
Copyright

by

Natacha Crooks

2019

The Dissertation Committee for Natacha Crooks

certifies that this is the approved version of the following dissertation:

A client-centric approach to transactional datastores

Committee:

Simon Peter, Supervisor

Lorenzo Alvisi, Co-Supervisor

Emmett Witchel

Peter Bailis

A client-centric approach to transactional datastores

by

Natacha Crooks,

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2019

A client-centric approach to transactional datastores

Publication No.

Natacha Crooks, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Simon Peter Co-Supervisor: Lorenzo Alvisi

Modern applications must collect and store massive amounts of data. Cloud storage offers these

applications simplicity: the abstraction of a failure-free, perfectly scalable black-box. While appealing,

offloading data to the cloud is not without its challenges. These cloud storage systems often favour

weaker levels of isolation and consistency. These weaker guarantees introduce behaviours that,

without care, can break application logic. Offloading data to an untrusted third party like the cloud

also raises questions of security and privacy.

This thesis seeks to improve the performance, the semantics and the security of transactional cloud

storage systems. It centers around a simple idea: defining consistency guarantees from the perspective

of the applications that observe these guarantees, rather than from the perspective of the systems that

implement them. This new perspective brings forth several benefits. First, it offers simpler and cleaner

definitions of weak isolation and consistency guarantees. Second, it enables scalable implementations

of existing guarantees like causal consistency. Finally, it has applications to security: it allows us to

efficienctly augment transactional cloud storage systems with obliviousness guarantees.

iv

Contents

Appendix i

Abstract iv

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 The cloud as a black-box . 1

1.1.1 Semantic challenges . 4

1.1.2 Performance opportunities . 5

1.2 Contributions . 6

1.3 Thesis Overview . 9

Chapter 2 Correctness Background 10

2.1 Transactions . 10

2.2 Isolation . 11

2.2.1 The beautiful doctrine of serializability 12

2.2.2 The gritty reality of serializability . 14

2.2.3 Living on the edge: weak isolation and anomalies 19

2.2.4 Formalising weak isolation . 21

2.3 But what about distributed system consistency? 28

v

2.3.1 Consistency Anomalies . 30

2.3.2 Issues with current formalisms . 32

Chapter 3 A new model of isolation 35

3.1 A State-based Model . 39

3.1.1 Towards a new formalism . 39

3.1.2 Model Overview . 40

3.1.3 Definitions . 40

3.2 Formalising Isolation . 43

3.3 Benefits of a state-based approach . 49

3.3.1 Minimizing the intuition gap . 50

3.3.2 Removing implementation artefacts . 51

3.3.3 Identifying performance opportunities . 54

3.4 Related work . 56

3.5 Limitations . 57

3.6 Conclusion . 58

Chapter 4 Extending our model to consistency 59

4.1 A State-based Model . 61

4.2 A new model for consistency . 62

4.3 From Session Guarantees to Causal Consistency 64

4.4 Limitations . 64

4.5 Conclusion . 65

Chapter 5 Simplifying weak consistency with client-centric forking and merging 66

