
TuskFlow: An Efficient Graph Database for Long-Running
Transactions [Industry]

Georgios Theodorakis
Neo4j

george.theodorakis@neo4j.com

Hugo Firth
Neo4j

hugo.firth@neo4j.com

James Clarkson
Neo4j

james.clarkson@neo4j.com

Natacha Crooks
UC Berkeley

ncrooks@berkeley.edu

Jim Webber
Neo4j

jim.webber@neo4j.com

ABSTRACT

Mammoth transactions, which involve long-running operations
that access many items, are common in graph workloads. Graph an-
alytics tasks, including pattern matching and graph algorithms, can
generate large read-write operations that impact significant por-
tions of data, which makes their execution challenging under strict
isolation guarantees. Consequently, we face an apparent trade-off
between ensuring high isolation and achieving high performance,
forcing users to choose between the two.

In this work, we present TuskFlow, an experimental graph data-
base based on Neo4j, designed to efficiently handle mammoth trans-
actions on graphs (the technique is applicable to other models such
as relational) while maintaining existing transactional semantics.
TuskFlow employs a deterministic protocol that safely reorders
regular transactions around mammoths within an epoch. Our proto-
col supports parallel mammoth execution inspired by graph-parallel
algorithms. To minimize conflicts with regular transactions, Tusk-
Flow introduces query- and workload-aware optimizations, in-
cluding graph entity tagging and partitioning. Our experiments
demonstrate that, unlike traditional protocols like two-phase lock-
ing or MVCC, TuskFlow avoids blocking write transactions and
improves tail latency by up to 45×.

PVLDB Reference Format:

Georgios Theodorakis, Hugo Firth, James Clarkson, Natacha Crooks,
and Jim Webber. TuskFlow: An Efficient Graph Database for Long-Running
Transactions [Industry]. PVLDB, 14(1): XXX-XXX, 2020.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/Neo4jResearch/TuskFlow.

1 INTRODUCTION

Commercial graph database management systems (DBMSs) [2, 47,
49, 69] are rapidly growing in popularity, with the graph database
market projected to reach $5.1 billion by 2026 [26]. These systems

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

0 10 20 30 40 50 60 70 80
Time (s)

0

2500

5000

7500

10000

12500

15000

17500

20000

Th
ro

ug
hp

ut
 (t

x/
s) Starting Mammoth

TuskFlow Neo4j Postgres

Figure 1: Existing systems cannot handle mammoth txs

allow users to model complex, highly associative data with high-
fidelity as nodes and relationships. Common use cases include route
planning [77], social networks [9, 75], and retrieval-augmented
generation (RAG) for AI applications [43]. While these systems
can handle trillion-scale graphs with high transactional perfor-
mance [50, 70], long-running read-write transactions, known as
mammoths [18], can severely impact overall execution.

Very large transactions can challenge any DBMS. In traditional
workloads, the problem of handling mammoths remains only par-
tially solved [18]. Separating workloads into OLAP (long-running,
read-only transactions supported by MVCC) or OLTP (short and
write-heavy) [39] allows short-lived transactions to make good
progress but at the cost of increased operational complexity and
staleness for data analytics. The move to HTAP systems [6, 7, 15, 70]
allows some consolidation where read-only analytical and short
read-write transactions can co-exist.

Mammoths are particularly prevalent in graph databases, where
tasks like graph pattern matching [34], graph algorithms such as
community detection and degree centrality [48], cascading deletes,
and schema changes [21, 58] are routine but can conflict with other
operations. These tasks read from and often write to large parts of
the graph, blocking the progress of many short-lived transactions
and significantly degrading system performance.

To illustrate the widespread nature of the problem, Fig. 1 com-
pares the throughput of Neo4j (using two-phase locking, or 2PL [11])
and Postgres (using MVCC [10]) under a workload of 100 clients

https://doi.org/XX.XX/XXX.XX
https://github.com/Neo4jResearch/TuskFlow
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

performing consecutive read or write transactions using a ran-
dom relationship on the WikiTalk dataset (see Table 1). When one
mammoth transaction begins to update a property present on all
relationships (marked by the dashed vertical line), both systems
show zero throughput, as all write transactions are blocked. In
addition, the tail latency for short-lived transactions spikes to over
30 s, orders of magnitude higher than the expected (millisecond
latency). For larger graphs, the problem worsens as the queuing of
conflicting short-lived transactions can lead to time-outs. Moreover,
mammoth transactions can cause page cache pollution, further
increasing the latency of the blocked transactions.

Vanilla optimistic protocol implementations always abort the
mammoth when attempting to commit due to conflicts with short-
lived writes [18], meaning that mammoths will always fail. Pes-
simistic protocols like 2PL block all transactions, and deterministic
protocols were not designed for handling such workloads [44].

An alternative to the limitations of existing concurrency proto-
cols would be to forgo strong isolation guarantees and transactional
semantics. For example, Neo4j’s and MemGraph’s graph algorithm
libraries [47, 53] allow users to run expensive algorithms without
isolation guarantees when writing results back to the database.
This forces users to either manually maintain consistency or accept
weaker guarantees, which has numerous downsides [76].

Based on our experience at Neo4j, mammoth transactions are
frequent enough in graph use cases to motivate research into a
solution, and our working hypothesis is that both graphs and their
workloads can be part of that solution. Our goal is to design and im-
plement a transactional graph DBMS that addresses the challenges
posed by workloads containing mammoth transactions. Specifically,
we aim to: (i) ensure mammoths complete successfully; (ii) prevent
mammoths from blocking short-lived transactions whenever possi-
ble; (iii) maintain high throughput and low latency for short-lived
transactions; and (iv) provide strong transactional guarantees (e.g.,
serializability). Our contributions are:
(i) Deterministic concurrency protocol. We introduce the first
deterministic protocol designed to handle mammoth transactions
that allows short-lived transactions to be reordered before or after
mammoths’ effects rather than blocking them for the entire dura-
tion. By extending the Aria protocol [44], we manage transactions
without prior knowledge of their read/write sets while ensuring
conflict serializability (i.e., equivalent to running serially).
(ii) Query- and workload-aware optimizations. To accelerate
conflict resolution for short-lived transactions, we introduce graph
entity tagging and graph partitioning. By tagging graph entities and
labels that a mammoth transaction will access before it executes,
we can reduce unnecessary conflicts. Additionally, partitioning the
graph into "hot" and "cold" communities based on the most popular
nodes and access patterns accelerates mammoth execution and
minimizes conflicts with short-lived transactions.
(iii) Pluggable and parallel mammoth execution.We integrate
our protocol into the transaction scheduling module of a graph
database to allow the parallel execution of mammoths, mirroring
how graph-parallel algorithms are implemented. Here, we note that
the protocol can be adapted to relational databases by substituting
nodes and relationships with tables and graph traversals with joins.

Building on these ideas, we developed TuskFlow, an experi-
mental in-memory transactional graph database based on Neo4j,
designed to handle mammoth transactions efficiently without sac-
rificing correctness or performance. Our experiments demonstrate
that TuskFlow improves throughput and tail latency for short-
lived transactions by an order of magnitude compared to traditional
methods like 2PL or MVCC, as shown in Fig. 1. Furthermore, our
micro-benchmarks confirm that graph tagging and partitioning
techniques both reduce conflicts and lower tail latency by 3.5 to
11.5× in the presence of mammoth transactions.

The remainder of the paper is structured as follows: we be-
gin with a short survey of state-of-the-art graph DBMSs, trans-
action protocols, graph partitioning algorithms, and mammoth use
cases (Sec. 2). We then introduce our deterministic concurrency pro-
tocol (Sec. 3) and conflict resolution techniques (Sec. 4). TuskFlow’s
design is discussed in Sec. 5, followed by our evaluation (Sec. 6).
We finish with related work (Sec. 7), and conclusions (Sec. 8).

2 BACKGROUND

This section covers the foundational concepts of graphs, transac-
tions, and mammoths relevant to the rest of the paper.

2.1 Graph Data Model

In this work, we adopt the labeled property graph (LPG) model [59],
in which nodes may have optional labels and are connected by
named, directed relationships. Both nodes and relationships can
store key-value pairs, known as properties. Similar to Cypher [34],
we define an LPG as a tuple 𝐺 = ⟨𝑁, 𝑅, 𝑠𝑟𝑐, 𝑡𝑔𝑡, 𝜄, 𝜆, 𝜏⟩, where 𝑁 is
the set of nodes 𝑛, and 𝑅 is the set of relationships 𝑟 . The function
𝑠𝑟𝑐 maps relationships to source nodes, while 𝑡𝑔𝑡 maps relationships
to target nodes. 𝜄 is a finite partial function that assigns properties
to nodes or relationships, 𝜆 maps nodes to a finite (or empty) set of
labels, and 𝜏 assigns a relationship type to each relationship. Nodes,
relationships, and property keys have unique identifiers. Property
values can be strings, primitive data types, or arrays, while labels
and relationship types are represented as strings.

2.2 Graph Databases and Analytics

MemGraph [47], Neo4j [49], Neptune [2], and TigerGraph [69]
are graph databases designed to support OLTP workloads over
LPGs. They typically perform well for small transaction sizes and
offer Read Committed or Snapshot Isolation. By contrast, analytical
graph engines like Pregel [46], Giraph [19], and GraphX [78] are
optimized for long-running OLAP queries on (predominantly) static
graphs and do not support writes.

To bridge the operational gap between OLTP and OLAP work-
loads, graph algorithm libraries built on top of graphDBMSs [47, 53]
permit writing the results of long-running computations (over
graph snapshots) back to the database. However, this approach
sacrifices transactional guarantees, potentially compromising the
correctness of applications.

Ideally, these computations would run within mammoth transac-
tions, but current systems struggle to maintain good performance
at practical isolation levels, making such integration challenging.

