [19, 33, 39, 50] may reduce network access fees but
can significantly increase storage expenses. For instance, storing the
training data for a Llama3 model with 15 trillion training tokens (60
TB in size) [38] in AWS, GCP, and Azure standard storage buckets
across different regions costs up to $300K per month [2, 3, 8].

A plethora of academic solutions have been proposed to address
data storage in multi-region and multi-cloud settings. However,
these solutions are optimized to reduce latency [15, 51, 52] and of-
ten ignore data transfer costs, which become prohibitive across mul-
tiple clouds. The most relevant work in this area is SPANStore [55],
a multi-cloud storage system considering cost and latency trade-
offs. However, SPANStore does not account for replication costs
and assumes that data access patterns do not change over time,
significantly limiting its practical applicability.

Consequently, there is a need for a multi-region, multi-cloud
data placement solution that minimizes the total monetary cost for
various cloud applications. The key challenge in developing such a
system is that cloud applications are highly diverse, and their data
access patterns vary across several dimensions: object size, location
distribution, and the recency and frequency of data accesses. For
instance, for applications that perform repeated reads, like model
training, it is cheaper to replicate data to accessed regions and
avoid additional network costs for subsequent reads. In contrast,
for applications that read infrequently, like satellite imagery, it is
more cost-effective to pay for network transfers occasionally.

In this paper, we present GlobalStore, a cost-optimized multi-
cloud object store that adapts to the diverse and dynamic access
patterns of applications. GlobalStore provides a single uniform API
that emulates a local object store and transparently manages data
across clouds and regions while minimizing cost. In a nutshell,
GlobalStore provides an overlay cloud service on top of existing

https://doi.org/XX.XX/XXX.XX
https://github.com/lynnliu030/vldb25
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

object stores that operate in specific regions and clouds. It decides
where an object should be stored and the locations it should be
replicated to, if at all, and consistently manages these data copies.

At a high level, GlobalStore solves a caching problem: it decides
to “cache” (i.e., replicate objects to their accessed cloud region) and
to “evict” (i.e., remove object copies from cloud regions if they are
unlikely to be re-accessed) based on application access patterns.
Unlike traditional caches that optimize for performance and have a
finite capacity, GlobalStore minimizes monetary costs as capacity
is virtually unlimited; it accounts for the non-trivial network and
storage costs incurred to cache objects.

Accordingly, GlobalStore needs to make two decisions: (i) when
to cache (i.e., replicate) an object and (ii) when to evict an object.
First, GlobalStore adopts a store-local and copy-on-read replication
policy. When a user writes an object, GlobalStore stores it in the
local region to minimize cost and latency. If a user reads this object
from another cloud region, GlobalStore replicate it from an available
region with the lowest transfer fees and ensures that network costs
are only incurred for objects that are accessed.

Second, GlobalStore leverages a novel adaptive Time-To-Live
(TTL)-based eviction policy that balances the cost of storing and
transferring an object if the object is accessed again. Our policy
reduces costs by adapting the TTL assigned to objects based on
the current workload and attempts to learn the optimal TTL for
each replica. GlobalStore captures past workload access patterns
to estimate TTL costs and periodically updates these values while
remaining robust to workload variance compared to traditional
TTL-based methods (Section 6). We also show in Section 3.3.2 how
latency considerations can be incorporated into our cost-centric
framework, generalizing it to hybrid clouds [4, 39] and clouds with-
out explicit cost models [6].

We implement GlobalStore to seamlessly integrate with exist-
ing clouds (e.g., Azure Blob, AWS S3, and GCS). GlobalStore offers
a virtual bucket and virtual object abstraction via a standard S3-
compatible API, allowing users to manage data as if all their data
were in a single region. GlobalStore provides the same consistency
guarantees [21, 42, 48] as its underlying object stores and similar
fault tolerance guarantees as existing services. We evaluate Global-
Store on various workloads retrieved from IBM object store traces
in the Storage Networking Industry Association (SNIA). Our proto-
type has comparable latency relative to the state-of-the-art systems,
and our simulations show that GlobalStore achieves up to 6× cost
savings. In summary, our contributions are as follows:

(1) We design a novel cost-optimized data replication policy
that can adapt to diverse workload patterns in the multi-
region, multi-cloud setting.

(2) We implement GlobalStore, a cost-efficient multi-cloud stor-
age system that provides virtual object and bucket abstrac-
tions, seamlessly integrating with S3, GCS, and Azure Blob
Storage as storage backends.

(3) We evaluate against state-of-the-art policies, showing that
GlobalStore’s policy can substantially reduce cost by up
to 6× over SNIA object store traces [30] compared to TTL-
CC[25], SPANStore[55], and commercial systems like AWS
Multi-Region Replication[17] and JuiceFS[36].

2 GLOBALSTORE PLACEMENT POLICY
We first provide an overview of GlobalStore. GlobalStore seeks to
minimize dollar cost given a particular cloud pricing model (Sec-
tion 2.1) and modes of operations (Section 2.2). To do so, it adopts
an on-demand approach to object placement and leverages a sim-
ple write-local policy for data storage, which it combines with a
read-driven policy for data replication (Section 2.3)

2.1 Cloud Pricing Models
Cloud pricing consists of data storage, network, and operational
charges [2]. Most cloud vendors charge storage per GB per month
based on the geographic region, provider, and storage class. For
example, standard storage in gcp:southamerica-east1 costs 1.75×
more than S3 standard storage in aws:us-east-1. The cloud provider
also charges network (egress) costs based on the volume of data
moved out of a particular cloud region [3]. This can differ by up
to 15× within the same cloud and 19× between different clouds.
Operations made to the cloud storage service are also charged: this
cost is usually much cheaper than storage and network charges,
with an average of 0.04 cents per thousand requests. Thus, we will
mainly consider storage and network pricing in our discussion.

2.2 Modes of Operations
We explore two modes of object replication and eviction. In the
Fixed Base (FB) mode, each object has a designated primary region
where its replica is never evicted. For example, data initially stored
in AWS remains there permanently, while additional replicas are
added or removed in other cloud regions based on demand. Alterna-
tively, the Free Placement (FP) mode allows replicas to be placed
in any region, with the only requirement being that at least 𝑘 copies
are always maintained (e.g., we explore 𝑘 = 1).

2.3 GlobalStore Overview
GlobalStore, as a multi-cloud storage system, must fundamentally
answer these questions: where to write objects, where to read ob-
jects from, and how to replicate. We briefly describe them in turn.
Write Policy GlobalStore adopts a write-local strategy. For data
storage, GlobalStore stores data in the region where the write re-
quest originates. This minimizes write latency and reduces egress
costs for write operations, ensuring data is immediately available
in the local region. In the fixed base mode, we set the base region
of the object to the initial local write location. Consecutive write
to the objects creates a new object with an updated version in its
write location, where versioning is managed by GlobalStore control
plane (Section 4.2).
Read and Replication Policy GlobalStore adopts a replicate-on-
read strategy. Upon receiving a read request, GlobalStore selects
the cheapest region where the replica resides to retrieve the data
and creates a local replica to optimize future reads. Replicate-on-
read contrasts with proactive replicate-on-write methods used in
AWS Multi-Region bucket and SPANStore [17, 55], which pushes all
data to a predicted set of regions upon write operations. Unless the
prediction is accurate, such a model can lead to high egress costs
and storage charges (Section 3.2). GlobalStore reactively replicates
to reduce future egress costs and performs eviction described in
Section 3 to keep storage costs in check.

3 GLOBALSTORE EVICTION POLICY
In this section, we discuss a cost-minimized cache eviction problem
in a two-region base and cache setting (Section 3.1). We then intro-
duce our cost-aware eviction policy (Section 3.2) and show how it
extends to multiple regions and clouds (Section 3.3).

3.1 2-Region, Base and Cache Problem
Consider a two-region setup: a base region storing all the objects
that never get evicted, and a cache region that reads from base and
replicates on read. We denote 𝑆 as the storage cost ($/GB*Month)
in the base region and 𝑁 as the egress cost ($/GB) for moving an
object over the network between the base and the cache region1.
Aggressive replication in the cache region can lead to prohibitively
high storage costs, especially as replicas accumulate over time. Thus,
we now explore how to cost-effectively evict replicas in the cache
region under this simple 2-region setup.

3.1.1 The Clairvoyant Greedy Policy (CGP). We measure ourselves
against a cost-optimal policy that is given access to an oracle that
knows exactly when an object will be read in the future (if at all) in
the cache region. This is akin to the Belady cache eviction algorithm
[24], but adapted to our problem setup. A key parameter in the
clairvoyant strategy is the break-even time. This is the duration in
which the cost of storing an object equals the cost of evicting it and
fetching it again across the network (i.e., the storage cost equals
the egress cost). We denote this as 𝑇even, where:

𝑇even = 𝑁 /𝑆 (1)
For example, we have Coststorage = $0.026 per GB per month

for aws:us-west1 and Costegress = $0.02 per GB between aws:us-
east1 and aws:us-west1. Thus, 𝑇even ≈ 0.77 months for the edge
between these two regions.2

Since the eviction of one object is independent of others, it is
clear that the best one can do is to cache an object as long as the
cost of storage is lower than the cost of bringing it again over the
network and vice versa. Every time an object is read, the clairvoyant
policy accesses an oracle that returns the time duration until this
object will next be read. We denote 𝑇next (𝑜, 𝑖) as the time between
the 𝑖𝑡ℎ and 𝑖 + 1 reads of object 𝑜 . The strategy then compares
𝑇next with the break-even time 𝑇even and decides whether to evict
the object. An object with no next GET is immediately evicted. In
summary, the clairvoyant policy upon the 𝑖𝑡ℎ access to object 𝑜
works as follows:

𝐶𝑙𝑎𝑖𝑟𝑣𝑜𝑦𝑎𝑛𝑡 (𝑜, 𝑖) =
{

evict : 𝑇next (𝑜, 𝑖) > 𝑇even
keep : 𝑇next (𝑜, 𝑖) ≤ 𝑇even

3.1.2 The 𝑇even-policy. A simple policy (𝑇even-policy) will be set-
ting TTL to the break-even time 𝑇even = 𝑁

𝑆
and refresh upon each

access. It has the following properties:
(1) The cost of the𝑇even-policy is at most twice the clairvoyant

policy.
(2) ∀ eviction policy ∃ a workload for which the policy costs

twice as much as the clairvoyant policy.
1For simplicity, we are ignoring the associated operation costs (e.g., cost for every PUT
or GET) that are typically lower than the storage and egress costs.
2Prices taken in Sept. 2023.