5.1 The gap between causality and reality . 70

5.2 Bridging the gap: branches . 73

5.2.1 State branching and merging . 73

5.2.2 Weak consistency end-to-end . 74

5.2.3 System Goals . 75

5.3 TARDiS Architecture . 75

vi

5.4 Using TARDiS . 77

5.4.1 Interface . 77

5.4.2 Coding with TARDiS . 79

5.5 Design and Implementation . 82

5.5.1 Basic Operation . 82

5.5.2 Merge Transactions . 86

5.5.3 Garbage Collection . 87

5.5.4 Replication . 88

5.5.5 Fault Tolerance and Recovery . 89

5.5.6 Implementation notes . 90

5.6 Evaluation . 90

5.6.1 Microbenchmarks . 91

5.6.2 Applications . 99

5.7 Related Work . 103

5.8 Limitations . 104

5.9 Conclusion . 105

Chapter 6 Oblivious transactions through client-centric serializability 106

6.1 Threat and Failure Model . 109

6.2 Towards Private Transactions . 110

6.2.1 Security for Isolation and Durability . 111

6.2.2 Performance/functionality limitations . 112

6.2.3 Introducing Obladi . 112

6.3 Background . 113

6.4 System Architecture . 119

6.5 Proxy Design . 119

6.5.1 Concurrency Control . 121

6.5.2 Data Handler . 122

6.5.3 Reducing Work . 124

6.5.4 Configuring Obladi . 126

vii

6.6 Parallelizing the ORAM . 127

6.7 Durability . 130

6.8 System Security . 132

6.9 Ensuring Data Integrity in Obladi . 135

6.10 Implementation . 137

6.11 Evaluation . 137

6.11.1 End-to-end Performance . 138

6.11.2 Impact of Epochs . 140

6.11.3 Durability . 144

6.12 Related Work . 144

6.13 Limitations . 147

6.14 Conclusion . 147

Chapter 7 Conclusion 148

7.1 Other Work . 148

7.2 Acknowledgements . 150

Appendix 151

A Equivalence to Adya et al. 153

A.1 Adya et al. model [4] summary . 153

A.2 Serializability . 155

A.3 Snapshot Isolation . 158

A.4 Read Committed . 163

A.5 Read Uncommitted . 166

B Equivalence to read-atomic . 167

B.1 Bailis et al. [25] model summary . 167

B.2 Read Atomic . 168

C Equivalence to ANSI, Strong and Session SI . 170

C.1 Berenson/Daudjee et al. [31, 61] model summary 170

C.2 ANSI SI . 171

viii

C.3 Strong Session SI . 175

C.4 Strong SI . 176

D Equivalence to PC-SI and GSI . 178

D.1 Elnikety et al. [154] model summary . 178

D.2 Generalized Snapshot Isolation . 179

D.3 Prefix-consistent Snapshot Isolation . 182

E Equivalence to PL-2+ and PSI . 184

E.1 Cerone et al. [46]’s model summary . 185

E.2 PL-2+ . 187

E.3 PSI . 192

F Hierarchy . 197

F.1 Adya SI ⊂ PSI . 197

F.2 ANSI SI ⊂ Adya SI . 199

F.3 Strong Session SI ⊂ ANSI SI . 200

F.4 Strong SI ⊂ Strong Session SI . 200

G Causality and Session Guarantees . 202

H Formal Security . 216

H.1 Ideal Functionality . 216

H.2 Security Lemmas . 218

H.3 Proof of Security . 220

Bibliography 225

ix

List of Tables

2.1 Lock compatibility matrix . 15

2.2 Gray - Lock Modes . 21

2.3 Broad and strict intepretations of the ANSI SQL phenomena 23

2.4 ANSI SQL isolation levels defined in terms of the four phenomena 24

2.5 Adya - Proscribed phenomena . 27

3.1 Commit Tests . 43

3.2 Commit tests for snapshot-based protocols . 50

4.1 Session test for session guarantees . 64

5.1 Begin (B) and end (E) constraints supported by TARDiS 76

5.2 TARDiS API - S:single mode, M:merge mode 77

5.3 Per-operation latency breakdown (×10−2ms) . 93

6.1 Ring ORAM Terminology . 113

6.2 Obladi’s configuration parameters . 126

1 PSI Axioms . 187

x

List of Figures

1.1 DynamoDB Front-End . 2

1.2 Cloud storage as a black-box . 3

2.1 Transaction Overview: r1 stands for T1 reads, while w1 stands for T1 writes 11

2.2 Alice executes T1, a transfer transaction from Alice to Bob of $20. Eve executes T2,

a transfer transaction from Alice to Charlie of $50. T2’s first read sees T1’s first write 13

2.3 Alice executes T1, a transfer transaction from Alice to Bob of $20. Eve executes T2,

a transfer transaction from Alice to Charlie of $50. T2’s first read does not see T1’s

first write . 13

2.4 Acyclic serialization graph for serializable history 17

2.5 Cyclic serialization graph for non-serializable history 17

2.6 An execution that is view-serializable but not conflict- serializable 17

2.7 An execution that is multiversioned-serializable but not conflict or view-serializable 17

2.8 Weak Isolation - a metaphor . 19

2.9 Lost-update anomaly . 20

2.10 Dirty-read anomaly . 20

2.11 Non-repeatable read anomaly . 20

2.12 Write-skew anomaly . 20

2.13 Anomaly approach error . 25

2.14 Rejected serializable schedule H0 . 25

2.15 Rejected serializable schedule H1 . 25

2.16 Rejected serializable schedule H2 . 25

xi

2.17 Valid under read-uncommitted . 27

2.18 Valid under read-committed . 27

2.19 Valid under snapshot isolation . 27

2.20 Read Consistency Levels - Cassandra . 28

2.21 Write anomalies . 29

2.22 Causal ordering anomaly . 29

2.23 Hierarchy of consistency models (reproduced from Vukolic et al. [192]) 34

3.1 Serializability. Abbreviations refer to: S[153], MS[32], AS[31] O[150], M[148],

R[139]. 36

3.2 Read States and execution. 39

3.3 Simple Banking Application. Alice and Bob share checking and savings accounts.

Withdrawals are allowed as long as the sum of both account is greater than zero. . . 49

3.4 Snapshot-based isolation guarantees hierarchy. (ANSI SI [31, 61], Adya SI [4],

Strong SI [61], GSI [154], PSI [178], Strong Session SI [61], PL-2+ [5], PC-SI [61]). 51