2

MATCH (n: Message)-[r]-()

WITH n, COUNT(r) AS degreeCentrality

SET n.degreeCentrality = degreeCentrality

Figure 2: Compute degree centrality with Cypher (LDBC Q0)

2.3 Transaction Protocols

Transaction decomposition and specialized protocols for

mammoths. One approach to managing long-running transac-
tions [37] is to divide them into smaller units. With nested trans-
actions [22, 45], systems can independently commit or abort these
units, known as subtransactions. Decomposition of this nature can
improve concurrency and reduce retries by utilizing savepoints [57],
but it can also perform poorly under high load [20]. Sagas [35] also
decompose long-running transactions into smaller requests but
require applications to provide compensating transactions for re-
covery, adding significant overhead for graph traversals whose
updates may be large and complex. Finally, modern distributed
databases use specialized protocols [21, 58] to manage mammoths,
like schema changes or large-scale deletes. However, these proto-
cols often rely on specific consistency models that do not apply to
all transactions and may lack certain guarantees.
Deterministic databases [1, 66] provide serializable guarantees
(i.e., the results of concurrent transactions are equivalent to those
of a serial execution) and ensure that the re-execution of a set of
transactions will always yield the same database state. Calvin [67]
achieves this through a two-phase process: first, it locks data and
analyzes dependencies for conflicts based on a predetermined order;
then, transactions are executed in parallel. Aria [44], another deter-
ministic protocol, also employs two-phase execution but does not
require pre-defined read-write sets. In Aria, transactions reserve
reads and writes concurrently in the first phase, while conflicts are
detected and commit decisions are made in the second phase, all
without coordination. While these protocols prevent rollbacks, they
suffer from significant performance degradation when handling
long-running transactions [44], as other transactions are blocked
until the mammoths complete within an epoch. They also incur
higher latency due to synchronization between phases and stricter
isolation levels than Read Committed or Snapshot Isolation.

2.4 Graph Partitioning Algorithms

Graph partitioning [55] aims to create 𝑘 disjoint but complete graph
partitions 𝑃 = 𝑃1, ..., 𝑃𝑘 that minimize a given cost function (e.g.,
edge-cut) while satisfying specific balancing constraints [40, 62, 73].
We focus on node partitioning [3], where each node 𝑛 ∈ 𝑁 is as-
signed to a unique partition 𝑃𝑖 . While existing systems use partition-
ing to reduce communication overhead in graph analytics, we apply
this technique to resolve conflicts between mammoth and short-
lived transactions. Specifically, we use query- and workload-aware
techniques [32, 33], like pattern matching, for OLTPworkloads. Our
goal is to improve workload-sensitive partition stability [27, 28, 32]
by reducing inter-partition traversals for a given workload.

2.5 Mammoth Use Cases

Let us introduce a set of typical use cases for mammoth transactions
that set the context for the remainder of the paper. Following a prior

Message

Q0: Compute the degree
centrality of all messages

Person

Message

Person

Message

knows

reply_of

is_author_of

Q1: Compute weights over
knows relationship based on
comments of known persons

Q2: Find experts with common
interests (write-back the results)

Person

Message

is_author_of

Tag

Person Person
knows* knows*

Min depth Max depth

Message

Tag

has_tag

Figure 3: Mammoth queries over LDBC social network

classification [18], mammoths fall into two categories: (i) balanced,
with nearly equal read and write sets; and (ii) unbalanced, where
reads significantly outweigh writes.

High-level graph query languages like Cypher [34] and GQL [29]
abstract the complexity of graph operations and the high con-
nectivity of graph structures such that seemingly simple queries
might trigger mammoth transactions. For example, in Fig. 2, the
Cypher query 𝑄0 uses the MATCH clause to retrieve all nodes with
the label Message and their relationships from the LDBC social net-
work [30, 63]. It then counts these relationships for each node and
updates a property called degreeCentrality using the SET clause.
Although this query is not computationally intensive (since it uses
metadata from the neighborhoods to access relationship counts
quickly), it still blocks other transactions from performing writes.
This problem is exacerbated by the presence of supernodes (nodes
with many neighbors), as they further increase contention.

Fig. 3 illustrates two more examples of mammoth transactions
over the social network, where the red dashed lines indicate graph
entities being updated. Drawing from the Business Intelligence (BI)
workload [63] of LDBC (OLAP queries), we adapted two existing op-
erations to include writes to better reflect our experience with real
mammoth transactions. In 𝑄1, the weight of interactions between
nodes labeled as Person is calculated and written back to the knows

relationships. An interaction is defined as a direct Comment on a
Message between two people. For the LBDC benchmark, this step is
typically part of the pre-computation for BI-19 and BI-20 queries;
for our mammoth use cases, we execute it alongside short-lived
read-write transactions in Sec. 6.

𝑄2 is a variation of the BI-10 query, which identifies experts
within a person’s social network sharing common interests (repre-
sented by the Tag nodes linked to their Messages). The social clique
is specified by a depth range. Our extension adds operations to up-
date each identified expert at the transaction’s end. Consequently,
we classify 𝑄0 and 𝑄1 as balanced mammoths, while 𝑄2 is unbal-
anced. All three mammoth queries are representative of real-world
use cases encountered at Neo4j.

3 DETERMINISTIC EXECUTION FOR

MAMMOTHS

Mammoth transactions, which perform read-write operations across
a large portion of a graph, often conflict with short-lived transac-
tions, causing them to abort or block. This issue occurs due to
unpredictable access patterns, as nodes have varying numbers of

3

relationships (e.g., power-law distribution). We believe, however,
that we can do better than existing systems by monitoring and
analyzing runtime contention. This approach would enable us to
identify when concurrent operations can safely proceed in paral-
lel with the mammoth without blocking. Intuitively, this involves
checking that an operation does not compromise serializability.
Specifically, we aim to ensure each short-lived transaction executes
fully either before or after the mammoth in the serialization graph.
Assumptions. Our approach relies on several key assumptions:
(i) the system runs only one mammoth at a time, alongside many
short-lived transactions; (ii) mammoths may be slow without strict
performance requirements, while short-lived transactions expect
millisecond-level latency; (iii) mammoths should deterministically
commit, meaning they do not abort due to integrity constraints;
(iv) once a mammoth leaves a graph region, it cannot re-enter;
(v) short-lived transactions see either previously committed changes
by the mammoth or data it has not yet or will not ever access; and
(vi) users specify if a transaction is a mammoth. The goal is to
complete mammoths efficiently while ensuring high throughput,
low latency, and transactional guarantees for regular transactions.
Assumptions (i)-(iii) align with typical customer workloads, while
(iv)-(vi) simplify the transactional protocol. We now provide its
high-level overview.
Protocol overview. To facilitate dependency tracking in highly
dynamic graphs, we extend deterministic protocols for mammoths.
We chose Aria [44], which ensures conflict serializability without
requiring the transactions’ read-write sets in advance. Aria assigns
each transaction a unique transaction identifier (TID) using a se-
quencing layer. TIDs are used to resolve conflicts deterministically.

All transactions are processed in parallel, in any order, over two
phases within an epoch: local execution and commit. In the ex-
ecution phase (Sec. 3.1), each transaction reads from the current
database snapshot, makes reservations, and stores writes locally. In
the commit phase (Sec. 3.2), transactions use the reservations to in-
dependently commit or abort based on TIDs. The transactions with
Write-After-Write (WAW), Read-After-Write (RAW), or mammoth
conflicts are aborted and rescheduled in the next epoch. Short-lived
transactions cannot abort the mammoth.

To support mammoths without delaying epochs [44] or increas-
ing latency for short-lived transactions, we split them into smaller
tasks with a set number of operations per epoch (i.e., budget).
These tasks access localized graph areas and the protocol reorders
short-lived transactions around them – either before or after the
mammoth – preserving dependencies to detect conflicts. As the
mammoth traverses different graph regions, these regions transi-
tion through mammoth states (discussed in Sec. 3.2) until they are
marked VISITED, ensuring they are not accessed again. This strat-
egy significantly increases concurrency, allowing all transactions
to make progress.

3.1 Local Execution Phase

During the local execution phase, the mammoth and short-lived
transactions read from the same database snapshot at the epoch’s
start, as shown in line 11 of Alg. 1. This single-snapshot approach
eliminates the need for multi-version storage, minimizing changes
to the Neo4j codebase. After reading, transactions execute locally,

Algorithm 1: Execution and commit protocols
1 Function ExecuteTx(tx, db):
2 if tx.type == EXECUTE_LOCALLY then

3 RunLocally(tx, db)
4 tx.type← RUN_ON_DB
5 Schedule tx for commit phase
6 else

// Reschedule failed short-lived transactions and the

mammoth if it has more work

7 if TryToRunOnDatabase(tx, db) == false or (tx.isMammoth and
tx.hasFinished == false) then

8 tx.type← EXECUTE_LOCALLY
9 Schedule tx for execution phase

10 Function RunLocally(tx, db):
11 Read from the latest db snapshot
12 Execute locally (mammoths use a budget) and reserve R/Ws in tx.RWSet

// type is the record type and rid the record id

13 Function ReserveRead(tx, type, rid, db):
14 db.reservationTable[type].mergeRead(rid, tx.epoch, tx.tid)
15 Function ReserveWrite(tx, type, rid, db):
16 db.reservationTable[type].mergeWrite(rid, tx.epoch, tx.tid)
17 Function ReserveMammothRead(tx):
18 db.reservationTable[type].mergeMammothRead(rid, tx.epoch, tx.state)
19 Function ReserveMammothWrite(tx, type, rid, db):
20 db.reservationTable[type].mergeMammothWrite(rid, tx.epoch, tx.state)
21 Function TryToRunOnDatabase(tx, db):
22 if tx.isMammoth == true or HasConflicts(tx, db) == false then
23 Install tx.RWSet writes to db
24 return true
25 return false
26 Function HasConflicts(tx, db):
27 seenVisited← false
28 seenUnvisited← false
29 for entry← tx.RWSet do
30 reservation← db.reservationTable[entry.type].get(entry.rid)
31 if entry has WAW or budget and reservation.wid < tx.tid then

32 return true
// Allow reading from visited and not updated regions

33 seenVisited |= reservation.state == VISITED and

reservation.hasMammothWrite
34 isPending← reservation.state == PENDING_WRITE or

(reservation.state == PENDING_READ and entry.isRead == false)
// Track if we have seen unvisited regions

35 seenUnvisited← seenUnvisited or reservation.state ==
UNVISITED

36 if (seenVisited and seenUnvisited) or isPending then return true
37 return false

tracking their read-write sets and reserving entries for reads and
writes in a global reservation table (line 12). These reservations are
crucial for deterministic conflict resolution in the commit phase.

To make a reservation, each transaction specifies the operation
type (i.e., read or write), the record type, the unique record identi-
fier, and the current epoch. For LPGs, record types include nodes,
node labels, individual relationships, relationship types, and in-
dex entries; additionally, all relationships connected to a node are
grouped as a unique record type (i.e., neighborhood). Short-lived
transactions and mammoths make reservations slightly differently.
Using ReserveRead and ReserveWrite (lines 13 and 15), short-lived
transactions attempt to install reads and writes (tracked separately)
in the global reservation table. The transaction with the smallest
TID always secures a reservation regardless of the execution order.
If a transaction fails to obtain a write reservation, it can skip the
commit phase, as it has already encountered a WAW conflict, but
must still install its reservations to maintain deterministic results.