Proof for (1). The cost per GB for a single object under the optimal
clairvoyant policy includes paying network cost 𝑁 for initial GET,
storage cost 𝑇next (𝑖) · 𝑆 for storing the object until the next access,
and network cost 𝑁 for re-fetching the object after eviction:

𝑁 +
∑︁

𝑖 |𝑇next (𝑖)≤𝑇even

𝑇next (𝑖) · 𝑆 +
∑︁

𝑖 |𝑇next (𝑖)>𝑇even

𝑁

The cost of the 𝑇even-policy policy is:

𝑁 +
∑︁

𝑖 |𝑇next (𝑖)≤𝑇even

𝑇next (𝑖) · 𝑆 +
∑︁

𝑖 |𝑇next (𝑖)>𝑇even

(𝑁
𝑆

· 𝑆 + 𝑁) + 𝑁

𝑆
· 𝑆

The first two parts are identical. However, for 𝑇next (𝑖) > 𝑇even,
𝑇even-policy needs to pay additional storage cost until the break-
even point𝑁

𝑆
· 𝑆 , evict it, and pay for network cost to re-fetch. The

last 𝑁
𝑆
· 𝑆 accounts for keeping this object around after its last GET.

Thus, 𝑇even-policy is bounded by 2× that of the optimal.

Proof for (2). We claim that for any eviction strategy, an adversar-
ial workload exists that costs more than twice that of the optimal
strategy. Consider a single object. After its first access, the eviction
policy 𝑃 must decide when to evict. If 𝑃 decides to evict the object
after more than 𝑇even time, then the workload never asks for this
object again. In such a case, the optimal cost (costoptimal) is just the
initial GET cost, 𝑁 , while the cost for policy 𝑃 (costP) is greater
than 𝑁 +𝑇even · 𝑆 = 2𝑁 , double the optimal.

Alternatively, if policy 𝑃 evicts the object earlier (at 𝑡 < 𝑇even),
the workload issues a new GET shortly after 𝑡+𝜀, where 𝑡+𝜀 < 𝑇even.
The optimal cost costoptimal = 𝑁 + (𝑡 + 𝜀) · 𝑆 in this case , while
the costP becomes 2𝑁 + 𝑡 · 𝑆 . Since the object is in the cache again,
this process can repeat. After 𝑘 iterations, we have costoptimal =
𝑁 + (∑(𝑡𝑖 +𝜀))𝑆 whereas costP = (𝑘 +1)𝑁 + (∑ 𝑡)𝑆 . Their difference
grows as costP − costoptimal = 𝑘𝑁 + 𝑘𝜀. For large enough 𝑘 , since
costoptimal < (𝑘 + 1)𝑁 , 𝑘𝜀 > 𝑁 will cause costP − costoptimal >

costoptimal and give us a ratio ≥ 2.
These two properties demonstrate that if nothing is known apri-

ori about the workload, then the 𝑇even-policy is the safest strategy
one could hope for. However, distributions are not chosen adver-
sarially in reality. Quite a bit can be learned about the distributions
of the workload at hand, which should be used to reduce costs.

3.2 GlobalStore 2-Region Base & Cache Eviction
Now we discuss how GlobalStore policy learns workload distribu-
tions over time and aims to set the cost-optimal TTL for objects in
the 2-region setup.

3.2.1 TTL-based eviction. Inspired by 𝑇even, GlobalStore assigns
each replica (i.e., a copy of an object) a TTL (Time To Live) value. For
the free-placement (FP) mode, if the replica is not accessed within
TTL time, it will be evicted as long as it is not the sole remaining
replica. In fixed-base (FB) mode like the 2-region setup (Section 3.2),
the replica can only be evicted if it is not in the base location.

There are two common TTL-based eviction methods. The first,
used in CDNs [23], invalidates a cached object after its TTL expires,
regardless of access frequency, to prevent stale data. GlobalStore
takes a different approach and resets the TTL on each access to
reduce network costs and avoid evicting frequently accessed objects.
GlobalStore eviction policy periodically scans and evicts objects that

Parameter Description

𝑟𝑎𝑛𝑔𝑒 (𝑗) Time interval of the 𝑗𝑡ℎ cell
𝑡 (𝑗) Maximum time in 𝑟𝑎𝑛𝑔𝑒 (𝑗)
�̂� (𝑗) Mean time in 𝑟𝑎𝑛𝑔𝑒 (𝑗)
ℎ𝑖𝑠𝑡 (𝑗) Bytes re-read after time 𝑡 ∈ 𝑟𝑎𝑛𝑔𝑒 (𝑗)
𝑙𝑎𝑠𝑡 (𝑗) Bytes not read in 𝑡 ∈ 𝑟𝑎𝑛𝑔𝑒 (𝑗)

Table 1: Eviction parameters in GlobalStore.

have not been accessed within TTL time. The policy for evicting
object 𝑜 at region 𝑅 is as follows:

𝑃𝑜𝑙𝑖𝑐𝑦 (𝑜, 𝑅) =

evict : time since last access > TTL(𝑜, 𝑅)
& not sole copy

keep : otherwise

3.2.2 Adaptive TTL. The crux of GlobalStore’s approach is setting
the right TTLs for replicas. The main statistic we use to adapt TTL
is the time between accesses of objects, represented as a distribution
of 𝑇next at the cache region. We build a weighted histogram where
each cell corresponds to a time range, and the weight reflects the
total size of GETs within 𝑇next in that range. This histogram is
collected per region per workload. We define relevant notations in
Table 1. The value in each histogram cell is denoted as:

ℎ𝑖𝑠𝑡 (𝑗) =
∑︁

𝑜,𝑖 |𝑇next (𝑜,𝑖) ∈𝑟𝑎𝑛𝑔𝑒 (𝑗)
𝑠𝑖𝑧𝑒 (𝑜)

This histogram accounts for all re-reads in the cache region for the
workload. However, it does not account for what happens to objects
after their last access. For this, we use an additional histogram called
𝑙𝑎𝑠𝑡 to track the latest access time. Given these histograms and a
TTL value, we compute the expected cost for the TTL as:
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡 (𝑇𝑇𝐿) =

∑︁
𝑜∈𝑅

Requested

𝑆𝑖𝑧𝑒 (𝑜) · I[Fetched remotely] · 𝑁

+
∑︁

𝑗∈ℎ𝑖𝑠𝑡
𝑡 (𝑗)≤TTL

ℎ𝑖𝑠𝑡 (𝑗) · �̂� (𝑗) · 𝑆

+
∑︁

𝑗∈ℎ𝑖𝑠𝑡
𝑡 (𝑗)>TTL

ℎ𝑖𝑠𝑡 (𝑗) · (𝑁 + TTL · 𝑆)

+
∑︁

𝑗∈𝑙𝑎𝑠𝑡
𝑙𝑎𝑠𝑡 (𝑗) · TTL · 𝑆

The first term accounts for the initial read cost of all objects
requested from the region 𝑅, using an identity function over remote
reads. If it is a local read, the cost would be 0; if fetched remotely,
the cost would be 𝑁 . The second accounts for hits – objects that
are re-read and exist in the region. The third accounts for misses –
objects that are evicted and brought into the region with additional
network cost, and the last term accounts for storage costs of objects
that have not yet been re-read. We iterate over possible TTL values
at the same granularity as the histogram and select the one with
the lowest expected cost.

The best TTL chosen is influenced by the specific workload and
the network and storage costs. Figure 1 shows an example of the
expected cost as a function of TTL for an IBM trace with different

Figure 1: The expected cost as a function of TTL on a trace
with an hourly histogram. The dashed line shows the optimal
policy cost, and the dot marks the minimum cost point.

pricing choices. A lower value of 𝑇even indicates that storage costs
are higher (relative to the network costs) and means that shorter
TTLs would fare better, as seen in the example.

3.2.3 Granularity of Histogram. In prior discussions, we collected
a histogram to study cache region access distribution. In object
stores, bucket-level granularity reliably reflects workload access
patterns, as bucket distributions remain stable over time. Object-
level statistics, however, can be misleading. For instance, in one IBM
trace, there are bursts of 2-8 consecutive GETs to the same object
within 10 minutes of each other, followed by no further access to
that object. Methods that focus on learning each object’s pattern
separately [41] or assume Poisson-like distributions [25] fail to
capture this bursty behavior. GlobalStore generalize bucket-level
patterns and assign a TTL that ensures replicas remain available
during bursts but are evicted soon after.

The granularity of the histogram is also directly related to our
possible choices for setting the TTL. A more granular histogram
gives us additional information and allows us to choose TTLs more
accurately, achieving better cost savings. On the other hand, a large
histogram burdens the memory and computation requirements
of the system. Recall that the histogram should potentially cover
a time duration of many months, yet at times, the best eviction
policy calls for evicting objects within minutes or even seconds. To
balance this tradeoff, we support a variable range for histogram
cells and attempt to have high granularity for small TTL values
and low granularity for larger ones. For the first minute, we use a
per-second granularity (taking up 60 cells). Beyond that, we employ
a logarithmic base granularity with a low base of 1.02. This ensures
that the ratio between two consecutive potential TTL values is no
more than 2%. In turn, the difference in storage cost between two
consecutive TTLs is also bounded at 2% as the cost is linear in the
time the replicas are stored. Using 740 cells at this log granularity
covers (1.02)740 minutes, which amounts to almost 2 years. An
additional 60 cells cover the first minute, and we thus manage to
cover nearly 2 years with an 800-cell histogram.

To account for changing workload distributions and application
behavior over time, we opt to periodically collect a new histogram
(while still keeping the previous histogram). Once the new his-
togram has a sufficiently long history, the old histogram can be
discarded. Our investigations indicate that the histogram should be
longer than the 𝑇even time to be effective.