3.5 Number of dependencies per transaction as a function of time. TARDiS [59] runs

with three replicas on a shared local cluster (2.67GHz Intel Xeon CPU X5650, 48GB

memory and 2Gbps network). 56

4.1 Monotonic Read Execution . 60

5.1 Weakly-consistent Wikipedia . 71

5.2 TARDiS architecture . 76

5.3 TARDiS’ counter implementation . 79

5.4 TARDiS’ shopping cart implementation . 81

5.5 Main system datastructures . 83

5.6 Transaction commit logic . 84

5.7 Check if state y can see records associated with state x 85

xii

5.8 Path Compression Algorithm - Ceiling placed above s11. s8 and ancestors are marked

as safe-to-gc; since s10 is the read state for several pending transactions, it cannot be

marked as safe-to-gc. Non fork points safe-to-gc states are marked as gc-able and

deleted. 87

5.9 TARDiS-BDB vs BerkeleyDB vs OCC - Read-Heavy 92

5.10 TARDiS-BDB vs BerkeleyDB vs OCC - Write-Heavy 93

5.11 Uniform Read-Heavy . 94

5.12 Uniform Write-Heavy . 95

5.13 Zipfian Write-Heavy . 96

5.14 Uniform Blind Writes . 97

5.15 Constraint Choice . 98

5.16 TARDiS Scalability . 98

5.17 Throughput over time . 99

5.18 Number of records/states . 99

5.19 CRDT lines of Code on BerkeleyDB and TARDiS. Op-C:Operation Based Counter,

PN-C: State Based Counter, LWW: Last-Writer-Wins Register, MV: Multivalued

Register, Set: Or-Set . 100

5.20 CRDT Throughput . 100

5.21 Retwis Throughput . 100

5.22 Application Goodput . 101

6.1 Trusted Proxy Model . 109

6.2 Ring ORAM - Read (Z=1, S=2) . 115

6.3 Eviction - Read Phase . 117

6.4 Eviction - Write Phase . 118

6.5 System Architecture . 120

6.6 Batching Logic - rx(ay) denotes that transaction tx reads the version of object a

written by transaction ty . 122

6.7 Skew introduced by caching arbitrary objects . 125

xiii

6.8 Multilevel Pipelining for a read of path 1 and an evict path of path 2 executing

in parallel. Solid green lines represent physical dependencies and dashed red lines

represent data dependencies. Inner blocks represent nested operations 129

6.9 UC Framework . 133

6.10 FreeHealth Database Architecture . 137

6.11 Application Throughput . 138

6.12 Application Latency . 139

6.13 Parallelism (Batch Size 500) . 141

6.14 Batch Size Throughput . 141

6.15 Batch Size Latency . 142

6.16 Delayed Visibility . 142

6.17 Epoch Size Impact - ORAM . 143

6.18 Epoch Size Impact - Proxy . 144

6.19 Checkpoint Frequency (100K) . 145

6.20 Server Wan Recovery Time (ms) . 145

1 Snapshot-based isolation guarantees hierarchy. Equivalences are new results (ANSI

SI [31], Adya SI [4], Weak SI [61], Strong SI [61], generalized snapshot isolation

(GSI) [154], parallel snapshot isolation (PSI) [178], Strong Session SI [61], PL-2+

(Lazy Consistency) [5], prefix-consistent SI (PC-SI) [61]) 198

xiv

Chapter 1

Introduction

1.1 The cloud as a black-box

Traditional brick-and-mortar services are increasingly moving online and companies rely on ever

larger data analytics to optimise their business logic. E-commerce sales, for instance, now represent

almost 20% of all retail sales (up from 5% in 2007) [96]. Similarly, most medical practices favour

electronic health records over paper documents: 84% of American hospitals store medical records

electronically [127], an 8-fold increase since 2008; all aspects of our identity are increasingly stored

online [21]. Even traditional industries like food distribution are affected: startups like Flexibake

offer bakeries the ability to track customer food purchase to minimise food wastage [76].

In this data-driven world, data is money. It must be collected efficiently, even as it spans multiple

heterogeneous, geo-distributed sources. Supply chains, for instance, or social networks span multiple

geographical regions. Data must be stored reliably, even in the presence of failures. As the sensitivity

of the data being stored increases, so does the need to store it securely in the presence of human

attacks: the privacy implications of the 23AndMe [3] genomics data being stolen would be severe.

There is a general concern about how collected data is used and to what purpose, as the recent

Facebook Analytica scandal shows. Data must also be accessed consistently, even under high

load. Efficiently guaranteeing consistency is challenging and applications often get it wrong, as

the highly publicised DAO hack highlights. Attackers leveraged a concurrency bug on a popular

1

Figure 1.1: DynamoDB Front-End

blockchain smart contract to steal fifty million dollars worth of currency [128]. Finally, data must

remain available, even when the network is slow. Amazon once claimed that a 100ms latency spike

correlates to a 1% loss in sales for the company [59].