4

UNVISITED PENDING_READ PENDING_WRITE VISITED

Figure 4: Mammoth protocol state machine

The singlemammoth transaction alsomakes reservations (lines 17
and 19) but does not rely on its TID. Instead, it tracks the state of
each record it accesses, indicating whether it still has work to do
or has completed that record’s read-write operations. The mam-
moth always installs its reservations independently of short-lived
transactions. While we omit the pseudocode for brevity, during the
execution phase, mammoths are broken down into smaller tasks
based on a predefined epoch budget to prevent monopolizing the
system. The budget refers to the number of accesses to various
records (e.g., reading a label or updating a property) and allows
mammoths to span multiple epochs without affecting other trans-
actions’ performance. We explain how it is calculated in Sec. 4.

Once all transactions complete the first phase, the commit phase
begins. As shown in lines 4-5 of Alg. 1, workers schedule the trans-
actions for commit after local execution.

For example, consider three transactions with the following read-
write sets in epoch 1: (i)𝑇𝑋1 writes 𝑛1; (ii)𝑇𝑋2 writes 𝑛1 and reads
𝑛2; (iii) mammoth tx reads nodes 𝑛1 through 𝑛3. After the first
phase, the reservation table for the node records would have three
entries: {𝑛1 : 𝑒𝑝𝑜𝑐ℎ = 1,𝑤𝑖𝑑 = 1, 𝑠𝑡𝑎𝑡𝑒 = VISITED}, {𝑛2 : 𝑒𝑝𝑜𝑐ℎ =

1, 𝑟𝑖𝑑 = 2, 𝑠𝑡𝑎𝑡𝑒 = VISITED}, {𝑛3 : 𝑒𝑝𝑜𝑐ℎ = 1, 𝑠𝑡𝑎𝑡𝑒 = VISITED}.
The variables 𝑤𝑖𝑑 and 𝑟𝑖𝑑 show the earliest write and read TIDs
excluding mammoth, while 𝑠𝑡𝑎𝑡𝑒 refers to the mammoth states
discussed in the following section. In this case, 𝑇𝑋2 did not install
its write and can skip the commit phase.

3.2 Commit Phase

During the commit phase, each transaction independently makes a
deterministic decision based on the reservations from the previous
phase for a given epoch. If a short-lived transaction has no conflicts
with other short-lived transactions or the mammoth, its changes
are applied. If conflicts arise, the transaction is rescheduled to the
beginning of the next epoch (lines 7-9) unless it violates an integrity
constraint, in which case it is not retried. The order of aborted
transactions is preserved, ensuring they will eventually commit
because they have lower TIDs than transactions initiated after them.

For conflicts between short-lived transactions, if a transaction
has WAW or RAW dependencies on an earlier transaction (one with
a smaller TID), it must abort. No rollback is needed, however, as
updates are stored locally in tx.RWSet and have not yet been applied.
For conflicts with a mammoth, the short-lived transaction checks
the mammoth’s state for that record (e.g., whether the record has
already been visited by the mammoth), as shown in lines 33-36.

Since the mammoth is broken down into smaller tasks to dis-
tribute its work across epochs based on a set budget, it does not

Mammoth Frontier

Visited

Pending
Read

Pending
Write

Unvisited

TX1

TX3

TX2

R
W

R

W

TX4

W

1
2

3

4

Figure 5: Mammoth conflicts with short-lived transactions

process the entire graph in one pass. While the mammoth is run-
ning, records transition through distinct states shown in Fig. 4.
Initially, each record is marked as UNVISITED and can transition to
one of three states: (i) PENDING_READ, indicating the mammoth has
read but not finished with the record; (ii) PENDING_WRITE, meaning
the mammoth is still updating the record; or (iii) VISITED, indicating
all operations on the record are complete.

We want short-lived transactions to execute strictly before or
after the mammoth’s actions, preserving a clear order in the serial-
ization graph. To ensure this property, we use the mammoth’s four
states to identify potential conflicts. Specifically, a short-lived trans-
action can either access fully VISITED records (line 33) or UNVISITED
ones (line 35), but not both – except for VISITED records without
writes. It also cannot interact with records in PENDING_WRITE state,
though it can read records marked as PENDING_READwithin an epoch.

Fig. 5 shows an example involving four transactions while a
mammoth updates the graph, moving from the left side of the graph
to the right (see the dashed line indicating its frontier).𝑇𝑋1 (1) can
write to the VISITED section of the graph, and 𝑇𝑋4 (4) can write
to the UNVISITED part.𝑇𝑋3 (3) can read from a PENDING_READ node
but cannot modify it (e.g., properties or relationships), as updating
requires reserving the node for a write, which would result in a
conflict. 𝑇𝑋2 (2) conflicts with the mammoth because it attempts
to operate on parts of the graph that the mammoth is currently
processing (i.e., PENDING) and has already VISITED. The same would
apply to both VISITED and UNVISITED sections.

Recall that only one mammoth is allowed at a time to ensure it
always makes progress. The mammoth is guaranteed to commit
its updates to the database (line 22) deterministically, meaning
no validation step (e.g., constraint violations) or other transaction
will abort it. At the end of the commit phase (line 7), the worker
responsible for the mammoth checks for any remaining work and,
if so, schedules it for the next epoch. The mammoth uses local data
structures to track its execution progress, allowing it to pause and
resume similar to suspendable tasks [36].

5

3.3 Determinism and Serializability

Compared to the Aria protocol [44], the mammoth can be logically
viewed as the transaction with the smallest TID in all epochs. It
performs a predefined number of operations using a budget, pauses,
and gets scheduled for the next epoch. Since the mammoth cannot
be aborted, its execution is deterministic, ensuring that our protocol
maintains conflict serializability. Reordering transactions around
mammoth actions is safe due to the assumptions (iii) and (iv).

Regardless of the transaction execution order, the reservation
table will always store the smallest TID that read or wrote a record
during that epoch, along with information about its mammoth
state. A transaction can only install its TID if it is smaller, while
the mammoth independently installs its state without considering
other transactions. This ensures the first phase is deterministic.

The same principle applies to the commit phase, as the reserva-
tion table remains unchanged and serves as the single source of
truth for detecting conflicts. Each transaction independently uses its
read-write set to make decisions in parallel with other transactions.

To ensure clients have a consistent view of the graph within
a session, we also introduce bookmarks [51]. Bookmarks prevent
clients from accessing UNVISITED or PENDING sections after reading
results from VISITED mammoth sections. In other words, transac-
tions within a session cannot time-travel and must wait for the
mammoth to complete before proceeding.

3.4 Applicability and Limitations

The logic of a mammoth transitioning through the states shown
in Fig. 4 is straightforward. Similar to graph traversal, the process
starts from a set of nodes, and as their neighbors are accessed for
reads or writes, they are marked as PENDING. Once all operations
on a node are complete, it transitions to the VISITED state and will
not be accessed again by the mammoth. This method efficiently
handles supernodes, allowing the mammoth to pause and resume
processing across multiple epochs rather than completing them in
a single epoch.

The mammoth cannot update an already VISITED region, compli-
cating the implementation for certain graph algorithms. For exam-
ple, iterative algorithms like PageRank [46] require many nodes to
stay in the PENDING state until completion, as nodes need to be revis-
ited across multiple iterations. Nonetheless, our approach can still
support such cases. We can extend TuskFlow with finer-grained
record management at the property level (e.g., updating only one
property in PageRank) or use commutative operations (e.g., incre-
menting a counter) to enhance concurrency. Our protocol aligns
well with our customers’ mammoth workloads, with expensive
iterative graph algorithms handled by the Neo4j GDS library [53].

While epochs simplify conflict resolution, they also increase
latency (equal to the epoch duration) compared to traditional non-
deterministic protocols like 2PL or MVCC. Additionally, the mam-
moth transaction’s budget must be chosen carefully to avoid work-
load imbalances within an epoch. In some cases, adding timeouts
for short-lived transactions could enhance client experience when
latency exceeds acceptable limits.

The phantom problem [31] can be handled with standard tech-
niques as in [38, 44]. Overall, our protocol allows regular transac-
tions to run concurrently with the mammoth, reducing tail latency.

P1

M1 M2

is_author_of

T1

has_tag

T2

P2

M3

P3 M4

reply_of T3

knows

Hot items

Hot items

Partitions

P1 M2 M1

P3 M4

Partition 1

P2 M3 T1

T2 T3

Partition 2

P M

Hot pattern
Graph Patterns

Figure 6: Partitioning based on accesses and patterns: P =

Person, M = Message, T = Tag.

In the following section, we will discuss how the graph structure
and workloads can further increase concurrency.

Finally, the above mechanisms are not exclusive to graph DBMSs;
we observe that they could also be applied to relational systems.
In simple terms, graph traversals map to table joins, nodes and
relationships become tables, and the protocol proceeds similarly.

4 ACCELERATING CONFLICT RESOLUTION

Many real-world graphs have an irregular structure, often following
a power-law distribution [30, 63]. This results in some neighbor-
hoods being more densely connected than others (e.g., social or
road networks). Updating high-degree nodes, or supernodes, can
lead to unpredictable access bursts, making it hard to evenly distrib-
ute the processing load. A small number of these supernodes can
become hotspots, causing workload skew and a higher frequency
of conflicts. Handling conflicts in read-write graph traversals (i.e.,
chained data accesses) is more challenging than resolving conflicts
in simple point lookups. In some pathological cases, a short-lived
transaction may be blocked indefinitely if its path overlaps with
both VISITED and UNVISITED regions. Dense graphs exacerbate this
problem, as the higher chance of overlap with mammoths increases
the likelihood of contention, significantly degrading performance.

To address this, we need to use the structural properties of graphs
to improve conflict resolution. In this section, we introduce tech-
niques aimed at this goal: (i) applying workload- and query-aware
partitioning to prioritize the mammoth’s access to regions that
are less likely to block short-lived transactions due to VISITED-
UNVISITED conflicts; (ii) parallelizing mammoths to shorten their
duration and tuning the deterministic protocol to reduce the epoch
span, lowering the latency of short-lived transactions; (iii) annotat-
ing parts of the graph accessed by the mammoth before execution
to eliminate unnecessary conflicts; and (iv) reordering short-lived
transactions to minimize aborts caused by RAW dependencies.