 3

Gc europe-west2-a Aw us-east-1

 westus

TTL (GS, AZ)

TTL (AZ, GS) TTL (AZ, S3)

TTL (S3, AZ)

TTL (GS, S3)

TTL (S3, GS)

S3

AZ

GS

Figure 2: The multi-cloud setting as a directed graph with a
TTL assigned per each directed edge.

3.3 GlobalStore Multi-Region Eviction
3.3.1 Choosing adaptive TTLs. We tackle the multi-region setting
by breaking the problem into a pairwise problem similar to the
2-region setup; then, we set the TTL for each pair of source and
target regions. Namely, we view the multi-region setting as a fully
directed graph where each node is a region, and for each directed
edge, we compute a TTL corresponding to this edge (as shown in
Figure 2).

The TTL assigned to an object at a specific region is then deduced
from the TTLs of the edges directed at this region. We denote
TTL(𝑅𝑖 , 𝑅 𝑗) as the chosen TTL value for the edge from region 𝑅𝑖
to region 𝑅 𝑗 and TTL(𝑜, 𝑅 𝑗) as the TTL assigned to an object 𝑜 at
region 𝑅 𝑗 . The eviction TTL of an object depends on the relevant
regions that hold a replica of the object 𝑜 . The TTL of the object at
each region is then chosen to be the minimal TTL of edges from all
such relevant regions. Namely:

TTL(𝑜, 𝑅 𝑗) = min
𝑖 |𝑜∈𝑅𝑖

TTL(𝑅𝑖 , 𝑅 𝑗)

The TTL of an edge is assigned as a function of the incoming
network cost, so the cheaper the cost, the lower the TTL. Since
we use the cheapest available source in case of a cache miss, this
corresponds to the minimal TTL. Our method for calculating an
edge’s TTL is detailed in Section 3.2: we take the storage cost at the
target, the network cost from some source region to the target, and
statistics histograms of the workload in the target region as input.
This final component is what makes our choice of TTLs adaptive.
As time goes by, we learn from the access patterns of the workloads
and change the associated TTLs accordingly.

Our approach assigns a local TTL to each object, which is the
minimum of all relevant edge TTLs where the source region has
replicas. This assumes a remote replica will still exist after the
local TTL expires, enabling cost-efficient retrieval. However, since
TTLs are set independently, this assumption may not always hold.
To ensure correctness, we filter out cases where the local TTL
plus storage start time exceeds the remote replica’s eviction time,
calculated as the replica’s start time plus its TTL. This prevents
reliance on replicas that may already be evicted.

3.3.2 Latency Considerations. A cost-centric policy could implic-
itly model performance, as resources often have associated price
tags. However, we observe that incorporating latency into a cost-
driven framework is particularly challenging since it requires as-
signing a cost value to read performance, which is specific to users,
applications, and objects.

 Rāgion

S3

EnĀ Usār Appliÿýtion

S3 Proxy Sārviÿā

Býtÿh Anýlytiÿs WorkloýĀ

S3 Proxy Sārviÿā

Dýtý Býÿkup

S3 Proxy Sārviÿā

 Rāgion

GS

 Rāgion

AZ

 Rāgion

S3

 Rāgion

GS

 Rāgion

AZ

MātýĀýtý Sārvār Highly Avýilýþlā RDMSS3
API

GS
API

AZ
API

S3 API

Figure 3: The system architecture of GlobalStore.

We propose a potential solution to model the price of cache
hits and ask how much a customer is willing to pay for cache
hits. Namely, if all objects are equally important, how much cost
would the user be willing to pay for additional low-latency local
read? We denote this value as user performance value or 𝑈perf-val,
in dollar cost per byte. We incorporate this into our methodology
of carefully choosing a TTL as follows: After finding the value
of TTL that promises the lowest expected cost, we check if there
is a higher TTL value for which the 𝑈perf-val bounds the average
cost per additional cache hit. More formally, if TTL′ represents the
eviction time that achieves the lowest expected cost, we choose the
highest TTL value such that

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡 (TTL) − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡 (TTL′)
object byte count between TTL and TTL′ ≤ 𝑈perf-val

In this model, users pay for objects until they are evicted, and
their TTLs are reset upon the next access. We plan to compare the
effectiveness of this approach to GlobalStore’s cost-centric policy
and estimate its cost and latency tradeoffs in the future.

4 GLOBALSTORE ARCHITECTURE
Building a cost-efficient multi-cloud object store requires addressing
several key challenges. Such an object store must offer 1) a cohesive
view of global objects stored across multiple regions and clouds
2) consistency across clouds and regions. Currently, consistency
is typically guaranteed only within single-region object stores. 3)
reliable data recovery in the event of failures, with guarantees
comparable to single-region object stores.

GlobalStore is designed as an overlay layer on top of existing
cloud object storage systems, including AWS S3 [12], Google Cloud
Storage [13], and Azure Blob Storage [11]. It consists of a client
proxy service and a control plane, as shown in Figure 3. The client
proxy fetches objects and supports the AWS S3 wire protocol [1],
allowing users to seamlessly port applications using the S3 interface.
The control plane, a stateless web server backed by a database,
tracks object locations and redirects requests across cloud regions.
We elaborate on the design of these components in Sections 4.1-4.3.
We then summarize GlobalStore’s consistency guarantees (§4.4),
and fault tolerance (§4.5).

4.1 API: Virtual Object & Bucket Abstraction
In object stores, objects are binary blobs identified by a key within
a specific bucket. A bucket, serving as a namespace, is a collection

of objects and the unit for placement and permission management.
Traditionally, objects and buckets are confined to specific regions
and clouds. As such, clients need to know the location and cloud
of an object before accessing it. GlobalStore abstracts this away
with virtual object and virtual bucket that appear global to the user,
with their physical locations managed transparently by GlobalStore.
This abstraction simplifies interaction with diverse cloud APIs by
leveraging common concepts across providers. Users manage and
access objects as if they were local, while GlobalStore efficiently
handles the routing and storage of these objects across different
regions and clouds.

4.2 Control Plane: GlobalStore Metadata Server
The GlobalStore metadata server acts as the central coordinator for
routing requests across multiple regions and clouds. Importantly,
the control plane does not handle actual object data, eschewing any
potential bottlenecks. The metadata stored for each virtual object
includes key information such as object size, last modified time,
entity tag, and version ID. GlobalStore also manages the mapping
between virtual objects and their physical locations in each cloud
region. A key component of this system is the Policy interface,
which determines where to store objects on PUTs and where to
fetch them on GETs. This interface supports various placement and
eviction policies described in Section 6.2.2.

Eviction Process The metadata server collects𝑇𝑛𝑒𝑥𝑡 statistics into
histograms to assist with GlobalStore decision-making. A back-
ground process runs periodically (once per day) to scan for objects
exceeding their TTLs and initiates DELETE requests in the respec-
tive cloud object stores. This process is computationally lightweight
since it only involves handling metadata, with the actual deletion
handled by the cloud providers, so no data transfer occurs. In prac-
tice, this method incurs minimal overhead, as shown in Section 6.6.
Alternatively, configuring lifecycle policies [20] for objects in each
bucket could remove the need for GlobalStore to track TTLs, al-
though these policies are typically limited to 1000 rules per bucket.

4.3 Data Plane: S3-Proxy
The data plane handles user requests by interfacing with physi-
cal object stores through a S3-Proxy. Requests are processed ac-
cording to AWS S3 protocols [1], which we choose to implement
due to its widespread popularity and market share [9]. We sup-
port 14 common object store operations, including create, delete,
list of buckets, and head, get, put, delete(s), list, copy, and
multipart-upload related operations. In our experience, this is
sufficient to support almost all cloud workloads. Upon accepting a
request, the proxy reaches out to the GlobalStore metadata server
to learn the physical object store to issue this request to and then
communicate with various cloud storage providers to fulfill it. The
stateless design of our S3-Proxy ensures horizontal scalability.

4.4 Consistency
GlobalStore matches the consistency guarantees provided by ex-
isting object stores. Specifically, it supports both Read-After-Write
Consistency (offered by S3) and Eventual Consistency [21, 42, 48].
Read-After-Write Consistency ensures that after a write (PUT),
the latest version of an object is immediately available for reads

(GET). This model is critical for applications requiring fresh data,
such as e-commerce systems [45]. Our write local policy in Section 2
provides the same read-after-write guarantees as a single region
object store. For cross-region access, with versioning enabled, Glob-
alStore tracks both virtual object versions and the corresponding
physical copies, directing reads to regions holding the most recent
version. Without versioning, GlobalStore uses a Last-Writer-Wins
policy, where the most recent write globally overwrites earlier
copies in different regions, and synchronous replication ensures all
regions are updated before the write is finalized.
Eventual Consistency allows faster, local reads by serving pos-
sibly stale data while updates propagate asynchronously across
regions. This model minimizes network overhead and boosts access
speed when real-time consistency is not required, making it ideal
for use cases like backup systems and non-critical analytics [47].
In GlobalStore, under Eventual Consistency, reads can be fulfilled
from local or nearby regions even if they do not yet contain the
latest version. Over time, updates are propagated to ensure that all
regions eventually receive the most current version of the object.

4.5 Fault Tolerance
To ensure high availability and fault tolerance, GlobalStore store-
server can be run on a highly available database system such as
Postgres with Primary-Secondary replication [5]. The metadata
server regularly backs up data to cloud storage, allowing recovery
during server failures. A secondary server in another region can use
this backup if the primary server fails. Object data is durably stored
in cloud object stores, so even during metadata failures, users can
still locate and access objects across regions. In case of incomplete
checkpoints, users can manually scan object stores to reconstruct
missing metadata, ensuring no data is permanently lost.

To handle potential data plane failures, such as S3-Proxy or
network disruptions, GlobalStore implements a two-phase commit
protocol [53] to prevent metadata and object data corruption. When
a client issues a write request, the metadata server logs the intended
action, committing it only after the object is successfully written to
the cloud storage. If an error occurs, the metadata server rolls back
the changes to maintain consistency, and uncommitted mutations
are timed out. While this protocol ensures data integrity, it may
introduce some performance overhead (Section 6.7.2), particularly
in high-throughput scenarios, due to the need for synchronous
coordination between metadata and cloud storage.