While these problems are not inherently new, the context in which these solutions are being deployed

is markedly different: application designers are rarely distributed system experts. Instead, they are

domain-experts seeking to augment their business logic. These users consequently require solutions

to collect and store data that demand little technical expertise. Cloud providers are thus increasingly

offering storage solutions that minimise management overhead. Services like S3 [13], Dynamo [66],

Cloud SQL [84], Azure Tables, [134] and many others offer applications simplicity. They present to

applications the abstraction of a failure-free, scalable black-box; applications interact only with a

narrow front-end that acts as a valve, and supposedly shields clients from the complex internal details

of the system. A DynamoDB user, for example, simply has to specify the provisioned throughput that

the system should sustain in a console window (Figure 1.1). The front-end webpage even advertises

that users can, using the AWS management console, monitor performance and adjust the throughput

of their tables, enabling them to scale seamlessly. Users do not have to worry about failures: the

system is guaranteed to remain correct, even if individual failures occur. As the webpage advertises:

DynamoDB handles the rest.

But what does correctness actually mean? Correctness in datastores usually refers to two notions:

isolation and consistency.

• Isolation For ease of use, cloud datastores offer applications the ability to program using a

2

Replication for fault-tolerance

Lo
ad

 B
al

an
ci

ng
S

ha
rd

in
g

fo
r s

ca
la

bi
lit

y

Simple API:
Increase provisioned throughput

Read, Write, Update, Delete

Figure 1.2: Cloud storage as a black-box

transactional interface. Transactions are groupings of operations that take effect atomically:

either all operations take effect or none do. They simplify program development as they allow

developers to group related operations into one single atomic unit. For performance, modern

datastores allow multiple transactions to execute concurrently. Isolation then defines a contract

that regulates the interaction between these concurrent transactions.

• Consistency For fault-tolerance or availability, cloud datastores usually replicate data on

multiple servers. Consistency is then a contract that regulates the ordering of operations across

replicas and places constraints on how much their state can diverge.

In summary, accessing cloud storage as a black-box shields applications from the internals of the sys-

tem (Figure 1.2). The front-end "valve" limits what applications can observe to the system’s external

state. Applications thus only observe the state of the system through the reads that they execute. This

dissertation argues that viewing the system as a black-box represents a significant paradigm

shift. This shift presents both semantic challenges and performance opportunities. This work

thus proposes as contributions mechanisms and formalisms to address these challenges and

seize these opportunities.

3

1.1.1 Semantic challenges

On the one hand, viewing the system as a black-box introduces new challenges. Different correctness

guarantees for datastores are usually defined in terms of low-level mechanisms, like operation

ordering or timestamps [4, 31] that are not visible to applications in this black-box model. In fact, the

role of the front-end is precisely designed to hide such details! Understanding correctness guarantees

in this world is thus complex.

This is especially problematic as current datastores offer a myriad of different correctness guarantees

(we summarise them in Chapter 2). Different systems strike different trade-offs between ease of

programming and performance. Strong correctness notions like linearizability [92] or serializabil-

ity [153] provide developers with the appealing illusion that transactions are executing in isolation and

without concurrency or replication. These guarantees, however, tend to offer poor performance as they

require extensive coordination across transactions and replicas. Many datastores, like MySQL [1],

Oracle [150], or SQL Server [136], thus relax their notion of correctness; weaker guarantees offer

better performance by reducing coordination [31]. In fact, almost all SQL database use weaker

isolation definitions as default [4, 31, 105, 130, 136, 147, 148, 148, 158, 168, 178]. This trend poses

an additional burden on the application programmer, as these weaker correctness guarantees increase

program complexity. Namely, they allow for counter-intuitive application behaviours: relaxing the

ordering of operations by minimising coordination yields better performance but introduces schedules

and anomalies that could not arise if transactions executed in sequence on a single machine. These

anomalies may break application logic: consider a bank account with a $50 dollar balance and

no overdraft allowed. Under weaker isolation guarantees, the underlying database may allow two

transactions to concurrently withdraw $45, incorrectly leaving the account with a negative balance

(we describe this anomaly further in Chapter 3). Ensuring that the application remains correct thus

requires carefully understanding what anomalies can arise under a given correctness guarantee.

Unfortunately, achieving this careful understanding often requires detailed knowledge of the internals

of a given system. But, as we said, the actual guarantees provided by different correctness notions are

often dependent on specific (and occasionally implicit) system properties - be it properties of storage

(e.g., whether it is a single or multiversioned storage [32]); of the chosen concurrency control (e.g,

4

whether is is based on locking or timestamps [31]); or of other system features (e.g., the existence of

a centralized timestamp [73]). These are specifically the details that cloud storage attempts to hide.