4.1 Query- and Workload-aware Partitioning

In our work, creating disjoint graph partitions serves a dual purpose:
(i) they function as work units for parallelizing mammoths across
workers (in parallel or distributed execution), and (ii) they prioritize
"hot" graph regions, allowing mammoths to visit them first and
reduce early contention with short-lived transactions. However,
existing partitioning algorithms like Fennel [73] and LGD [62] are
workload-agnostic and aim only to reduce communication over-
head between partitions (i.e., relationships spanning two partitions).

6

Algorithm 2: RankingPM partitioner
1 Function partition(db, patterns, numberOfPartitions):

// Sort node ids by accesses

2 nodeIds← sort(db.getNodeIds(), db.getNodeAccesses())
3 partitionSize← nodeIds.size() / numberOfPartitions
4 partitions← {∅}, curPartition← ∅, visited← ∅, idx← 0
5 while visited.size() ≠ nodeIds.size() do
6 if curPartition.size() ≥ partitionSize then
7 partitions.add(curPartition)
8 curPartition← ∅
9 nodeId← nodeIds[idx++]

10 if visited.contains(nodeId) == false then
11 visited.add(nodeId)
12 curPartition.add(nodeId)
13 for pattern← patterns do
14 update curPartition and visited based on pattern
15 if curPartition.isEmpty() == false then partitions.add(curPartition)
16 return partitions

These algorithms assume a uniform traversal likelihood for each
relationship, which is realistic for offline graph algorithms like
PageRank [46] but not for transactional workloads [32].

To identify graph hotspots, we track frequent access and traversal
patterns. Although Neo4j does not track this metadata by default, it
can be efficiently collected through sampling (see Sec. 5.1). Ranking
"hot" records allows the mammoth to prioritize conflict resolution
for frequent accesses. Additionally, using recurring graph patterns
improves the workload-sensitive partition stability [32] by forming
communities that reduce VISITED-UNVISITED conflicts. The patterns
capture labels, properties, and relationship directions in LPGs.

Fig. 6 illustrates a subgraph of LDBC where Person labeled nodes
𝑃1 to 𝑃3 are linked to Messages 𝑀 they authored. These Messages

may have Tags 𝑇 or be Comments on other Messages. Consider the
scenario that the most frequent pattern submitted to the data-
base involves reading or updating the messages of a single person
((p:P)<-[is_author_of]-(m:M)), and 𝑃1 and 𝑃3 are accessed more
often than 𝑃2. To create (for simplicity) two partitions that prior-
itize frequent accesses, we would include the "hot" nodes 𝑃1, 𝑃3,
𝑀1, and𝑀4 in the first partition, as well as𝑀2, since it is likely to
be accessed when visiting 𝑃1. The second partition would contain
the remaining nodes, which are less frequently accessed due to
workload skew and query patterns (e.g., no queries access the Tags).

Building on the above idea, we introduce a novel partitioning
heuristic called RankingPM1, which accounts for both record ac-
cess frequency and recurring graph patterns. Alg. 2 outlines the
algorithm’s logic: (i) it first sorts all node IDs by access frequency,
from most to least frequent (line2); (ii) then, it iterates over these
nodes, checking if they have not been visited2 (line 10) and adds
them to the current partition (line 12); (iii) for each node, even if
already visited, the algorithm uses the most frequent graph pat-
terns starting from that node to add more nodes to the partition,
marking them as visited. This ensures that each partition is disjoint
by excluding previously visited nodes.

In lines 6-8, if the current partition exceeds a predefined size of
|𝑁 |

#𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 , it is considered complete and added to the list of parti-
tions. This can result in varying-sized partitions, potentially leading

1Named from the steps involved: Ranking and PatternMatching.
2It also checks if the nodes satisfy a filter predicate based on labels and property values
(e.g., include only Person labeled nodes), which we omit for simplicity.

to imbalanced execution. We handle this at the transaction protocol
level by pausing and resuming work, as discussed in Sec. 3.4.

RankingPM is an offline algorithm that requires graph reparti-
tioning when the graph structure changes significantly, which is
generally rare in typical transactional workloads that support a spe-
cific user-level application. In Sec. 6.3, we show that repartitioning
can be completed within tens of seconds, enabling frequent execu-
tion. However, we can avoid the overhead of full repartitioning by
applying a streaming repartitioning strategy [32, 40]. New nodes
are placed into "cold" partitions by default, while deletions remove
nodes from their partitions, allowing mammoths to bypass them.

4.2 Parallel Mammoths and Parameter Tuning

The end-to-end latency of short-lived transactions is closely tied to
both the duration of the mammoth and the length of each epoch.
While the mammoth is running, short-lived transactions are more
likely to be aborted because of contention with themammoth. More-
over, a longer epoch span means that short-lived transactions take
longer to commit, even without conflicts. To address this challenge,
we must speed up mammoths by executing them in parallel and
responsively tuning the epoch duration.
Parallel execution. Since a single mammoth is structured into
smaller tasks over disjoint graph partitions, a natural solution is to
execute these tasks in parallel. The epoch-based structure of the
deterministic protocol aligns well with parallel graph algorithms,
such as Breadth-First Search (BFS) [64] or Single-Source Shortest
Path (SSSP). For example, LDBC 𝑄1 from Fig. 3 can compute rela-
tionship weights in parallel, while𝑄2 can perform a parallel BFS to
find experts connected to a person and update their properties. In
both cases, parallel tasks may perform redundant operations since
they synchronize at the epoch’s end, with only one task ultimately
installing its writes for a given record. The tasks use compare-
and-swap (CAS) operations to reserve writes within an epoch for
different records and consolidate to skip already visited nodes.

Our evaluation shows that parallelizing mammoth tasks not only
reduces the tail latency of short-lived transactions but also allows
the system to return to regular execution faster. This prevents the
database from becoming overloaded with blocked transactions.
The parameters influencing epoch duration are: (i) the epoch size,
the batch size of transactions per epoch; (ii) themammoth budget, or
the operations it performs within an epoch; and (iii) the number of
parallel mammoth tasks. A small epoch size may cause short-lived
transactions to queue waiting for the mammoth, while an overly
large size can prolong the duration unnecessarily. Our experiments
in Sec. 6.5 suggest that an optimal epoch size is about five times
the average transaction throughput (𝑡𝑥/ s), balancing efficiency
with recovery from aborts. The mammoth budget and parallel task
count depend on workload and hardware configuration. A general
guideline is to set the budget as a multiple (e.g., 10×) of the average
transaction throughput and assign all workers for parallelism.

4.3 Graph Tagging and Transaction Reordering

When running the transactional protocol for mammoths, an initial
assumption would be that they will access any graph record (e.g.,
nodes, relationships, neighborhoods), meaning every entity should

7

Connection Manager

Stored Procedures

Concurrency Protocols
(unified API)

Aria + Mammoths2PL

Query Manager
TX Queue

Mammoth Queue

Phase 1 Queue

Graph Storage Layer (in-memory)
Nodes Relationships In-/Out-neighborhoods

Partition Store

Partitioning Algos

Partitions
New entities

Monitoring
Manager

Statistics:
latency, throughput,

graph accesses

TuskFlow

Phase 2 Queue

Figure 7: TuskFlow architecture

Epoch ID (64bit) Read TID (32 bit) Write TID (32 bit) Mammoth State
(2 bit)

Mammoth Write
(1 bit)

Figure 8: Reservation entry

be marked as UNVISITED. However, this does not hold true for many
workloads and can often lead to unnecessary conflicts.

For example, in LDBC query 𝑄1, it is known that only nodes
labeled as Messages are accessed, or in another case, 𝑄1 updates
only the knows relationship. Thus, we can optimize execution by
extracting the labels, relationship types, and record accesses spec-
ified in mammoth queries. By focusing solely on these entities,
we can more accurately detect mammoth conflicts. This approach
significantly prunes the graph regions considered irrelevant to the
mammoth, minimizing conflicts.

Transaction reordering [10, 11, 56] can enhance performance
by reducing aborts for short-lived transactions. To keep our proto-
col deterministic and serializable without coordination, we apply
the reordering algorithm from [44], which converts RAW to WAR
(Write-After-Read) dependencies. The only modification required is
to add a check to the protocol in Alg. 1. Specifically, after line 31, we
ensure that a transaction does not have WAR or RAW dependencies
with earlier transactions (in addition to WAW) by using the read
and write TIDs already recorded in each reservation entry.

5 TUSKFLOW ARCHITECTURE

While integrating our protocol into a deterministic database is
straightforward, commercial graph databases [2, 47, 49, 69] are not
designed to easily support deterministic transactions. To establish
an easy future path to production and minimize the changes for
Neo4j, we chose to adapt our protocol to existing databases by
integrating it into the transaction scheduling subsystem.

In this section, we introduce TuskFlow, an experimental graph
database based on Neo4j that uses two execution modes: (i) 2PL
for short-lived transactions; and (ii) our deterministic protocol
from Sec. 3 for mixedmammoth and short-lived transactions.We be-
gin with an overview of the system (Sec. 5.1) and then explain how
TuskFlow transitions between its two execution modes (Sec. 5.2).

5.1 Overview

Fig. 7 illustrates the components of TuskFlow, implemented as a
standalone 14 K-line Java codebase, separate from Neo4j. To reduce
the memory footprint of transactional queries, it uses statically allo-
cated object pools for tasks, primitive collections [25], and roaring
bitmaps [14] as in [64].

Before clients can submit queries, they connect to the Connec-
tion Manager, which determines when a transaction is ready for
submission or when results can be returned based on bookmarks.
As explained in Sec. 3.3, users cannot time-travel between VISITED

and UNVISITED regions, which ensures session consistency.
For Concurrency Protocols, TuskFlow supports both (strict) 2PL

and deterministic execution. To implement 2PL, it uses Forseti,
Neo4j’s open-source lock manager [52]. For the reservation table
needed from Alg. 1, TuskFlow maintains a concurrent hashmap
for each record type, with workers installing updates using CAS
operations based on TIDs. TIDs are assigned through a monotoni-
cally increasing counter at transaction submission. Fig. 8 shows a
reservation entry that uses: (i) 64 bits for the epoch; (ii) 64 bits for
the earliest read-write TIDs; and (iii) 3 bits for the mammoth state.