5 IMPLEMENTATION
We prototype GlobalStore as described in Section 4 to compare the
end-to-end latency of GlobalStore against other policies. Global-
Store’s metadata server is implemented in 3.5K lines of Python code
to support various policies. It stores the metadata in a Postgres
database by default [5] and can be configured to support an SQLite
backend [49]. The S3-proxy is implemented in about 9k lines of Rust
code, connecting to AWS S3 [12], Google Cloud Storage [33], and
Azure Blob Storage [11]. In our experiments, we host the metadata
server on m5d.8xlarge instance in aws:us-east-1. It contains
32 vCPUs, 128 GiB of memory, and 2 x 600 GB NVMe SSDs. We
instantiate a S3-proxy on each client VM that uses m5.8xlarge,
Standard_D32ps_v5, and n2standard32 instance types on AWS,

(a) (b) (c) (d) (e)

Figure 4: Trace Analysis: We showcase object sizes (a), access frequency (b), burstiness or the fraction of GETs over time (c), the
recency of GETs (d), and the PUT to GET ratio (d), for five representative IBM traces. We represent time in days (D) and months
(M).
Azure, and GCP, respectively. These client VMs contain 32 vCPUs,
128 GiB of memory, and 64 GB of storage.

We also implement the GlobalStore policy and all baselines out-
lined in Section 6.2.2 in 1.9k lines of Python code to estimate the
total cost of each of these policies across traces. Our simulations
are run on a standard VM like n4-standard-4 with 4 vCPUs, 16GB
memory, and 32GB of storage.

6 EVALUATION
In our evaluation, we answer the following questions:
(1) What are the cost benefits of GlobalStore’s replication policy

across two regions within a single cloud?
(2) Do the cost savings from GlobalStore’s policy scale to multiple

regions across multiple clouds?
(3) What are the end-to-end latency and cost savings of GlobalStore

in a real multi-cloud deployment?
We describe multi-cloud workloads (Section 6.1), experiment

setups, and our comparison baselines (Section 6.2). We then show-
case the cost improvements of GlobalStore against other baselines
across two regions within a single cloud (Section 6.3). Then, we ana-
lyze the multi-cloud performance of GlobalStore with three regions
across three clouds (Section 6.4), and discuss its scalability to nine
regions across the same clouds (Section 6.5). Finally, we discuss the
end-to-end latency and cost of our GlobalStore prototype on a real
deployment across three regions and three clouds (Section 6.6) and
conclude by measuring its overheads (Section 6.7).

6.1 Workloads: Multi-Region and Multi-Cloud
We describe the object store traces we use (Section 6.1.1), outline
their diverse characteristics (Section 6.1.2), and discuss our method-
ology to carefully generate multi-cloud workloads from these traces.
This step is necessary as there are no publicly available multi-cloud
traces to the best of our knowledge.

6.1.1 Workload generation from traces. Our workloads are drawn
from the SNIA IBM Object Store traces [10]. These traces record a
week of RESTful operations (e.g., GET, PUT, HEAD, DELETE) for
a single region within the IBM cloud [31]. These traces effectively
capture diversity across various dimensions: object sizes, recency,
and frequency of accesses (as detailed in Section 6.1.2). However,
object stores are typically designed for long-term data retention
where objects are stored for several months to years [18]. Since
these short, week-long traces inadequately capture the life of objects
in the cloud, we expand a day in each trace to a month for single
cloud experiments and to three months for multi-cloud settings

without changing their inherent characteristics like read-to-write
ratio or request distributions.

We pick five representative traces with salient characteristics in
recency, frequency, size, burstiness, and PUT and GET distributions.
We outline their characteristics and the key insights that inform the
generation of multi-region and multi-cloud workloads. In the inter-
est of space, we use multi-region, multi-cloud workloads generated
from these representative traces for all of our experiments.

6.1.2 Trace characteristics. Cloud applications have unique access
patterns across dimensions like object sizes, PUT to GET ratios,
access frequency, recency, and burstiness, as shown in Figure 4. We
summarize these characteristics in Table 2.
• Object sizes: We categorize objects in four size ranges: tiny (<1KB),

small (1KB to 1MB), medium (1MB to 1GB), and large (>1GB).
As seen in Figure-4a, most of the objects accessed are small or
medium in size, some are tiny, and very few are large. Most traces
have <0.5% of tiny objects except two traces (T29 and T65) with
30–45% of tiny objects. All traces have >35% of small objects
and notably, three traces (T15, T29 and T78) have a majority (56–
97%) of small objects. About 34% and >60% of objects in T65 and
T79 are medium-sized, while less than 20% of the other traces
have medium-sized objects. None of the traces have large objects
except T65 and T79, which rarely have large objects (<0.4%).

• Access frequency and one-hit wonders: We categorize objects ac-
cessed in our traces as one-hits (1 GET), cold (1-10 GETs), warm
(10-100 GETs), hot (100-1000 GETs), and super hot (>1K GETs).
As seen in Figure 4b, our traces significantly differ in their distri-
bution of repeated reads. Two traces (T15 and T29) are almost
entirely composed of objects that are one-hits (98% and 2% re-
spectively) or cold (52% and 98% respectively). In contrast, T78
has a majority (>51%) of warm objects and T65 has a majority
(>67%) of hot objects. None except two traces (T65 and T78) have
super hot objects in very small proportions (<0.1%).

• Burstiness: We define burstiness as the fraction of GETs over
time. As seen in Figure 4c, our traces have distinct burst patterns
over time with different spikes. While one trace (T15) has an
even distribution of accesses and has no accesses in the last
two months, another trace (T78) has a burst with 60% of GETs
within the last two months. In the rest of the traces, about 50%
of accesses arrive in the last two months. Three traces (T29,
T65, and T79) nearly have an equal distribution of GETs, with a
noticeable spike, where 30% of objects are accessed in short time
intervals.

• Recency of accesses: Our traces also have varying recency, i.e.,
the time interval between consecutive GETs, as shown in Figure-
4d. Two traces (T15 and T78) have inter-arrival times within a
day. In contrast, T65 and T79 show about 10% of GET intervals
falling between one day and one month. In T29, >80% objects are
read between one day and up to two months, and the remaining
intervals even exceed two months.

• Ratio of GET and PUT operations: Our traces also capture read
and write dominant workload patterns. Three traces (T65, T78,
and T79) are read-heavy, as shown in the Figure 4e. The rest (T15
and T29) are write-heavy with 42% and 30% of PUTs. Note that
T29 has >12M requests in total.

6.1.3 Multi-region, Multi-cloud workload generation. To address
the lack of multi-cloud workloads, we use our five traces to syn-
thetically generate such workloads in three steps.
Step 1: From one to two regions within a cloud. We first explore
the single-cloud, two-region base and cache setup (as described in
Section 3.1). This setup represents a popular approach [43] where
data is already located in one region, but the computation is run
elsewhere, for instance, due to low resource availability (e.g., geo-
distributed model serving service on GPUs). Recall that our traces
are from a single region within the IBM cloud. To support this setup,
we generate a workload in which PUT operations are directed to
the base region and GET operations to the cache region.
Step 2: To multiple regions and clouds. Next, we generate multi-
region and multi-cloud workloads. Our synthesis of multi-cloud
workloads is informed by our conversations with industry experts
and their observations, which highlight the following patterns:
(1) Uniform Workloads (Type A): Applications like networks of IoT

sensors [44] and e-commerce websites [34] have uniformly
random access patterns. For this workload, we distribute PUTs
and GETs randomly across regions and clouds.

(2) Region-Aware Workloads (Type B): Applications like satellite
image analysis [7], disaster recovery [29], and cloudburst [27],
ingest data in one but consume the data from another region.
For this workload, we assign unique PUT and GET regions for
each object and distribute requests accordingly.

(3) Aggregation Workloads (Type C): Applications that collect data
(like regional sales information, logs, etc.) at different regions [28]
but access or analyze this data from a central region. For this
workload, we distribute PUTs across regions, allowing data
ingestion across regions, and dedicate GETs to a single region.

(4) Replication Workloads (Type D): Applications like CDN [40],
container registry [26], and geo-distributed model serving [16]
typically write to a single region and read from multiple other
regions. For this workload, we assign a dedicated PUT region
for each object and distribute GETs across other regions.

Step 3: Multi-cloud workloads. We combine our multi-cloud
workloads into a single workload (Type E) for a single trace (T65)
for our end-to-end experiments with real cloud deployments. This
is necessary as each workload above stores and accesses 6.7 TB of
data on average, and it would cost about 0.2M dollars to evaluate
GlobalStore against all workloads and setups in the cloud.

6.2 Deployment Settings and Baselines
We evaluate GlobalStore’s policy in two deployment settings (Sec-
tion 6.2.1) and compare against several baselines (Section 6.2.2).

6.2.1 Deployment settings and metrics. Policies can operate in one
of two modes: fixed base (FB) and free placement (FP). GlobalStore
assumes FB mode by default, where each object has a fixed, non-
evictable base region. In FP mode, any replicas can be evicted, but at
least one always remains. Since our closest related work, SPANStore
operates only in FP mode, GlobalStore supports both modes and
compares against SPANStore in FP mode. We assume read-after-
write consistency with version enabled, where each read accesses
the latest data version.
Multi-cloud deployment settings. Our multi-cloud deployments
span across AWS S3, Azure Blob Storage, and GCS clouds. We run
3-region3, 6-region4, and 9-region5 experiments where we select 1,
2, and 3 regions from each cloud provider, respectively.
Metrics. We compare GlobalStore against other baselines on cost
and latency metrics. We measure the total monetary cost of run-
ning a workload based on the standard storage offerings and bi-
directional network costs between cloud regions. We also measure
the average, p90, and p99 latency for GET and PUT requests.

6.2.2 Baselines. We compare against the following baselines:
• Always Store / Always Evict policy always replicates objects

to regions where GET is initiated and never evicts, or stores each
object in a single storage location and never replicates.

• TTL-based Eviction policies include (a) TTL = 𝑇even (Section 1),
(b) TTL-CC [25], a dynamic policy that stochastically sets TTL
based on the cached object’s behavior.