There is consequently a fundamental mismatch between how clients perceive storage systems and

how correctness guarantees are expressed.

1.1.2 Performance opportunities

The situation is not all bleak, however. Recognising that clients perceive cloud storage as a black-box

actually brings new system opportunities. Specifically, it enables more flexible implementations of

the aforementioned correctness guarantees. Why? The observation is simple: the state of individual

components of the datastore does not need to be correct, as long as the external state - the state that

applications actually observe, appears indistinguishable from a state that is correct. In effect (and

less formally), this dissertation suggests following the ninth Seinfeld rule of lying1: it’s not a lie

if you don’t get caught. Because clients only see the state of the system through their API reads,

implementing a system that is indistinguishable from a correct system simply requires ensuring

that the return values of operations remain correct. This observation brings forth one key benefit: it

allows implementations to be contextualised for specific applications or clients according to their

chosen API, and contextualisation can improve scalability. Unfortunately, such specialisation is rarely

present in existing systems. As a result, these systems often implement correctness guarantees that are

stronger than what applications actually require. Existing causally consistent systems [26, 118, 119],

for instance, require that every replica in the datacenter store a state that is causally consistent for any

potential client. Doing so comes at a heavy cost: these systems must often delay specific operations,

which makes them subject to slowdown cascades. A slowdown cascade is a failure mode in which

a single slow shard can cause the entire system to perform poorly, and has been mentioned by

Facebook as the main barrier to adoption of current causally consistent systems [129]. This cost is

not fundamental: ensuring that every component in the datastore is causally consistent is a sufficient

but not a necessary invariant. It is sufficient to ensure that every client, upon requesting a set of keys,

observe a state that is causally consistent for that subset of objects. Similar problems exist in systems

that implement the related parallel snapshot isolation guarantee [58, 178].
1 Seinfeld is a popular american TV show created by created by Larry David and Jerry Seinfeld. In one episode, the

character’s best friend, George Costanza, offers some advice but lying

5

The issue also resurfaces in the context of privacy-preserving datastores. There is a growing desire

to share data with untrusted third parties. Medical providers, for instance, offload data to the cloud

for fault-tolerance, but do not necessarily trust the cloud to keep this data private [127]. Generic

solutions for accessing and manipulating data without cloud storage learning any information about

the requests or dataset do exist (Private Information Retrieval [52, 109] or Oblivious RAM [82],

for instance). These solutions, however, are costly: they usually incur overheads proportional to the

number of objects in the system. These systems provide highly generic, clean, re-usable abstractions.

The flipside however, is that they often provide guarantees that are stronger than what is required

for real systems. Indeed, systems do not exist in a vacuum, but are deployed in a specific context

(e.g. medical services or media streaming). This context can allow for more flexibility. Media files,

for instance, need only be streamed as fast as users are viewing the content. There is no need to

deliver them sooner. Contextualising the implementation of privacy-preserving mechanisms for the

specific environments in which they are deployed can significantly amortise the cost of guaranteing

privacy [57, 90].

1.2 Contributions

This dissertation argues that accessing cloud storage as a black-box requires revisiting how correctness

guarantees are expressed and proposes taking a client-centric approach to system development.

Correctness guarantees are currently expressed bottom-up, starting from the perspective of the systems

that implement them. As we have argued, this approach presents both semantic and implementation

drawbacks. Instead, this thesis suggests that correctness guarantees should be expressed top down,

starting from the perspective of the clients that actually use these guarantees). Thinking of cloud

storage systems as a sequence of client-observable states brings forth several benefits. From a

semantic standpoint, it can make it easier to understand, compare and relate database isolation

guarantees [58]. Second, it can simplify the handling of write-write conflicts in causal consistency

[59]. From a performance standpoint, moving the output commit to clients for enforcing correctness

has applications to both fault-tolerance and security. It is key to making causal consistency resilient

to slowdown cascades [129]. It is also the core observation that allows for generic and expensive

privacy algorithms to be specialised into more efficient, practical systems. We show that leveraging the

6

streaming behaviour of Netflix clients can amortise the cost of private media streaming [90]. Similarly,

taking a client-centric approach to enforcing serializability allows us to design transactional cloud

storage systems that provably hide accesses to user data [57]. This thesis focuses on the following

four contributions:

• A new model for isolation We argue that isolation guarantees should be expressed in the way

they are perceived: as a contract between the storage systems and its clients, that specifies

the set of observable system states. We propose a new model that directly defines isolation

guarantees in terms of these high-level states. Each isolation level is expressed as constraints on

the states that the application observed. Using our model, we propose the first clean hierarchy

of snapshot-based guarantees, and prove that several isolation levels are equivalent. Our model

is general: we provide equivalent definitions of most isolation definitions, even as we make no

reference to traditional notions such as dependency graphs or histories.