Currently, TuskFlow supports pre-compiled stored procedures
to simplify integration with Neo4j [54], similar to other determinis-
tic databases [67, 74]. These stored procedures, written in Java, can
express arbitrary logic for read-write operations over the graph
database and can be used by TuskFlow to extract "hot patterns"
for RankingPM. For short-lived transactions, both 2PL and the de-
terministic protocol share a unified API with simple read and write

calls, so users are not forced to deal with the complexity of locking
versus reservations – TuskFlow handles this based on the execu-
tion mode. However, for mammoths, users must manage the execu-
tion and state transitions explicitly by using the ReserveMammothRead
and ReserveMammothWrite calls. We plan to develop a compiler that
parses Cypher [34] and automatically generates the mammoth logic.

The Query Manager schedules transactions and manages transi-
tions between the two execution modes (see Sec. 5.2). The Graph
Storage Layer contains: (i) a node vector; (ii) a relationship vector;
(iii) two vectors of incoming and outgoing relationship IDs; and (iv)
auxiliary data structures on labels and relationship types.

The Monitoring Manager tracks system metrics like end-to-end
latency, average throughput (affecting epoch size), and the count
of committed and aborted transactions. During execution, workers
profile a subset of read-write accesses and report to the Monitoring
Manager. Profiling occurs per transaction (all operations recorded
or none), improving the collocation of neighboring graph entities
for the RankingPM partitioner.

The Partition Storemanages graph partitions for mammoth trans-
actions and supports hash, Fennel, and RankingPM partitioners.
Parallel mammoth tasks retrieve disjoint partitions from the store,
and any new nodes post-partitioning go to "cold" partitions. Tusk-
Flow triggers repartitioning periodically, based on a configurable
interval and metrics from the Monitoring Manager.

5.2 Transaction Scheduling

Alg. 3 outlines the scheduling logic of the Query Manager. During
the regular execution mode, when no mammoth transactions are
submitted, workers retrieve and execute short-lived transactions

8

Algorithm 3: Query manager transaction scheduling
// txQueue stores short-lived txs

// mQueue stores mammoth txs

// p1Queue/p2Queue stores txs for protocol’s 1st/2nd phase

1 Function run(txQueue, mQueue, p1Queue, p2Queue):
2 while true do
3 if mQueue.isEmpty() == false then

// Schedule tasks until there is no mammoth

4 ScheduleInEpochs(txQueue, mQueue, p1Queue, p2Queue)
// Aborted queries use regular execution from here

5 ResetExecutionMode(txQueue, p1Queue)
6 Function ScheduleInEpochs(txQueue, mQueue, p1Queue, p2Queue):
7 while mQueue.isEmpty() == false do
8 mammoth← mQueue.poll()
9 p1Queue.add(mammoth)

10 while mammoth.hasFinished == false do
11 size← min(epochSize - p1Queue.size(), txQueue.size())
12 for i← 0 to size do
13 tx← txQueue.poll()
14 move tx to p1Queue and set its protocol to deterministic
15 p1Counter← p1Queue.size()

// start phase 1 and wait until p1Counter == 0

16 p2Counter← p2Queue.size()
// start phase 2 and wait until p2Counter == 0

17 Function ResetExecutionMode(txQueue, p1Queue):
18 for tx← p1Queue do move tx to txQueue and set its protocol to 2PL

from the txQueue using 2PL. However, when one or more mammoth
transactions arrive, theQuery Manager switches to deterministic ex-
ecution mode (line 4) and processes them one at a time. In this mode,
workers handle transactions from two queues: p1Queue and p2Queue,
corresponding to the two protocol phases.

Based on the epoch size, a fixed number of transactions from
the txQueue are moved to the p1Queue (lines 12-14), along with the
mammoth transaction (line 9), and a barrier is set. Once all tasks in
the first phase are completed, they are moved to the p2Queue, and
the second phase begins with a new barrier (see Sec. 3.2). Aborted
transactions are moved back to p1Queue before new transactions
from txQueue can be added based on available slots within the
epoch size (line 11). After all mammoth transactions are processed,
the Query Manager resets any aborted transactions to 2PL, places
them back in txQueue, and resumes regular execution mode.

Table 1: Evaluation datasets

Dataset Domain |V| |E| |E|/|V|

WikiTalk [42] communication net. 1 M 7.8 M 7.8
DBPedia [8] hyperlink 18 M 172 M 9.5
USRoad [60] rail network 24 M 58 M 4.8
LDBC SF10 [30, 63] social network 34 M 165 M 9.8

6 EVALUATION

In this section, we evaluate the performance of TuskFlow with
mammoths. We show that it does not block short-lived transactions
and delivers lower tail latency compared to 2PL andMVCC (Sec. 6.2).
Next, we analyze the impact of graph partitioning (Sec. 6.3) and
present an optimization breakdown of the conflict resolution tech-
niques (Sec. 6.4) from Sec. 4. Lastly, we offer guidelines for tuning
the deterministic protocol (Sec. 6.5) and demonstrate how Tusk-
Flow performs as the transaction throughput increases (Sec. 6.6).

6.1 Experimental Setup

All experiments were performed on an m5.8xlarge AWS EC2 in-
stance with 32 physical cores, 35.8 MiB LLC, and 128 GiB memory,
using Amazon Linux 2023 (kernel v. 6.1) and Corretto OpenJDK17.
Datasets and workloads. For our evaluation, we use two real-
world graph datasets and a synthetic one to provide a diverse set of
scenarios: (i) DBPedia[8], a hyperlink network of Wikipedia where
pages are nodes and hyperlinks are relationships; (ii) USRoad [60],
a low-degree road network graph with a grid-like structure; and
(iii) LDBC [30, 63], which simulates real-world interactions over
a social network. Since USRoad is undirected, we create two rela-
tionships for each original one, and for LDBC, we store only the
properties required for our queries. Table 1 summarizes the graphs.

The LDBC SNB benchmark represents an OLTP workload, yet it
only covers short-lived transactions. To simulate mammoths on the
LDBC network, we also use the three queries described in Sec. 2.5.
These queries represent typical production workloads for both
balanced and unbalanced mammoths. Specifically, 𝑄1 and 𝑄2 are
(offline) analytical LDBC-BI queries [63], which we run as (online)
mammoth transactions alongside regular ones. Since DBPedia and
USRoad do not have labeled nodes, we only use a variation of 𝑄0.
Database systems. We compare our deterministic protocol to 2PL
using TuskFlow instead of Neo4j3 for fairness [65]. For MVCC,
we use Postgres v.15.0, configured according to best practices. Aria
performs similarly to 2PL but with higher latency due to blocking all
transactions until the mammoth completes. Unless stated otherwise,
we set the epoch budget to 2M ops, use 32 parallel tasks, and set
the epoch size to 5× the average transaction throughput.
Metrics. The main performance metrics in the benchmarks are
throughput and end-to-end tail latency, measured at the 99th per-
centile (p99). Candlesticks in the plots represent the 5th, 25th, 50th,
75th, and 99th latency percentiles.

Table 2: p99 latency

Workload
p99 latency (Mammoth duration) in s

TuskFlow 2PL Postgres

DBpedia 0.9 (4.1) 10.5 (11.7) 40.9 (71.6)
USRoad 0.8 (4.8) 13.7 (14.9) 19.2 (91.7)

6.2 Comparison with 2PL and Postgres

To study the efficiency of TuskFlow, we use the LDBC social
network with queries 𝑄0-𝑄2 and measure the throughput of short-
lived transactions. In this experiment, we fix the input rate of
short-lived transactions at 10K per second, which is a ballpark
representative of a modest real system. All clients submit either
read-only or read-write 1-hop queries, with 80% being read-only.
These queries start from a random Person (uniform distribution)
and either read or update ten random Messages based on the pat-
tern (p:P)<-[is_author_of]-(m:M). We compare our deterministic
protocol to 2PL by starting a single mammoth at the 60 s mark.

For the simplest query, 𝑄0, which updates all nodes labeled
as Messages, Fig. 9 shows that TuskFlow completes the mammoth
execution in under 8 s, thanks to the optimizations discussed in

32PL provides conflict serializability, whereas Neo4j offers Read Committed isolation.

9

0 20 40 60 80 100 120
Time (s)

0

10−2

10−1

100

101

102

103

104

105

Th
ro

ug
hp

ut
 (t

x/
s)

TuskFlow
2PL

Figure 9: LDBC Q0

0 20 40 60 80 100 120
Time (s)

0

10−2

10−1

100

101

102

103

104

105

Th
ro

ug
hp

ut
 (t

x/
s)

2PL fails (OOM)
TuskFlow
2PL

Figure 10: LDBC Q1

0 20 40 60 80 100 120
Time (s)

0

10−2

10−1

100

101

102

103

104

105

Th
ro

ug
hp

ut
 (t

x/
s)

TuskFlow
2PL

Figure 11: LDBC Q2

LDBC Q0 LDBC Q1 LDBC Q2 DBpedia USRoad
10−3

10−2

10−1

100

101

102

103

104

105

La
te

nc
y

(m
s)

OOM

TuskFlow
2PL

Figure 12: Latency comparison

LDBC Q0 DBpedia USRoad
101

102

103

104

105

p9
9

la
te

nc
y

(m
s)

baseline
+parallel

+tagging
+reorder

no-conflicts

Figure 13: Optimizations breakdown

10K 50K 100K 500K
Throughput (tx/s)

10−1

100

101

102

103

104

105

La
te

nc
y

(m
s)

LDBC Q0

Figure 14: Latency with increasing tx/s

Sec. 4, in particular the parallel execution. In contrast, 2PL blocks
all transactions for 21 s, whereas TuskFlow allows both read-only
and read-write transactions to make progress and commit.

For 𝑄1, the most compute-intensive query, Fig. 10 shows that
TuskFlow completes the mammoth in 60 s while maintaining a
throughput close to the input rate. However, there are two points
where throughput temporarily drops to zero. This happens because
many transactions are aborted due to the mammoth, causing the
protocol to spend considerable time scheduling them. During these
periods, the epoch duration exceeds 1 s, leading to a temporary stall
in throughput. In contrast, 2PL fails to complete due to transaction
overload, eventually causing an out-of-memory exception, further
demonstrating the importance of parallelizing mammoths.

𝑄2 in Fig. 11 exhibits a similar pattern to 𝑄0. TuskFlow com-
pletes the mammoth in under 15 s, compared to 68 s with 2PL.
Although some epochs temporarily block short-lived transactions,
the average throughput remains close to 10K tx/s.