• Clairvoyant Greedy Policy (CGP) (Section 3.1.1) is an oracle
that decides to store or evict given future access times of each
object. CGP is cost-optimal in the two-region setup.

• EWMA uses an Exponentially Weighted Moving Average [41]
to predict the next access time per object and chooses whether
to evict it accordingly. We set the decay factor 𝛼 to be 0.5.

• SPANStore is a multi-cloud replication policy [55] that replicates
objects each hour to minimize access costs. SPANStore does not
fix a storage location and hence, we evaluate it only in the free
placement (FP) mode.

• Industrial Baselines include AWS Multi-Region Buckets [17]
(and similarly, GCP Multi-Region Bucket [33]) and JuiceFS [36].
Upon PUT, an object is asynchronously replicated to the pre-
configured secondary region(s). We evaluate AWS in a two-
region setup and JuiceFS in a multi-cloud setup, assuming the
object is replicated to all other regions.

6.3 Single-Cloud Two Regions: Base and Cache
We now evaluate GlobalStore in a two-region base and cache setup
and showcase its merit as a standalone caching policy. GlobalStore
consistently maintains low costs across traces, while its alterna-
tives have low or comparable costs in specific cases and become
prohibitively more expensive in others. On average, GlobalStore
3aws:us-east-1, azure:eastus, gcp:us-east1-b
4aws:us-east-1, aws:us-west-2, azure:eastus, azure:westus, gcp:us-east1-
b, gcp:us-west1-a
5aws:us-east-1, aws:us-west-2, aws:eu-west-1, azure:eastus, azure:westus,
azure:wasteurope, gcp:us-east1-b, gcp:us-west1-a, gcp:europe-west1-b

Always Evict Always Store Teven TTL-CC EWMA AWS Multi-Region Bucket

22

25

Co
st

sv
.s.

Gl
ob

al
St

or
e

1.3x
4x

1.7x 1.1x 1.3x

6x

0.99x
2x 2x 1.7x 0.99x

3x

73x

0.97x 0.97x 1.0x

10x

0.98x

23x

1.5x 1.2x
2x 3x 2x2x 3x

1.1x
2x 1.7x

3x

T15 T29 T65 T78 T79

Figure 5: 2-Region, Fixed Base (FB): Ratio between baseline cost vs. GlobalStore. On average across traces, GlobalStore is 1.4-20.0×
cheaper than other baselines.

Size (%) Read Frequency (%) Request Arrival Recency Number of RequestsIBM Trace
Number # Tiny

(<1kB)
Small

(1KB-1MB)
Medium
(1MB-1GB)

Large
(>1GB)

Avg.
(KB)

One-Hit
Wonders

Cold
(1–10)

Warm
(10–100)

Hot
(100-1K)

Super Hot
(>1K)

Avg.
#GETs

%in first 3
months

%in last 4
months

Avg. GET Tail
months

Avg.
days

GET
(%)

PUT
(%)

Total
(M)

T15 0 80 20 0 628 48 52 0 0 0 3 42 58 2.3 0.6 57 43 1.6
T29 44 56 0 0 3 2 98 0 0 0 3 57 43 3.5 41.6 70 30 13
T65 31 34 34 0.03 1,536 2 9 22 67 0.1 93 52 48 3 1.3 99 1 0.3
T78 0 98 2 0 578 6 31 51 11 0.1 26 22 78 0.8 2.6 95 5 2.4
T79 0 40 60 0.35 48,386 17 61 22 0 0 9 60 40 4.1 8.3 89 11 0.1

Table 2: IBM Trace Characteristics: each trace with characteristics (size, read frequency, request arrival, recency, number of
requests) highlighted with bold and underscore.

has 1.4–20× lower costs compared to six baselines (Section-6.2.2)
across five traces, as shown in Figure 5.

AlwaysEvict is effective on one-hit-dominant traces, as it avoids
unnecessary storage costs for objects never accessed again. For in-
stance, in T15 where 48% of objects are accessed only once (Table 2),
AlwaysEvict incus only 30% higher costs than GlobalStore. It re-
sults in slightly higher network costs for the remaining cold objects
accessed more than once in this trace. In traces like T29, where
there is longer average recency between GETs (beyond 𝑇even), the
cost of storing data outweighs the cost of fetching it again on the
subsequent access. In such cases, AlwaysEvict can even outper-
form GlobalStore by 1% , as GlobalStore reactively caches objects
and requires time to adjust to a lower TTL. On the other hand, on
traces like T65 and T78 with warm and hot accesses and shorter
access recency, AlwaysEvict incurs 23–73× higher costs due to
repeated network transfers on reads. Surprisingly, in T79 where
89% of objects are one-hits or cold, AlwaysEvict still costs 2× more
than GlobalStore. This is primarily due to the large average object
size (48MB), which amplifies the network cost penalties from cache
misses. On average, GlobalStore is 20× more cost-effective than
AlwaysEvict.

Always Store replicates objects on GETs and exhibits behavior
that almost contrasts with AlwaysEvict. On traces with lots of hot
objects such as T65, AlwaysStore outperforms GlobalStore by 3%, as
GlobalStore may evict a few hot objects and incur higher network
costs during the initial histogram warmup phase. However, on
traces with more infrequent or sporadic access patterns like T29
and T15, AlwaysStore incurs 2–4× higher costs than GlobalStore.
Interestingly, on traces with frequent repeated reads, such as T79
where 80% of the objects are accessed multiple times, Always Store
remains 3× more expensive than GlobalStore. This is because 60% of
the objects in T79 have a GET tail longer than 4.1 months (as seen
in Table 2), which causes AlwaysStore to retain objects long after
their last access. GlobalStore evicts unaccessed objects earlier and
outperforms AlwaysStore by 1.5–3× on T78 and T79. On average,
GlobalStore is 2.2× cheaper than Always Store.

𝑇even is a static TTL-based policy (Section 3.1.2) that stores ob-
jects until re-fetching them becomes less expensive and balances
storage with network costs. In our setup, the TTL for 𝑇even policy
is one month, calculated as the ratio between average network
cost and standard S3 prices across 22 AWS regions. 𝑇even performs
well when all GETs occur within a month (as in T65), enabling
timely evictions and slightly outperforming GlobalStore in this
case. However, for infrequent accesses like in T15 and T29, it stores
objects for a full one-month TTL, leading to 1.7-2× higher costs
compared to GlobalStore. In traces with moderate access frequency
and short recency (like T15 and T29), 𝑇even strikes a reasonable
balance. However, GlobalStore still outperforms it by 1.4× as, unlike
𝑇even, GlobalStore is aware of object access patterns and can reduce
network costs with its adaptive TTL. On average, GlobalStore is
1.4× more cost-effective than 𝑇even.

TTL-CC policy[25] computes TTLs stochastically based on cache
hits, assuming a Poisson distribution, and dynamically updates the
TTL of all objects. This policy’s cost is within 10% of the total cost
of GlobalStore for traces with hot- or one-hit-dominant objects (like
T15 and T65). However, for mixed traces with warm and cold objects
like T78 and T79, TTL-CC has 2× higher cost than GlobalStore.
TTL-CC also tends to store sporadically accessed objects for longer
in T29 and incurs 1.7× higher cost. In summary, TTL-CC results
emphasize that dynamic TTL-based policies are a better fit for
cloud applications. However, access patterns in the cloud are more
complex than Poisson distributions. Overall, GlobalStore is more
cost-efficient than TTL-CC by 1.6× on average.

EWMA predicts object access times using exponentially weighted
moving averages and stores objects with shorter access times. This
policy can quickly evict one-hits and cold objects and reduces stor-
age costs by 0.99–1.3× for traces T29 and T15, respectively. How-
ever, it carries this aggressive eviction strategy over to traces with
hot and super-hot objects (T65, T78, and T79) and incurs 1.7–10×
higher costs. Fine-tuning EWMA policy parameters, such as the
decay factor, could potentially reduce these overheads. On average,
EWMA is 3.5× more expensive than GlobalStore.

AWSMulti-Region Bucket [17] and similar commercially-available
services behave like AlwaysStore but proactively replicate data on
writes rather than reads. This leads to higher storage costs when
GET appears later; in traces T15, T29, and T78, on average, objects
are accessed 1–1.5 months after they are written, incurring 2–6×
higher cost than GlobalStore. For traces with more immediate reads
(like T65 and T79), AWS multi-region buckets incur 0.98–3× higher
costs than GlobalStore. Overall, AWS Multi-Region Bucket is 3.1×
more expensive than GlobalStore on average.

We also compare GlobalStore to CGP, an oracle with optimal
cost policy (Table 3). On average, GlobalStore operates within 15%
of optimal, while others incur 1.6–22× higher costs. GlobalStore
incurs higher costs as it aggregates statistics at bucket granularity.
GlobalStore performs 1.2–1.3× worse than CGP for traces (T78,
T79) with a mixed distribution of access frequencies and recency
where aggregate statistics become less accurate. Note that 𝑇even is
empirically within 2× of optimal cost, as proven in Section 3.1.2.

Policy Cost vs. Optimal
T15 T29 T65 T78 T79 Avg

Always Evict 1.4 1.0 77.5 27.8 3.1 22.15
Always Store 3.9 2.3 1.0 1.9 3.4 2.49
Teven 1.9 2.2 1.0 1.4 1.5 1.59
TTL-CC 1.2 1.7 1.1 2.7 2.7 1.87
TTL-CC-obj 1.5 1.0 7.5 7.2 2.2 3.88
EWMA 1.4 1.0 11.0 3.8 2.3 3.90
AWS Multi-Region Bucket 6.3 3.5 1.0 2.8 3.8 3.49
GlobalStore-Obj 1.2 1.0 7.9 7.0 2.1 3.84
GlobalStore 1.1 1.0 1.1 1.2 1.3 1.14

Table 3: Two-Region Base and Cache: Cost vs. Optimal across
individual traces and their average. GlobalStore is, on average,
within 14% of optimal cost.