• A unified model of isolation and consistency We extend this model to consistency defini-

tions and provide the first unified framework for reasoning about consistency and isolation.

Extending this model to consistency guarantees brings forth two benefits. First, we find that the

benefits of a client-centric approach naturally extend to consistency. Specifically, it allows us

to define session guarantees without making assumptions on the order of writes in the system.

Second, it allow us to unify the often disparate theories of isolation and consistency and

provides a structure for composing these guarantees. We leverage this modularity to extend the

equivalence between causal consistency and session guarantees that previously held for single

operations. Importantly, we show that this equivalence holds independently of the isolation

level under which they execute.

• Improved handling of write-write conflicts in weak consistency Weaker consistency levels

like eventual consistency or causal consistency allow replicas to issue conflicting write opera-

tions, which may cause their states to diverge. Current storage systems take a system-centric

approach to resolving these conflicts. They aggressively and greedily merge them through

per-object, syntactic resolution policies [118, 187]. Unfortunately, conflicting writes corrupt

data in ways that the storage system cannot understand, as they create potentially incompatible

7

states. In effect, conflicting operations create distinct, conflicting branches of execution that can

only be resolved with detailed knowledge of application semantics. Attempting to greedily hide

these conflicting executions thus makes matters worse, not better. Merging is the responsibility

of the clients or applications that use these systems. To this effect, we propose TARDiS, a

replicated transactional key-value store that renounces the abstraction of sequential storage

and directly exposes these conflicting branches to applications, and to the states at which the

branches are created (fork points) and merged (merge points). TARDiS both simplifies semanti-

cally meaningful merging, and improves its efficiency: branches, fork points and merge points

directly capture the context necessary to identify objects that must be merged and pinpoint

when and how the conflict developed. We find, for example, that implementing CRDTs [172] -

a library of weakly-consistent datatypes - using TARDiS cuts code size by half and improves

performance by up to eight times.

• Support for serializable and oblivious transactions Finally, we report on the design of

Obladi, the first system to provably to support oblivious, serializable transactions on top of

untrusted storage. The system takes as its starting point oblivious RAM (ORAM), which hides

access patterns for read and write operations. Adding support for serializable transactions on

top of ORAM brings forth several challenges. Existing ORAMs cannot guarantee durability,

do not support transactions, and afford only limited concurrency. The secret sauce lies in

reformulating the traditional isolation definition of serializability in a client-centric way.

Serializability need only hold when transactions are observed by clients as committed. Obladi

leverages this new flexibility to delay committing transactions until the end of fixed-size

epochs, enforcing consistency and durability only at epoch boundaries. Delaying operations

in this way allows Obladi to securely parallelise Ring ORAM [164] and amortise the cost of

expensive ORAM operations across many transactional requests. This same principle also

allows Obladi to recover efficiently and securely from failures. Our results are promising:

Obladi achieves within 5x-12x of the throughput of MySQL on standard OLTP benchmarks

like TPC-C. Latency is higher (70×), but remains reasonable (in the hundreds of milliseconds).

8

1.3 Thesis Overview

This thesis is structured as follows: Chapter 2 provides the necessary background on isolation

and consistency. Chapter 3 summarises the semantic benefits of reformulating database isolation

guarantees in a client-centric, state-based way. Chapter 4 extends this new model to consistency

guarantees. Chapter 5 describes the benefits of organising these states in distinct branches that

capture the independent executions that naturally arise in weakly consistent systems. It presents the

design and implementation of TARDiS (Transactional Asynchronous Divergent Storage), a replicated

key-value store that makes branching a first class primitive. Chapter 6 discusses how reformulating

seriazability to be client-centric is key to supporting oblivious transactions efficiently, and presents

the design of Obladi, the first cloud-based datastore that supports serializable transactions while also

hiding from the cloud access patterns (when, how, and what data is accessed). Finally, Chapter 7

concludes and summarises related work not presented in this dissertation.

9

Chapter 2

Correctness Background

The previous chapter outlined two challenges faced by modern applications when offloading data to

cloud storage: striking the appropriate balance between performance and correctness, and security.

In this chapter, we provide the necessary background on correctness for transactional datastores. We

focus specifically on the process through which weak notions of isolation and consistency have been

formalised. We defer the discussion on security to Chapter 6.