Next, we evaluate the impact of mammoths on the end-to-end
latency of short-lived transactions, using the LDBC social network
with𝑄0-𝑄2, and the DBpedia and USRoad graphs. For DBpedia and
USRoad, the mammoth behaves as LDBC 𝑄0 and updates all nodes,
while the 1-hop queries start from any random node and either
read or update ten random outgoing neighbors. Fig. 12 shows that
2PL results in up to 6× higher median and p75 latency. Additionally,
p95 (not shown here) and tail latency can be up to 180× and 17.2×
higher. This translates into waiting minutes instead of hundreds of
milliseconds, which is critical for responsive systems.

To simplify workloads for Postgres, we use the unlabeled DB-
pedia and USRoad graphs, create hash indexes for in- and out-
relationships, and reduce the input rate to 2.5K tx/s, as Postgres
cannot otherwise handle the 1-hop traversals. As shown in Table 2,
Postgres experiences 24-45× higher tail latency than TuskFlow and
performs worse than 2PL, which completes the mammoth faster.

In summary, choosing the right protocol significantly impacts
both the throughput and latency of short-lived transactions and
TuskFlow greatly improves concurrency. Finally, our profiling
of 2PL revealed that the lock manager is a major bottleneck for
mammoth transactions.

Table 3: Partitioning with point and 1-hop queries

Workload Read ratio

p99 latency in s

Point queries 1-hop queries

Serial Ranking Serial Ranking R1hop

DBpedia
80% 1.53 1.86 0.86 0.87 0.50
90% 1.75 2.01 0.54 0.62 0.34
100% 1.72 1.92 0.23 0.48 0.28

LDBC
80% 3.27 3.91 2.30 2.41 1.04
90% 3.62 3.61 1.58 1.99 0.67
100% 4.14 3.62 2.41 1.47 0.93

USRoad
80% 3.74 3.80 1.16 1.02 0.71
90% 3.68 3.86 1.31 0.93 0.79
100% 3.45 3.23 1.19 1.02 0.73

6.3 Graph Partitioning with Skewed Workloads

Given most graph workloads will exhibit skewed access patterns,
we now evaluate the benefits of the RankingPM partitioner in

10

Table 4: Partitioning with multi-hop queries

Workload

Read

ratio

p99 latency in s

Serial Rank- R1hop R2hop R3hop RPatterns
ing

DBpedia -
2-hops

80% 0.67 0.73 0.40 0.47 - -
90% 0.53 0.78 0.32 0.36 - -
100% 2.05 3.65 0.57 1.29 - -

LDBC -
2-hops

80% 2.05 3.65 0.57 1.29 - -
90% 1.71 3.45 0.82 1.08 - -
100% 2.81 2.79 0.76 1.67 - -

USRoad -
2-hops

80% 0.99 1.14 0.81 0.88 - -
90% 1.10 1.02 0.72 0.65 - -
100% 0.98 0.87 1.04 0.76 - -

DBpedia -
3-hops

80% 0.53 0.80 0.31 0.49 0.32 -
90% 0.53 0.65 0.27 0.34 0.25 -
100% 0.49 0.65 0.25 0.24 0.42 -

LDBC -
3-hops

80% 1.75 3.41 0.92 0.98 5.50 -
90% 1.53 3.75 0.75 1.01 5.20 -
100% 2.87 3.79 1.15 1.93 7.63 -

USRoad -
3-hops

80% 0.99 1.49 1.11 0.76 0.78 -
90% 0.90 1.18 1.04 0.85 0.83 -
100% 0.82 1.06 0.90 0.73 0.65 -

DBpedia -
mixed

80% 0.70 0.71 0.63 0.62 0.72 0.59
90% 0.74 0.90 0.50 0.89 0.80 0.79
100% 0.29 0.35 0.27 0.22 0.21 0.29

LDBC -
mixed

80% 3.24 2.98 1.41 2.48 5.66 0.89
90% 2.39 3.33 0.83 1.79 4.95 1.05
100% 3.13 3.26 1.35 2.00 5.17 1.36

USRoad -
mixed

80% 1.06 1.36 0.93 0.95 0.66 0.41
90% 0.68 1.13 0.89 0.65 0.65 0.70
100% 0.95 1.55 0.83 0.95 1.03 1.01

these scenarios. Specifically, we aim to understand which types of
patterns can enhance performance for various query workloads. As
a baseline, we use serial partitioning, where nodes are assigned to
partitions based on their IDs. This approach can offer good average
performance due to its memory-friendly node access, particularly
for synthetic graphs like LDBC SNB, where a person’s messages are
often collocated within the same partition. We omit comparisons
with hash and Fennel partitioning algorithms, as they are workload-
agnostic and significantly degrade performance in our evaluation.

For this experiment, we use LDBC SNB, DBpedia, and USRoad
graphs, with 𝑄0 as the mammoth. Short-lived transactions start at
a node selected using a Zipfian distribution (𝜃 = 1) applied to ran-
domly shuffled node IDs, and results are averaged across 5 runs. The
short-lived transactions have 5 different configurations: (i) point
queries; (ii) 1-hop queries; (iii) 2-hop queries; (iv) 3-hop queries;
and (v) mixed transactions, which consist of 25% point queries, 55%
1-hop queries, 15% 2-hop queries, and 5% 3-hop queries – similar
to common production workloads. In LDBC SNB, multihop queries
use the pattern (p1:P)-[:know]{hops-1}->(p2:P) to access a Person
within their social circle and read/write 10 of its Messages. In DBpe-
dia and USRoad, the queries traverse hops-1 outgoing relationships
and then access 10 direct relationships from the final node.

For each configuration, we evaluate different variations of Rank-
ingPM: (i) Rankingwithout using patterns for partitioning; (ii) R1hop,
which leverages the most frequent 1-hop patterns; (iii) R2hop, using
2-hop patterns; (iv) R3hop, using 3-hop patterns; and (v) RPatterns,
which uses all available patterns. Lastly, we vary the percentage of
read-only queries between 80% and 100% while keeping the input

rate at the maximum capacity that the lock manager can handle.
Tables 3 and 4 summarize the results regarding tail latency, with
the best approach for each workload highlighted in green.

Starting with point queries and only Ranking (no patterns) as
shown in Table 3, serial partitioning results in tail latencies that
are 2-21% lower. The exception is for 100% read-only workloads
with LDBC SNB and USRoad, where Ranking improves latency by
up to 13%. This indicates that relying solely on node accesses for
partitioning does not always enhance performance if the reduction
in conflicts does not outweigh the benefits of sequential memory
accesses. However, with 1-hop queries, utilizing the most frequent
1-hop pattern significantly reduces tail latency by 1.6-2.6×.

For 2-hop queries (Table 4), R1hop generally delivers the best
performance, outperforming Serial by 1.5-3.5× for most workloads.
The exception is USRoad, where R2hop surpasses R1hop due to
the graph’s low-degree structure, which favours partitioning that
collates long paths. Using the most common 2-hop patterns requires
at least 30% more time for partitioning. A similar trend is found
with 3-hop queries: R1hop achieves nearly 2× lower tail latency
than Serial, except for USRoad, where R3hop performs best, albeit
with longer partitioning times. We also observe that using 2- or
3-hop patterns can have negative effects on performance (see LDBC-
3-hops), as it can split neighboring nodes that should have been
collocated (e.g., a Person not connected to her Messages).

For mixed workloads, RPartitions, which uses all available pat-
terns regardless of length, generally achieves lower or similar tail
latency compared to R1hop. However, RPartitions requires at least
3× more time for partitioning, which can be expensive for large
graphs andmultiple patterns. Despite this, even R1hop still provides
up to 3.6× lower tail latency compared to Serial partitioning.

Overall, using ranking with the most frequent 1-hop patterns
(R1hop) offers the best balance between partitioning cost and perfor-
mance. The effectiveness of the "hot" patterns improves when they
include label information – note that only LDBC SNB has labels.
Finally, Serial partitioning is expected to perform worse on real-
world graphs, where frequent updates can disrupt the collocation
of neighboring nodes with numerically close IDs.

6.4 Optimization Breakdown

We study TuskFlow’s conflict optimization techniques from Sec. 4
using the LDBC SNB, DBpedia, and USRoad datasets with 𝑄0 and
1-hop read-write queries (80% read-only, at 10K tx/s). We measure
the tail latency of short-lived transactions across 5 configurations:
(i) no optimizations (baseline); (ii) parallel execution; (iii) graph
tagging on top of parallel execution; (iv) transaction reordering
with the previous optimizations; and (v) emulating an ideal pro-
tocol that resolves all conflicts (no-conflicts). Fig. 14 shows that
parallel execution reduces tail latency by 2.7-5.2× by shortening the
mammoth duration. Graph tagging cuts tail latency by roughly 50%,
while transaction reordering improves performance for DBpedia
and USRoad by 62% and 49%, respectively. Transaction reorder-
ing has no effect on the LDBC SNB graph, as it has fewer write
conflicts between regular transactions, though it does help with
skewed workloads. Finally, the no-conflicts configuration further
reduces latency by 3.5×, indicating the potential of more advanced
techniques, such as better transaction reordering algorithms [16].