6.4 Multi-Cloud: 3 Regions across 3 Clouds
We extend our evaluation to a multi-cloud setup with three re-
gions across three clouds (Section 6.2.1). We use four workloads,
i.e., uniform, region-aware, aggregation, and replication workloads
(Section 6.1.3). Across these workloads, GlobalStore consistently
achieves lower costs compared to other baselines by 1.3–18.4× on
average. Table 4 summarizes the baseline’s cost over GlobalStore’s,
and averages it across traces and workload types. We compare Glob-
alStore with JuiceFS instead of AWS Multi-Region Bucket as the
latter does not operate across clouds. All policies in this experiment
are run in the fixed base (FB) mode.

Policy
Type A

(Uniform)
Type B
(Region)

Type C
(Aggregation)

Type D
(Replication) Average

Always Evict 9.3 29.8 24.0 10.4 18.4×
Always Store 1.8 1.7 1.7 1.9 1.8×
𝑇even 1.3 1.3 1.3 1.3 1.3×
TTL-CC 1.7 1.2 1.3 1.8 1.5×
EWMA 2.9 4.9 4.4 3.0 3.8×
JuiceFS 4.8 1.9 1.9 4.8 5.7×

Table 4: 3-Region Fixed Base: baseline cost over GlobalStore
(×), averaged across traces and across workload types. On
average, GlobalStore is 1.3 to 18.4× cheaper than six other
baselines.

At a high level, 3-region multi-cloud results largely mirror the
2-region setup. Major trends across traces remain the same, but the
absolute cost improvements differ from the two-region setup across
each workload. This is primarily due to higher (1.8×) network fees
in multi-cloud compared to a single-cloud setup. We highlight and
explain outlier trends in costs for GlobalStore and other baselines.

AlwaysEvict is 9.3–29.8× more expensive than GlobalStore on
average. AlwaysEvict has higher costs (29.8× and 24.0×) in region-
aware and aggregation workloads; for read-heavy traces like T65,
it can be 120× worse due to high cross-cloud network fees. Alway-
sEvict performs slightly better (9.3× and 10.4×) than GlobalStore
on uniform and replication workloads. As GETs per object are dis-
tributed, policies have uniformly high network costs of cold misses
in each region, narrowing their performance gap.

EWMA has similar costs to AlwaysEvict except that it retains
objects for slightly longer in read-heavy traces, costing 2.9 – 4.9×
more than GlobalStore on average.

AlwaysStore and JuiceFS are 1.7–1.9× and 1.9–4.8× more expen-
sive than GlobalStore on average, respectively. Decreasing access
frequency and increasing recency reduces caching benefits. Thus,
AlwaysStore incurs low costs (1.7× of GlobalStore) in region-aware
and aggregation workloads and higher costs (1.8 – 1.9×) with uni-
form and replication workloads. Surprisingly, AlwaysStore beats
GlobalStore by 4-6% on read-heavy traces (T65) as GlobalStore in-
curs higher network costs during initial metadata warmup periods.
In contrast, JuiceFS has 2.7× higher costs than AlwaysStore on
average because JuiceFS proactively replicates objects to all regions
on PUTs and incurs high costs for infrequently read objects. How-
ever, if read locations are predictable, such as region-aware and
aggregation workloads, JuiceFS is auto-configured to replicate to
specific regions and incurs similar costs as AlwaysStore.

TTL-CC costs 1.2–1.8× more than GlobalStore on average and
adjusts objects TTLs based on their cache hit rate. In general, TTL-
CC has lower costs (1.2–1.3× vs. GlobalStore) for region-aware and
aggregation workloads, but higher costs (1.7–1.8×) for uniform or
replication workloads. As an exception, TTL-CC incurs 1.6× lower
costs (for trace T79) in uniform and replication workloads than in
region-aware and aggregation workloads. Since cold objects (61% of
objects in T79), have even fewer accesses when GETs are distributed
across regions, TTL-CC learns this pattern quickly and sets shorter
TTLs. However, it adapts slowly when reads are concentrated in
specific locations, evicts relatively warmer objects and incurs higher
network costs.

The 𝑇even policy incurs low costs consistently, i.e., 1.3× higher
than GlobalStore on average. It balances storage and network costs
in multi-cloud setups and maintains low costs across different re-
quest distributions. 𝑇even has up to 1.7× higher costs than Global-
Store as it stores objects even if they are not read in the future.

6.5 Scalability: To 9 Regions across 3 Clouds
We now evaluate how GlobalStore’s cost savings scale in the multi-
cloud setup with an increasing number of regions. Across three
clouds, we compare cost savings of GlobalStore in three, six, and
nine regions relative to AlwaysEvict, AlwaysStore, and commer-
cial/academic baselines like JuiceFS and SPANStore. Note that we
evaluate SPANStore only in FP mode as it does not support FB mode.

(a) Type A (Uniform) (b) Type B (Region-Aware) (c) Type C (Aggregation) (d) Type D (Replication)015 029 065 078 079
Trace Name

1

2

3

N
or

m
al

iz
ed

To
ta

lC
os

t

3 region 6 region 9 region

015 029 065 078 079

1

2

3

N
or

m
al

iz
ed

To
ta

lC
os

t

3 region 6 region 9 region

015 029 065 078 079

1

2

3

N
or

m
al

iz
ed

To
ta

lC
os

t

3 region 6 region 9 region

015 029 065 078 079

1

2

3

N
or

m
al

iz
ed

To
ta

lC
os

t

3 region 6 region 9 region

015 029 065 078 079

1

2

3

N
or

m
al

iz
ed

To
ta

lC
os

t

3 region 6 region 9 region

Figure 6: GlobalStore Total Cost Normalized over 3-Region on 3, 6, and 9 Regions across Workloads A-D: GlobalStore costs
remain similar when scaling to more regions.

Policy 3-Region (FB) 6-Region (FB) 9-Region (FB)

Avg Std Dev Avg Std Dev Avg Std Dev

Always Evict 18.4 31.6 15.0 27.0 12.9 23.9
Always Store 1.8 0.7 2.0 0.8 2.1 0.8
Teven 1.3 0.3 1.4 0.3 1.4 0.3
TTL-CC 1.5 1.0 1.3 0.5 1.4 0.7
EWMA 3.8 4.7 3.2 3.4 3.1 3.4
JuiceFS 3.4 2.9 7.3 7.2 8.6 10.9

Policy 3-Region (FP) 6-Region (FP) 9-Region (FP)

Avg Std Dev Avg Std Dev Avg Std Dev

Always Evict 11.9 21.1 11.4 22.4 11.4 23.4
Always Store 1.3 0.2 1.4 0.2 1.5 0.2
JuiceFS 1.7 0.6 3.0 1.8 3.5 2.8
SPANStore 1.4 0.2 1.5 0.2 1.6 0.3

Table 5: 3, 6, 9-Region, 5 traces, Type A-D, Fixed Base (FB)
and Free Placement (FP): Average and standard deviation
of cost of baselines over GlobalStore. Scaling to 9 regions,
GlobalStore can still achieve 1.4 to 12.9× and 1.5 to 11.4×
cheaper cost on average than other baselines in FB and FP
modes, respectively.

Across 9 regions, GlobalStore is 1.4–12.9× and 1.5–11.4× more
cost-efficient than other baselines in FB and FP modes, respectively.

Table 5 summarizes how scaling affects baseline costs relative to
GlobalStore, so lower cost relative to GlobalStore showcases better
scalability. GlobalStore remains consistent and incurs low costs
when scaling regions. AlwaysEvict and EWMA (in FB mode) incur
lower costs on increasing the number of regions from 3 to 9 (18.4
to 12.9×, 3.8 to 3.1×, respectively). On the other hand, AlwaysStore
and JuiceFS incur higher costs (1.8 to 2.1×, 3.4 to 8.6×, respectively)
compared to GlobalStore as regions increase. This is primarily be-
cause the number of data replicas is proportional to the number of
regions, and these policies incur high storage costs from extensive
replication. Recall that JuiceFS proactively replicates data to all
regions on PUT requests and pays for higher storage and network
costs as regions scale. Both 𝑇even and TTL-CC remain fairly consis-
tent (1.3-1.4× and 1.3-1.5×), and show slight fluctuations in relative
cost compared to GlobalStore when scaling from 3 to 9 regions.

GlobalStore and other policies have relatively lower costs in FP
relative to FB mode as they incur no additional costs for the base
region’s storage. SPANStore has comparable costs to AlwaysStore
as it does not effectively evict objects that remain unread for long
time intervals. SPANStore incurs even higher costs for traces with

a majority of one-hits and cold objects (like traces T29 and T79).
In our evaluation, SPANStore’s solver has access to an oracle with
knowledge of workloads and showcases its costs in the best case.
Across workloads and traces, GlobalStore is 1.4–1.6× more cost
efficient than SPANStore on average, with 9 regions across 3 clouds.

GlobalStore’s cost savings scale from 3 to 9 regions across work-
load types and traces in FB mode, as seen in Figure-6. On region-
aware and aggregation-workloads (Figures 6b, 6c), GlobalStore has
minimal cost variations with more regions. In these workloads,
GETs of objects are concentrated in a single region independent
of the number of regions. As an exception, aggregation workloads
for trace T65 experience higher costs on scaling to 6 and 9 re-
gions due to a particular cloud region (aws:us-east-1), which has
higher network ingress costs from all other regions. For uniform
and replication workloads (Figure 6a, 6d), GlobalStore’s cost re-
mains relatively stable as regions increase. This trend is evident
in traces with cold objects (T15, T29, and T79), where scaling to
9 regions yields similar costs. However, for traces with warm and
hot objects GlobalStore’s cost increases with the number of regions
(like 1.5× and 1.2× for traces T65 and T78) as GETs are distributed
across more regions which makes previously warm objects now
colder, and increases network costs from evicting such objects.

6.6 Multi-Cloud: End-to-End Benchmark

Policy GET
Latency (ms)

PUT
Latency (ms)

GET Lat.
vs. AS

Cost ($)
vs. AS

Avg P90 P99 Avg P90 P99

Always Store 172 235 340 840 562 784 1.00× 1.00×
Always Evict 278 440 762 800 507 715 1.61× 76.78×
GlobalStore 184 230 408 822 520 782 1.06× 1.05×

Table 6: End-to-End System Evaluation on T65. GlobalStore
has comparable latency and incurs low costs on real multi-
cloud deployments with 3 regions across 3 clouds.