2.1 Transactions

This thesis focuses specifically on transactional datastores, namely, datastores that support transac-

tions. Transactions are a grouping of operations that appear to take effect atomically: either all of

operations take effect or none do. They represent "instantaneous changes to the world" [153]. The

start operation marks the begin point of a transaction while the commit or abort operations mark

the end of the transaction (Figure 2.1). They are a popular feature of most database systems as they

simplify program development. They allow programmers to group composite operations into one

single atomic unit. For instance, a transaction ensures that the increment and decrement operations

of a transfer transaction (Figure 2.1) will always either both take effect or neither will (even in the

presence of crashes). This ensures that the $20 dollars that are being transferred from Alice’s account

a to Bob’s account b will never disappear. Traditionally, transactions are said to guarantee the ACID

properties of Atomicity, Consistency, Isolation, and Durability:

10

s1 r1(a=100) w1(a=100-20) r1(b=100) c1w1(b=100+20)

Figure 2.1: Transaction Overview: r1 stands for T1 reads, while w1 stands for T1 writes

• Atomicity states that either all the operations in a transaction take effect or none do. A

transaction can either commit, in which case all operations will be applied to the database, or

abort, when no operation will take effect.

• Consistency states that a transaction transitions the database from a consistent state to another

consistent state. While this definition may appear redundant, it captures the idea that a transac-

tion, if executed alone on a given (correct) database state, will yield another correct database

state. Correctness is naturally application-dependent, but can be interpreted as the set of invari-

ants that hold for a given application. Some of these invariants might be explicitly enforced by

the database (unique key constraints, foreign key constraints) while others might be implicit in

the application logic (an account balance for a bank should never go negative). While the idea

of consistency might appear blurry, it is in fact what motivated the first correctness criterion

for executing transactions concurrently: serializability. We describe this in more detail in the

next section.

• Isolation defines a contract that regulates how concurrent transactions interact. It determines

when the effects of a given transaction will become visible to other executing transactions. The

chosen isolation consequently regulates which transaction interleavings are allowed by a given

database.

• Durability states that the effects of committed transactions must be preserved across database

failures. Otherwise said, once a transaction has committed, its effects should always remain

visible in the database.

2.2 Isolation

Transactional datastores manage data that is shared amongst many users. They must sustain high

throughput and achieve low latency, while ensuring that data accesses remain correct. To do so,

most databases allow transactions to execute concurrently but regulate their interaction to allow

11

only specific transaction interleavings. In other words, they trade-off isolation for performance.

Through constraining the allowable interleavings, isolation also constrains what values can be

returned by applications. Isolation thus directly defines correctness from the point of view of a user.

The question becomes: how does one define isolation, and what is the correct isolation guarantee?

This topic is controversial: there are many co-existing formalisms and a myriad of different isolation

guarantees [4, 5, 25, 31, 32, 46, 47, 49, 61, 65, 71, 73, 78, 88, 103, 129, 153, 154, 166, 170, 178].

The rest of this section summarises this space. It places specific emphasis on understanding why the

formalisms and guarantees evolved as they did and puts forward the following hypothesis: all prior

definitions remain tightly coupled with the underlying implementation/technology of systems

at the time. As technology evolved, so did the necessary formalisms and definitions.

2.2.1 The beautiful doctrine of serializability

The ACID semantics appear to provide two notions of correctness: 1) consistency, whereby each

transaction transitions the database from a state that satisfies all application invariants to another such

state, and 2) isolation, which regulates the interaction of concurrent transactions.

There is a historical reason for these two entangled definitions. Transactions were first defined for

single-threaded systems. They were viewed as atomic unit of executions. Jim Gray’s initial definition

of transactions, for instance, omitted the notion of isolation and defined a transaction as follows [85]:

a transaction is a piece of user code, some of which may execute outside of the database, some

of which accesses records from the system. This piece of code is a single-threaded contract that

guarantees the following properties:

• Consistency: the transaction must obey legal protocols

• Atomicity: it either happens or it does not; either all operations are bound by the contract or

none are

• Durability: once a transaction is committed, it cannot be abrogated

The 1970s then saw the beginning of concurrency for database systems [35, 36, 71, 88, 166]: multiple

transactions could execute simultaneously and their operations would interleave for performance.

Most systems of the time agreed that the appropriate notion of correctness should be serializabil-

12

ity [153] or serial reproducability [35, 36]. They take as their starting point the statement that each

transaction, when run in isolation, transitions the system from a consistent state to another consistent

state. By induction, a sequence of transactions that execute in turn preserves database consistency.

A serializable execution is thus an execution that is equivalent to some serial ordering of the same

set of transactions. They coined the term of isolation as an additional requirement to the durability,

consistency and atomicity semantics: transactions must not be affected by concurrent transactions.

This definition of serializability is appealing: it allows developers to program an application as

if running in complete isolation, while still obtaining the performance benefits of transactions

interleaving. To illustrate, consider again the example in which Alice is transferring money to Bob.