11

Table 5: Parameter tuning

Budget

(#ops)

#Tasks
p99 latency (Mammoth duration) in s

10K tx/s 20K tx/s 40K tx/s

125K

1 18.8 (30.8) 30.5 (45.5) 62.5 (83.4)
8 8.3 (15.8) 20.7 (30.9) 53.3 (72.3)
16 8.9 (15.9) 22 (32.1) 53 (72)
32 7.9 (14.9) 21.8 (31.8) 48.7 (65.9)
64 8.6 (15.6) 21.2 (31.2) 50.9 (69)

500K

1 12.2 (22.3) 15.6 (26.4) 22.5 (35.4)
8 5 (10.9) 6.6 (12.8) 12.7 (20.8)
16 4.2 (9.5) 4.4 (10.7) 10.6 (18.0)
32 3.2 (8.7) 5.6 (11.2) 10.6 (17.8)
64 3.9 (9.1) 4.4 (10.3) 10.7 (17.7)

2M

1 12.4 (20.5) 13.8 (22) 16.1 (25.9)
8 4 (8.5) 4.1 (9.1) 5.7 (11.4)
16 3.1 (7) 2.9 (7.6) 4.5 (9.4)
32 2.1 (5.9) 3.2 (7.6) 4.5 (9.1)
64 2.4 (6.4) 3.3 (7.8) 4.5 (8.9)

4M

1 14.3 (20.3) 14.7 (21.3) 15.3 (22)
8 4.6 (8.7) 5.1 (9.2) 5.3 (9.5)
16 3.9 (7.8) 4.3 (8.1) 3.5 (7.7)
32 3 (6.5) 3.5 (7.4) 3.9 (8.1)
64 3.4 (7.2) 3.4 (7.3) 4.6 (8.4)

6.5 Parameter Tuning

Since the duration of mammoth transactions and epoch length im-
pact the performance of short-lived transactions, this experiment
explores how different protocol parameters affect tail latency. Ta-
ble 5 summarizes the results, varying the epoch budget from 125K
to 4M ops per epoch and the number of parallel tasks from 1 to 64.
We set the epoch size to 5× the average transaction throughput,
using input rates of 10K, 20K, and 40K tx/s, with the best configura-
tion for each highlighted in green. All experiments use the LDBC
SNB graph with 1-hop traversals (80% read-only) and 𝑄0 as the
mammoth query. We observe that increasing the epoch budget from
125K to 2M reduces tail latency and overall transaction duration,
but further increase show diminishing returns. Similarly, increasing
the number of parallel mammoth tasks within an epoch improves
performance, but only up to 16 or 32 tasks. Based on these results,
we conclude that the number of tasks should not exceed the number
of available workers, and the mammoth budget should be around
10× the average transaction throughput.

6.6 TuskFlow’s Scalability

Finally, we examine the scalability of TuskFlow using the LDBC
SNB graph with 𝑄0 and 1-hop read-write queries (80% read-only).
We measure the end-to-end latency of short-lived transactions
while varying the input rate from 10K to 500K tx/s. At 50K tx/s,
the median and p75 latency increase by nearly 18×, but tail latency
remains largely unaffected compared to 10K tx/s. Doubling the rate
to 100K tx/s raises all latency percentiles by around 5.9×, again
with only a small impact on tail latency. Even at this rate, latencies
remain at the granularity of a second, which is acceptable for many
applications. However, when the input rate reaches 500K tx/s, la-
tency increases by up to two orders of magnitude, revealing the
limitations of our epoch-based approach due to the high scheduling
overhead. A distributed extension could help mitigate this issue by
partitioning the transaction load across multiple nodes.

7 RELATEDWORK

Transactional benchmarks for mammoths. Most existing rela-
tional database benchmarks overlook mammoth transactions, even
though they play a crucial role in many applications [18]. For exam-
ple, HTAP benchmarks [6, 23, 24] combine OLTP queries [71] with
read-only queries fromOLAPworkloads [72]. Only OLxPBench [41]
introduces mammoth transactions that consist of read-write opera-
tions with analytical reads and demonstrates how they significantly
impact the performance of HTAP systems.

Graph benchmarks have primarily focused on analytics [5, 13],
with only LDBC [30, 63] attempting to capture short update queries
alongside complex read-only ones. TAOBench [17] from Meta is
also limited to a small set of large write transactions. The queries
introduced in Sec. 2.5 aim to simulate typical production mammoth
workloads. In Sec. 6, we highlight that tail latency, in addition
to throughput, are both critical metrics to consider, and we also
emphasize the significance of skewed access patterns for short-lived
transactions when running a mammoth.
Locking techniques. Fine-grained locking [38] is a common strat-
egy to increase concurrency while preserving transactional seman-
tics. While this approach cannot address issues with mammoth
transactions, our protocol could adopt similar fine-grained record
management at the graph property level [4]. This would help pre-
vent unnecessary conflicts caused by common graph algorithms,
like PageRank, which update only a few properties.

Another recent approach for mammoths is lock escalation [18],
which locks based on communities and motifs rather than individ-
ual graph entities or properties. While this can improve the abil-
ity of existing lock managers to handle mammoths, it still blocks
short-lived transactions from making progress. Our query- and
workload-aware partitioning approach was inspired by this idea,
but it constructs communities based on access patterns, enabling
concurrency without blocking other transactions.
Transaction scheduling is orthogonal to our epoch-based ap-
proach. LDSF [68], a hotspot-aware scheduling algorithm, might
help to prioritize transactions that block others within an epoch.
Other techniques schedule transactions by identifying "hot" keys
and postponing requests [12] or by learning abort patterns between
transactions [61]. As discussed in Sec. 6.4, we could achieve at least
a 3.5× improvement in tail latency by exploring more advanced
reordering algorithms [16]. However, it is crucial to consider how
these methods might impact determinism and serializability.

8 CONCLUSION

In this work, we introduce the first deterministic concurrency proto-
col for mammoths, very large online transactions, that ensures con-
flict serializability by strategically reordering regular transactions
around a mammoth. To further reduce conflicts with short-lived
transactions, we propose techniques that exploit graph properties,
including query- and workload-aware partitioning, graph entity
tagging, mammoth decomposition and parallel execution. These
techniques, implemented in TuskFlow, dramatically improve con-
currency and reduce latency by up to 45× compared to 2PL or
MVCC. Finally, while designed for graph databases, our protocol
also applies to relational systems, which face similar problems with
very large transactions.

12

REFERENCES

[1] Daniel J Abadi and Jose M Faleiro. 2018. An overview of deterministic database
systems. Commun. ACM. (2018).

[2] Amazon Neptune. 2024. https://aws.amazon.com/neptune/. Last access: June 5,
2025.

[3] Konstantin Andreev and Harald Räcke. 2004. Balanced graph partitioning. In
SPAA.

[4] RenzoAngles, Marcelo Arenas, Pablo Barceló, AidanHogan, Juan Reutter, andDo-
magoj Vrgoč. 2017. Foundations of modern query languages for graph databases.
CSUR (2017).

[5] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. Linkbench: a database benchmark based on the facebook
social graph. In SIGMOD.

[6] Joy Arulraj, Andrew Pavlo, and PrashanthMenon. 2016. Bridging the archipelago
between row-stores and column-stores for hybrid workloads. In SIGMOD.

[7] Manoussos Athanassoulis, Kenneth Bøgh, and Stratos Idreos. 2019. Optimal
column layout for hybrid workloads. Proc. VLDB Endow. (2019).

[8] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In Proc. Int.
Semant. Web Conf.

[9] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.
Group formation in large social networks: membership, growth, and evolution.
In SIGKDD.

[10] Philip A Bernstein and Nathan Goodman. 1983. Multiversion concurrency
control—theory and algorithms. TODS (1983).

[11] Philip A Bernstein, Vassos Hadzilacos, Nathan Goodman, et al. 1987. Concurrency
control and recovery in database systems. Addison-wesley Reading.

[12] Yang Cao, Wenfei Fan, Weijie Ou, Rui Xie, and Wenyue Zhao. 2023. Transaction
Scheduling: From Conflicts to Runtime Conflicts. PACMMOD (2023).

[13] Mihai Capotă, Tim Hegeman, Alexandru Iosup, Arnau Prat-Pérez, Orri Erling,
and Peter Boncz. 2015. Graphalytics: A big data benchmark for graph-processing
platforms. In GRADES.

[14] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2016. Better
bitmap performance with roaring bitmaps. Software: practice and experience
(2016).

[15] Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li, Li Zhang, Mingyi Zhang, Kui
Wei, Lixun Cao, Dan Zou, Yang Liu, et al. 2022. ByteHTAP: bytedance’s HTAP
system with high data freshness and strong data consistency. Proc. VLDB Endow.
(2022).

[16] Audrey Cheng, Aaron Kabcenell, Jason Chan, Xiao Shi, Peter Bailis, Natacha
Crooks, and Ion Stoica. 2024. Towards Optimal Transaction Scheduling. Proc.
VLDB Endow. (2024).

[17] Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa Lawande, Hamza Qadeer, Jason
Chan, Harrison Tin, Ryan Zhao, Peter Bailis, Mahesh Balakrishnan, et al. 2022.
Taobench: An end-to-end benchmark for social network workloads. Proc. VLDB
Endow. (2022).

[18] Audrey Cheng, Jack Waudby, Hugo Firth, Natacha Crooks, and Ion Stoica. 2024.
Mammoths Are Slow: The Overlooked Transactions of Graph Data. Proc. VLDB
Endow. (2024).

[19] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One trillion edges: Graph processing at facebook-scale.
Proc. VLDB Endow. (2015).

[20] CNBC. 2018. Amazon’s move off Oracle caused Prime Day outage in one of its
biggest warehouses, internal report says. https://www.cnbc.com/2018/10/23/
amazonmove-off-oracle-caused-prime-day-outage-in-warehouse.html. Last
access: June 5, 2025.

[21] CockroachDB. 2016. How online schema changes are possible in Cock-
roachDB. https://www.cockroachlabs.com/blog/how-online-schema-changes-
arepossible-in-cockroachdb/. Last access: June 5, 2025.

[22] CockroachDB. 2020. Nested transactions in CockroachDB 20.1. https://www.
cockroachlabs.com/blog/nested-transactions-in-cockroachdb-20-1/. Last access:
June 5, 2025.

[23] Fábio Coelho, João Paulo, Ricardo Vilaça, José Pereira, and Rui Oliveira. 2017.
Htapbench: Hybrid transactional and analytical processing benchmark. In ICPE.

[24] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Stefan
Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel Poess,
et al. 2011. The mixed workload CH-benCHmark. In DBTest.

[25] Eclipse Collections. 2024. https://github.com/eclipse/eclipse-collections. Last
access: June 5, 2025.

[26] Datanami. 2021. Graph Database Market Worth $5.1 Billion by 2026.
https://www.datanami.com/this-just-in/graph-database-market-worth-5-1-
billion-by-2026/. Last access: June 5, 2025.

[27] Jean-Charles Delvenne, Michael T Schaub, Sophia N Yaliraki, and Mauricio
Barahona. 2013. The stability of a graph partition: A dynamics-based framework
for community detection. Dynamics On and Of Complex Networks, Volume 2:
Applications to Time-Varying Dynamical Systems (2013).

[28] J-C Delvenne, Sophia N Yaliraki, and Mauricio Barahona. 2010. Stability of graph
communities across time scales. PNAS (2010).

[29] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, et al. 2022. Graph
pattern matching in GQL and SQL/PGQ. In SIGMOD.

[30] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,
Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC social network
benchmark: Interactive workload. In SIGMOD.