We now discuss the end-to-end cost and latency of GlobalStore
against AlwaysStore and AlwaysEvict baselines for a multi-cloud
workload (Type E) on a single trace (T65) due to the prohibitively
high cost (2M dollars) of evaluating all workloads and configura-
tions (Section-6.1.3). We run GlobalStore and baselines on 3 regions
across 3 clouds. As seen in Table 6, GlobalStore has comparable
average and p99 latency as AlwaysStore, with 3% higher average
GET latency due to its metadata overheads from maintaining per-
bucket statistics as histograms and periodically updating them in

Put Get List Head Delete
0

20

40

60

Ti
m

e
(m

s)

AWS
GlobalStore (Metadata Server)
GloablStore (S3 Proxy)

Figure 7: GlobalStore System Performance v.s. AWS APIs:
client, server, and object store on region aws:us-east-2.

the background. Note that PUT latency (average and p99) is similar
across policies, as writes are handled locally. However, AlwaysE-
vict avoids caching objects and observes 1.6× higher average GET
latency than GlobalStore and AlwaysStore.

GlobalStore and AlwaysStore policies incur low costs in real
cloud deployments and align with our cost simulations from 3-
region 3-cloud experiments (Section 6.4). AlwaysEvict baseline
policy incurs up to 75× higher costs and has higher end-to-end
latency in comparison to GlobalStore and AlwaysStore.

6.7 Discussions: Overheads & Trade-offs
6.7.1 Cost overheads. The monetary cost of operating GlobalStore
comes from two components: the S3-proxy and the metadata server.
The S3-proxy is run as a client-side library to incur no additional
costs. The metadata server, which manages policy decisions and
namespace mappings, is hosted on a standalone VM. In our evalua-
tion, we use a m5d.8xlarge instance costing $1.81 per hour. This is
analogous to the operational costs of cloud service providers.
6.7.2 System Overheads. We evaluated GlobalStore’s system over-
head using the JuiceFS benchmark, which tests operations on 10K
objects (128 KB each) across put, get, list, head, and delete actions.
As shown in Figure 7, GlobalStore adds less than 10% overhead for
put and get operations; this overhead is mainly from additional
round-trips to the metadata server. GlobalStore improves the la-
tency of list and head operations by up to 3.4× with its centralized
control place. GlobalStore’s S3-proxy is stateless and easily scalable
by deploying multiple proxies per client VM. In GlobalStore, scaling
the metadata server is straightforward as it does not store actual
object data. We host the metadata server’s database on a single
VM, but a geo-distributed database like Google Spanner [22] could
potentially handle more requests and scale efficiently. Exploring
this is left for future work.
6.7.3 Overheads with scaling regions and buckets. GlobalStore is
designed to scale effectively with the increasing number of regions
and buckets. Histograms are generated periodically (once or twice
a day) for each bucket. The complexity of generating histograms is
linear in size. For each bucket, the system calculates point-to-point
access patterns. If there are ten regions, this results in 102 = 100
edges per bucket. For 1000 buckets, this scales to 100,000 edges,
which becomes manageable with daily or periodic updates.
6.7.4 How does GlobalStore incorporate latency considerations? We
illustrate a simple example of latency consideration (Section 3.3.2).
Consider a scenario where storing an object costs $0.026/GB per
month, with a $0.02/GB network egress fee for fetching from an-
other region. The default TTL of 0.77 months (from 𝑇even = 𝑁 /𝑆)

means we keep the object cached if it’s accessed within 0.77 months.
Now, if the user is willing to pay an extra $0.005/GB for faster ac-
cess, we check if extending the TTL to 1 month is worthwhile. The
additional storage cost for the extra 0.23 months is $0.006/GB, but
the user’s performance value is only $0.005/GB, making it not worth
extending the TTL to 1 month. However, if the TTL is reduced to 0.5
months, the storage cost saved is greater than the network cost for
refetching, and the added performance value could justify shorter
caching. For high-latency tolerance, the user may opt for lower
𝑈perf-val, whereas time-sensitive applications may justify a higher
𝑈perf-val for keeping objects cached longer. We explore this further
as part of our future work.

6.7.5 Use Case Study (Configuration). Provide some interface of
interacting with the system.

7 RELATEDWORK
Geo-distributed Cloud Storage. Existing commercial offerings
are mostly not multi-cloud, and require manual placement deci-
sions. AWS [19] and GCP multi-region buckets[33] are primarily
designed for disaster recovery and do not support auto-replication
based on workload patterns. Cloudflare’s global object store [6]
does not disclose implementation details and also requires manual
configuration. Volley and Nomad [15, 52] do instead optimize data
placement for geo-distributed applications. However, they focus
primarily on moving data across multiple data centers to minimize
access latency and thus ignore the monetary aspect of cloud storage.
SPANStore [55], a multi-cloud replication system, does consider
financial costs but optimizes object placement periodically only.
Moreover, it performs proactive replication on writes and does not
consider eviction and replication costs. It expects apriori workload
knowledge and thus cannot react to evolving workload patterns.
Traditional Caching Algorithms. A range of traditional cache
eviction algorithms have been developed based on object statistics
such as recency, frequency or size (e.g., LRU, LFU, GDSF, FIFO).
However, these algorithms consider cache space as the primary
driver for eviction. Object must thus be ranked; objects with the
lowest ranking are evicted when the cache becomes full. In contrast,
the cache in multi-cloud is not constrained by size but by cost. Each
caching decision can thus be made independently for each object.
TTL-based Caching and Cloud Caching. TTL-based cache evic-
tion are popular eviction strategies with average performance simi-
lar to LRU [32, 37]. TTL-based approaches have been used for cloud
caching, setting a TTL per cache item according to object read
frequency [46]. Tokeep et al. keeps an item for𝑇even time and evicts
it if it has shown no hits. This is equivalent to the 𝑇even-policy we
evaluate. Carra et al. [25] offers an approach closer to our two-site
approach of a single dynamic TTL for all items in a workload. They
use a stochastic approach that modifies the TTL by tracking hits of
each new item in the cache. Both prior works assume that object
reads occur according to set distributions. In contrast, GlobalStore
policy adapts to changing workload distributions.

8 CONCLUSION
This paper explores the problem of designing a cost-optimized
object store across regions and clouds. We propose a TTL-based
cost-aware replication policy in the multi-region and multi-cloud

setting and build a global object store as an overlay that sits on
top of multiple existing cloud services. Our evaluation shows that
GlobalStore can achieve up to 6× cost savings over state-of-the-art
baseline policies and systems in a real cloud setup.

REFERENCES
[1] Actions - Amazon Simple Storage Service — docs.aws.amazon.com. https:

//docs.aws.amazon.com/AmazonS3/latest/API/API_Operations.html. [Accessed
18-04-2024].

[2] All networking pricing. Virtual Private Cloud. Google Cloud — cloud.google.com.
https://cloud.google.com/vpc/network-pricing#standard-pricing. [Accessed
14-04-2024].

[3] AWS’s Egregious Egress — blog.cloudflare.com. https://blog.cloudflare.com/aws-
egregious-egress. [Accessed 14-04-2024].

[4] Ceph Object Gateway Ceph Documentation — docs.ceph.com. https://docs.ceph.
com/en/quincy/radosgw/. [Accessed 20-04-2024].

[5] Chapter 27. High Availability, Load Balancing, and Replication — postgresql.org.
https://www.postgresql.org/docs/current/high-availability.html. [Accessed
18-04-2024].

[6] Cloudflare R2 | Zero Egress Fee Distributed Object Storage | Cloudflare — cloud-
flare.com. https://www.cloudf lare.com/developer-platform/r2/. [Accessed
14-04-2024].

[7] Landsat data | Cloud Storage | Google Cloud — cloud.google.com. https:
//cloud.google.com/storage/docs/public-datasets/landsat. [Accessed 14-04-2024].

[8] Pricing - Bandwidth | Microsoft Azure — azure.microsoft.com. https://azure.mi
crosoft.com/en-us/pricing/details/bandwidth/. [Accessed 14-04-2024].

[9] Comparing AWS, Azure, GCP — digitalocean.com. https://www.digitalocean.c
om/resources/article/comparing-aws-azure-gcp, 2023. [Accessed 20-04-2024].

[10] SNIA: IOTTA repository. http://iotta.snia.org/traces/key-value/36305, 2023.
[11] Azure Blob Storage | Microsoft Azure — azure.microsoft.com. https://azure.micr

osoft.com/en-us/products/storage/blobs, 2024. [Accessed 20-04-2024].
[12] Cloud Object Storage - Amazon S3 - AWS — aws.amazon.com. https://aws.amaz

on.com/s3/, 2024. [Accessed 20-04-2024].
[13] Cloud Storage — cloud.google.com. https://cloud.google.com/storage?hl=en,

2024. [Accessed 20-04-2024].
[14] Cloud Storage Services | IBM — ibm.com. https://www.ibm.com/cloud/storage,

2024. [Accessed 20-04-2024].
[15] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, and

Harbinder Bhogan. Volley: Automated data placement for geo-distributed cloud
services. In Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation, NSDI’10, page 2, USA, 2010. USENIX Association.

[16] Nawras Alkassab, Chin-Tser Huang, and Tania Lorido Botran. Deepref: Deep
reinforcement learning for video prefetching in content delivery networks, 2023.

[17] Amazon s3 multi-region access points. https://aws.amazon.com/s3/features/mul
ti-region-access-points/. Accessed on 12/15/2022.

[18] Amazon s3 pricing. https://aws.amazon.com/s3/pricing/. Accessed on 09/29/2024.
[19] Aws cross-region replication. https://docs.aws.amazon.com/AmazonS3/latest/us

erguide/replication.html. Accessed on 12/15/2022.
[20] aws-lifecycle-policy. https://docs.aws.amazon.com/AmazonS3/latest/userguide/

intro-lifecycle-rules.html.
[21] Microsoft Azure. Managing concurrency in Blob storage - Azure Storage —

learn.microsoft.com. https://learn.microsoft.com/en-us/azure/storage/blobs/con
currency-manage. [Accessed 19-04-2024].