[31] Kapali P. Eswaran, Jim N Gray, Raymond A. Lorie, and Irving L. Traiger. 1976.
The notions of consistency and predicate locks in a database system. Commun.
ACM. (1976).

[32] Hugo Firth and PaoloMissier. 2017. TAPER: query-aware, partition-enhancement
for large, heterogenous graphs. Distributed and Parallel Databases (2017).

[33] Hugo Firth, PaoloMissier, and JackAiston. 2018. Loom: Query-aware Partitioning
of Online Graphs. In EDBT.

[34] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query language for property graphs.
In SIGMOD.

[35] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. Sigmod Record (1987).
[36] Panagiotis Garefalakis, Konstantinos Karanasos, and Peter Pietzuch. 2019. Nep-

tune: Scheduling suspendable tasks for unified stream/batch applications. In
SOCC.

[37] Jim Gray et al. 1981. The transaction concept: Virtues and limitations. In VLDB.
[38] Jim N Gray, Raymond A Lorie, and Gianfranco R Putzolu. 1975. Granularity of

locks in a shared data base. Proc. VLDB Endow. (1975).
[39] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.

2008. OLTP through the looking glass, and what we found there. In SIGMOD.
[40] Jiewen Huang and Daniel J Abadi. 2016. Leopard: Lightweight edge-oriented

partitioning and replication for dynamic graphs. Proc. VLDB Endow. (2016).
[41] Guoxin Kang, Lei Wang, Wanling Gao, Fei Tang, and Jianfeng Zhan. 2022. Olxp-

bench: Real-time, semantically consistent, and domain-specific are essential in
benchmarking, designing, and implementing htap systems. In ICDE.

[42] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Governance in
social media: A case study of the Wikipedia promotion process. In ICWSM.

[43] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive
nlp tasks. NeurIPS (2020).

[44] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: a fast and practical
deterministic OLTP database. Proc. VLDB Endow. (2020).

[45] Nancy Lynch and Michael Merritt. 1986. Introduction to the theory of nested
transactions. Theoretical Computer Science (1986).

[46] GrzegorzMalewicz, MatthewHAustern, Aart JC Bik, James CDehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In SIGMOD.

[47] MemGraph. 2024. https://memgraph.com/. Last access: June 5, 2025.
[48] Mark Needham and Amy E Hodler. 2019. Graph algorithms: practical examples

in Apache Spark and Neo4j. O’Reilly Media.
[49] Neo4j. 2010. Neo4j Graph Data Platform. https://neo4j.com/. Last access: June 5,

2025.
[50] Neo4j. 2021. Neo4j Breaks Scale Barrier with Trillion+ Relationship Graph. https:

//neo4j.com/press-releases/neo4j-scales-trillion-plus-relationship-graph/. Last
access: June 5, 2025.

[51] Neo4j. 2024. Coordinate parallel transactions. https://neo4j.com/docs/java-
manual/current/bookmarks/. Last access: June 5, 2025.

[52] Neo4j. 2024. Forseti Lock Manager. https://github.com/neo4j/neo4j/blob/
5.16/community/lock/src/main/java/org/neo4j/kernel/impl/locking/forseti/
ForsetiLockManager.java. Last access: June 5, 2025.

[53] Neo4j. 2024. Neo4j Graph Data Science. https://github.com/neo4j/graph-data-
science. Last access: June 5, 2025.

[54] Neo4j. 2024. User-defined procedures. https://neo4j.com/docs/java-reference/
current/extending-neo4j/procedures/. Last access: June 5, 2025.

[55] Anil Pacaci and M Tamer Özsu. 2019. Experimental analysis of streaming algo-
rithms for graph partitioning. In sigmod.

[56] Christos H Papadimitriou. 1979. The serializability of concurrent database
updates. JACM (1979).

[57] PostgreSQL. 2023. PostgreSQL 15 Documentation SAVEPOINT. https://www.
postgresql.org/docs/current/sql-savepoint.html. Last access: June 5, 2025.

[58] Ian Rae, Eric Rollins, Jeff Shute, Sukhdeep Sodhi, and Radek Vingralek. 2013.
Online, asynchronous schema change in F1. Proc. VLDB Endow. (2013).

[59] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new opportu-
nities for connected data.

[60] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with
Interactive Graph Analytics and Visualization. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence. http://networkrepository.com

[61] Yangjun Sheng, Anthony Tomasic, Tieying Zhang, and Andrew Pavlo. 2019.
Scheduling OLTP transactions via learned abort prediction. In aiDM.

13

https://aws.amazon.com/neptune/
https://www.cnbc.com/2018/10/23/amazonmove-off-oracle-caused-prime-day-outage-in-warehouse.html
https://www.cnbc.com/2018/10/23/amazonmove-off-oracle-caused-prime-day-outage-in-warehouse.html
https://www.cockroachlabs.com/blog/how-online-schema-changes-arepossible-in- cockroachdb/
https://www.cockroachlabs.com/blog/how-online-schema-changes-arepossible-in- cockroachdb/
https://www.cockroachlabs.com/blog/nested-transactions-in-cockroachdb-20-1/
https://www.cockroachlabs.com/blog/nested-transactions-in-cockroachdb-20-1/
https://github.com/eclipse/eclipse-collections
https://www.datanami.com/this-just-in/graph-database-market-worth-5-1-billion-by-2026/
https://www.datanami.com/this-just-in/graph-database-market-worth-5-1-billion-by-2026/
https://memgraph.com/
https://neo4j.com/
https://neo4j.com/press-releases/neo4j-scales-trillion-plus-relationship-graph/
https://neo4j.com/press-releases/neo4j-scales-trillion-plus-relationship-graph/
https://neo4j.com/docs/java-manual/current/bookmarks/
https://neo4j.com/docs/java-manual/current/bookmarks/
https://github.com/neo4j/neo4j/blob/5.16/community/lock/src/main/java/org/neo4j/kernel/impl/locking/forseti/ForsetiLockManager.java
https://github.com/neo4j/neo4j/blob/5.16/community/lock/src/main/java/org/neo4j/kernel/impl/locking/forseti/ForsetiLockManager.java
https://github.com/neo4j/neo4j/blob/5.16/community/lock/src/main/java/org/neo4j/kernel/impl/locking/forseti/ForsetiLockManager.java
https://github.com/neo4j/graph-data-science
https://github.com/neo4j/graph-data-science
https://neo4j.com/docs/java-reference/current/extending-neo4j/procedures/
https://neo4j.com/docs/java-reference/current/extending-neo4j/procedures/
https://www.postgresql.org/ docs/current/sql- savepoint.html
https://www.postgresql.org/ docs/current/sql- savepoint.html
http://networkrepository.com

[62] Isabelle Stanton and Gabriel Kliot. 2012. Streaming graph partitioning for large
distributed graphs. In SIGKDD.

[63] Gábor Szárnyas, Jack Waudby, Benjamin A Steer, Dávid Szakállas, Altan Birler,
Mingxi Wu, Yuchen Zhang, and Peter Boncz. 2022. The LDBC social network
benchmark: Business intelligence workload. Proc. VLDB Endow. (2022).

[64] Georgios Theodorakis, James Clarkson, and Jim Webber. 2024. Aion: Efficient
Temporal Graph Data Management.. In EDBT.

[65] Georgios Theodorakis, James Clarkson, and Jim Webber. 2024. An Empirical
Evaluation of Variable-length Record B+ Trees on a Modern Graph Database
System. In ICDEW.

[66] Alexander Thomson and Daniel J Abadi. 2010. The case for determinism in
database systems. Proc. VLDB Endow. (2010).

[67] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,
and Daniel J Abadi. 2012. Calvin: fast distributed transactions for partitioned
database systems. In SIGMOD.

[68] Boyu Tian, Jiamin Huang, Barzan Mozafari, and Grant Schoenebeck. 2018.
Contention-aware lock scheduling for transactional databases. Proc. VLDB
Endow. (2018).

[69] TigerGraph. 2024. https://www.tigergraph.com/. Last access: June 5, 2025.
[70] Bing Tong, Yan Zhou, Chen Zhang, Jianheng Tang, Jing Tang, Leihong Yang,

Qiye Li, Manwu Lin, Zhongxin Bao, Jia Li, et al. 2024. Galaxybase: A High

Performance Native Distributed Graph Database for HTAP. Proc. VLDB Endow.
(2024).

[71] TPC. 2010. TPC BENCHMARK C Standard Specification Revision 5.11 . https:
//www.tpc.org/TPC_Documents_Current_Versions/pdf/tpc-c_v5.11.0.pdf. Last
access: June 5, 2025.

[72] TPC. 2022. TPC BENCHMARK H (Decision Support) Standard Specification
Revision 3.0.1. https://www.tpc.org/TPC_Documents_Current_Versions/pdf/
TPC-H_v3.0.1.pdf. Last access: June 5, 2025.

[73] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan
Vojnovic. 2014. Fennel: Streaming graph partitioning for massive scale graphs.
InWSDM.

[74] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In SOSP.

[75] Johan Ugander and Lars Backstrom. 2013. Balanced label propagation for parti-
tioning massive graphs. InWSDM.

[76] Jack Waudby, Paul Ezhilchelvan, Jim Webber, and Isi Mitrani. 2020. Preserving
reciprocal consistency in distributed graph databases. In PaPoC.

[77] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. 2014.
Path problems in temporal graphs. Proc. VLDB Endow. (2014).

[78] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013.
Graphx: A resilient distributed graph system on spark. In GRADES.

14

https://www.tigergraph.com/
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Data Model
	2.2 Graph Databases and Analytics
	2.3 Transaction Protocols
	2.4 Graph Partitioning Algorithms
	2.5 Mammoth Use Cases

	3 Deterministic Execution for Mammoths
	3.1 Local Execution Phase
	3.2 Commit Phase
	3.3 Determinism and Serializability
	3.4 Applicability and Limitations

	4 Accelerating Conflict Resolution
	4.1 Query- and Workload-aware Partitioning
	4.2 Parallel Mammoths and Parameter Tuning
	4.3 Graph Tagging and Transaction Reordering

	5 TuskFlow Architecture
	5.1 Overview
	5.2 Transaction Scheduling

	6 Evaluation
	6.1 Experimental Setup
	6.2 Comparison with 2PL and Postgres
	6.3 Graph Partitioning with Skewed Workloads
	6.4 Optimization Breakdown
	6.5 Parameter Tuning
	6.6 TuskFlow's Scalability

	7 Related Work
	8 Conclusion
	References