[22] David F. Bacon, Nathan Bales, Nico Bruno, Brian F. Cooper, Adam Dickinson,
Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi, Eugene Kogan,
Alex Lloyd, Sergey Melnik, Rajesh Rao, Dave Shue, Chris Taylor, Marcel van der
Holst, and Dale Woodford. Spanner: Becoming a sql system. In Proc. SIGMOD
2017, pages 331–343, 2017.

[23] Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay Shakkottai, and Ramesh
Sitaraman. Adaptive ttl-based caching for content delivery. IEEE/ACM transac-
tions on networking, 26(3):1063–1077, 2018.

[24] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage com-
puter. IBM Systems journal, 5(2):78–101, 1966.

[25] Damiano Carra, Giovanni Neglia, and Pietro Michiardi. Ttl-based cloud caches.
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pages
685–693, 2019.

[26] Jun Lin Chen, Daniyal Liaqat, Moshe Gabel, and Eyal de Lara. Starlight: Fast
container provisioning on the edge and over the WAN. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 22), pages 35–50,
Renton, WA, April 2022. USENIX Association.

[27] Cloud bursting. https://aws.amazon.com/what-is/cloud-bursting/. Accessed on
09/29/2024.

[28] Databricks lakehouse use cases. https://www.databricks.com/blog/2020/01/30/w
hat-is-a-data-lakehouse.html. Accessed on 09/29/2024.

[29] Disaster recovery workloads. https://docs.aws.amazon.com/whitepapers/late
st/disaster-recovery-workloads-on-aws/disaster-recovery-options-in-the-
cloud.html. Accessed on 09/29/2024.

[30] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman, and Ronen Kat. IBM object
store traces (SNIA IOTTA trace set 36305). In Geoff Kuenning, editor, SNIA
IOTTA Trace Repository. Storage Networking Industry Association, July 2019.

[31] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman, and Ronen I. Kat. It’s Time
to Revisit LRU vs. FIFO. In HotStorage 2020, 2020.

https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations.html
https://cloud.google.com/vpc/network-pricing#standard-pricing
https://blog.cloudflare.com/aws-egregious-egress
https://blog.cloudflare.com/aws-egregious-egress
https://docs.ceph.com/en/quincy/radosgw/
https://docs.ceph.com/en/quincy/radosgw/
https://www.postgresql.org/docs/current/high-availability.html
https://www.cloudflare.com/developer-platform/r2/
https://cloud.google.com/storage/docs/public-datasets/landsat
https://cloud.google.com/storage/docs/public-datasets/landsat
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://www.digitalocean.com/resources/article/comparing-aws-azure-gcp
https://www.digitalocean.com/resources/article/comparing-aws-azure-gcp
http://iotta.snia.org/traces/key-value/36305
https://azure.microsoft.com/en-us/products/storage/blobs
https://azure.microsoft.com/en-us/products/storage/blobs
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://cloud.google.com/storage?hl=en
https://www.ibm.com/cloud/storage
https://aws.amazon.com/s3/features/multi-region-access-points/
https://aws.amazon.com/s3/features/multi-region-access-points/
https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/intro-lifecycle-rules.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/intro-lifecycle-rules.html
https://learn.microsoft.com/en-us/azure/storage/blobs/concurrency-manage
https://learn.microsoft.com/en-us/azure/storage/blobs/concurrency-manage
https://aws.amazon.com/what-is/cloud-bursting/
https://www.databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://www.databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-options-in-the-cloud.html
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-options-in-the-cloud.html
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-options-in-the-cloud.html

[32] N. Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don Towsley. Analysis
of ttl-based cache networks. In 6th International ICST Conference on Performance
Evaluation Methodologies and Tools, pages 1–10, 2012.

[33] Gcp multi-region bucket. https://cloud.google.com/storage/docs/locations#loca
tion-mr. Accessed on 12/15/2022.

[34] Ilija Hristoski and Pece Mitrevski. Evaluation of business-oriented performance
metrics in ecommerce using web-based simulation. Journal of Emerging research
and solutions in ICT, 1(1):1–16, April 2016.

[35] Paras Jain, Sam Kumar, Sarah Wooders, Shishir G Patil, Joseph E Gonzalez, and
Ion Stoica. Skyplane: Optimizing transfer cost and throughput using cloud-aware
overlays. arXiv preprint arXiv:2210.07259, 2022.

[36] Juicefs data synchronization. https://juicefs.com/docs/community/guide/sync#
distributed-sync. Accessed on 09/29/2024.

[37] J. Jung, A.W. Berger, and Hari Balakrishnan. Modeling ttl-based internet caches.
In IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Com-
puter and Communications Societies (IEEE Cat. No.03CH37428), volume 1, pages
417–426 vol.1, 2003.

[38] llama3 details. https://ai.meta.com/blog/meta-llama-3/.
[39] Inc. MinIO. MinIO | S3 & Kubernetes Native Object Storage for AI — min.io.

https://min.io/. [Accessed 14-04-2024].
[40] Leonardo Peroni and Sergey Gorinsky. An end-to-end pipeline perspective on

video streaming in best-effort networks: A survey and tutorial, 2024.
[41] Marcus Perry. The Exponentially Weighted Moving Average. 06 2010.
[42] Google Cloud Platform. Consistency | Cloud Storage | Google Cloud —

cloud.google.com. https://cloud.google.com/storage/docs/consistency.
[Accessed 19-04-2024].

[43] Adam Prout. "learnings from snowflake and aurora: Separating storage and
compute for transaction and analytics". https://www.singlestore.com/blog/separ
ating-storage-and-compute-for-transaction-and-analytics/, 2021. [Accessed
26-08-2024].

[44] Asmad Bin Abdul Razzaque and Andrea Baiocchi. Analysis of status update in
wireless networks with successive interference cancellation, 2024.

[45] s3-consistency-model. https://aws.amazon.com/s3/consistency/. Accessed on
10/01/2024.

[46] Nicolas Le Scouarnec, Christoph Neumann, and Gilles Straub. Cache policies
for cloud-based systems: To keep or not to keep. In 2014 IEEE 7th International
Conference on Cloud Computing, pages 1–8, 2014.

[47] Scylladb eventual consistency. https://www.scylladb.com/glossary/eventual-
consistency/. Accessed on 10/01/2024.

[48] Amazon Web Services. Amazon S3 | Strong Consistency | Amazon Web Services
— aws.amazon.com. https://aws.amazon.com/s3/consistency/. [Accessed
19-04-2024].

[49] sqlite-usecases. https://www.sqlite.org/features.html. Accessed 10-01-2024.
[50] stevenmatthew. Data redundancy - Azure Storage — learn.microsoft.com. https:

//learn.microsof t.com/en-us/azure/storage/common/storage-redundancy.
[Accessed 14-04-2024].

[51] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrish-
nan, Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service
level agreements for cloud storage. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, page 309–324, New York,
NY, USA, 2013. Association for Computing Machinery.

[52] Nguyen Tran, Marcos K. Aguilera, and Mahesh Balakrishnan. Online migration
for geo-distributed storage systems. In 2011 USENIX Annual Technical Conference
(USENIX ATC 11), Portland, OR, June 2011. USENIX Association.

[53] Wikipedia contributors. Two-phase commit protocol — Wikipedia, 2024. [Online;
accessed 19-April-2024].

[54] Sarah Wooders, Shu Liu, Paras Jain, Xiangxi Mo, Joseph E. Gonzalez, Vincent
Liu, and Ion Stoica. Cloudcast: High-Throughput, Cost-Aware overlay multicast
in the cloud. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24), pages 281–296, Santa Clara, CA, April 2024. USENIX
Association.

[55] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V.
Madhyastha. Spanstore: Cost-effective geo-replicated storage spanning multiple
cloud services. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, page 292–308, New York, NY, USA, 2013. Association
for Computing Machinery.

[56] Tian Xia, Zhanghao Wu, Ziming Mao, and Zongheng Yang. Introducing SkyServe:
50Cloud with High Availability — blog.skypilot.co. https://blog.skypilot.co/intro
ducing-sky-serve/. [Accessed 14-04-2024].

[57] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil Bhardwaj,
Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam Mittal, Scott Shenker,
and Ion Stoica. SkyPilot: An intercloud broker for sky computing. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23), pages
437–455, Boston, MA, April 2023. USENIX Association.

https://cloud.google.com/storage/docs/locations#location-mr
https://cloud.google.com/storage/docs/locations#location-mr
https://juicefs.com/docs/community/guide/sync#distributed-sync
https://juicefs.com/docs/community/guide/sync#distributed-sync
https://ai.meta.com/blog/meta-llama-3/
https://min.io/
https://cloud.google.com/storage/docs/consistency
https://www.singlestore.com/blog/separating-storage-and-compute-for-transaction-and-analytics/
https://www.singlestore.com/blog/separating-storage-and-compute-for-transaction-and-analytics/
https://aws.amazon.com/s3/consistency/
https://www.scylladb.com/glossary/eventual-consistency/
https://www.scylladb.com/glossary/eventual-consistency/
https://aws.amazon.com/s3/consistency/
https://www.sqlite.org/features.html
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://blog.skypilot.co/introducing-sky-serve/
https://blog.skypilot.co/introducing-sky-serve/

	Abstract
	1 Introduction
	2 GlobalStore Placement Policy
	2.1 Cloud Pricing Models
	2.2 Modes of Operations
	2.3 GlobalStore Overview

	3 GlobalStore Eviction Policy
	3.1 2-Region, Base and Cache Problem
	3.2 GlobalStore 2-Region Base & Cache Eviction
	3.3 GlobalStore Multi-Region Eviction

	4 GlobalStore Architecture
	4.1 API: Virtual Object & Bucket Abstraction
	4.2 Control Plane: GlobalStore Metadata Server
	4.3 Data Plane: S3-Proxy
	4.4 Consistency
	4.5 Fault Tolerance

	5 Implementation
	6 Evaluation
	6.1 Workloads: Multi-Region and Multi-Cloud
	6.2 Deployment Settings and Baselines
	6.3 Single-Cloud Two Regions: Base and Cache
	6.4 Multi-Cloud: 3 Regions across 3 Clouds
	6.5 Scalability: To 9 Regions across 3 Clouds
	6.6 Multi-Cloud: End-to-End Benchmark
	6.7 Discussions: Overheads & Trade-offs

	7 Related Work
	8 Conclusion
	References