But let us assume now that Alice’s account is a shared account that can be concurrently accessed

by Alice’s wife, Eve. Eve wants to transfer money to Charlie and issues a transfer transaction

concurrently.

s1

r1(a=100)

w1(a=100-20)

r2(a=80)

c1

w2(a=80-50)

s2

c2

w1(b=100+20)

r1(b=100)

w1(c=200+50)

r2(c=200)

s1

r1(a=100)

w1(a=100-20)

r2(a=80)

c1

w2(a=80-50)

s2

c2

w1(b=100+20)

r1(b=100)

w1(c=200+50)

r2(c=200)

Figure 2.2: Alice executes T1, a transfer transac-
tion from Alice to Bob of $20. Eve executes T2, a
transfer transaction from Alice to Charlie of $50.
T2’s first read sees T1’s first write

s1

r1(a=100)

w1(a=100-20)

r2(a=100)

c1

w2(a=100-50)

s2

c2

w1(b=100+20)

r1(b=100)

w1(c=200+50)

r2(c=200)

Figure 2.3: Alice executes T1, a transfer transac-
tion from Alice to Bob of $20. Eve executes T2, a
transfer transaction from Alice to Charlie of $50.
T2’s first read does not see T1’s first write

The left-most schedule is serializable (Figure 2.2): it is equivalent to a schedule in which Alice’s

transfer operation executes fully before Eve’s. One can see that the end values are correct. The system

started with a total of $400 dollars and finishes with $400. Alice has $30 in her account, Bob $120,

13

and Charlie $250. By contrast, the schedule on the right (Figure 2.3) is not reproducible. There is no

way to order T1 before T2 or T2 before T1: T2 misses T1’s decrement (w1(a = 100− 20))) while T1

misses T2’s decrement (w2(a = 80− 50)). Moreover, the end result is not correct: the total balance

has grown to $420 dollars. Unfortunately, just as money does not grow on trees, it does not grow in

serializable schedules.

As appealing as the notion of serializability is, there is a catch: the previous paragraph intentionally

under-defined the notion of equivalence. This definition turns out to be subtle, and can vary across

systems and formalisms. The implicit reliance on system constructs means that the elegant definition

of serializability can fall prey to inconsistencies.

2.2.2 The gritty reality of serializability

While all systems agree with the spirit of serializability, their proposed formalisms differ: they are

primarily tied to the architecture of the system for which they define correctness. As new, more

efficient algorithms were proposed (ex: the introduction of replication, of multiversioning), new

definitions were introduced. These differences persist to this day. We summarise them here.

Most treatments of concurrency control use similar notations for transactions and refer to histories as

denoting the execution of a set of transactions. For the purpose of this chapter, we use the formalism

defined in Bernstein et al. [33] and we formulate other frameworks accordingly.

A transaction Ti is a partial order of operations where:

• Ti ⊂ {ri(x), wi(x)|x is a data item}
⋃
{ai, ci}

• ai ∈ Ti iff ci 6∈ Ti

• if t is ci or ai (whichever is in Ti), for any other operation p ∈ Ti, p <i t

• if ri(x), wi(x) ∈ Ti, then either ri(x) <i wi(x) or wi(x) <i ri(x)

Intuitively, this definition states that a transaction must contain exclusively read or write operations,

and will necessarily either commit or abort after having executed all other operations.

A history then summarises the ordering of operations in an execution of transactions. Histories are

14

Lock Mode X S
X 7 7

S 7 3

Table 2.1: Lock compatibility matrix

defined as partial orders as some of these operations may execute concurrently. Histories constrain

ordering in two ways. First, if a transaction Ti specifies the order of two operations, these operations

must appear in that order in the history. Second, all histories must specify the order of conflicting

operations. Two operations are said to conflict if they access the same object and at least one of them

is a write operation. More formally, given a set of transactions T = {T1, T2, ..., Tn}, a history H is a

partial order with ordering relation <H where:

• H =
⋃n

i=1 Ti

• <H⊂
⋃n

i=1 <i

• for any two conflicting operations p, q ∈ H , either p <H q or q <h p.

For simplicity, we assume that all transactions either commit or abort1.

Serializability through locking Jim Gray’s seminal 1975 paper [88] defines the notion of serial

schedule exclusively through locking. He specifies different modes of locking that restrict transaction

interleavings to serializable executions. Specifically, the paper defines two modes of locking Shared

(S) mode and Exclusive (X) and a compatibility matrix (Table 2.1).2 Compatible locks can be acquired

concurrently, while incompatible locks cannot. Transactions must acquire a shared lock for read

operations and an exclusive lock on write operations, and release all locks at commit or abort time.

Conflict Serializability While the aforementioned approach is sufficient to ensure serializability for

lock-based systems, it is implementation-specific and is consequently unsuitable for other concurrency

control mechanisms (for instance, it cannot be applied to Kung et al’s optimistic concurrency control

protocols [107]). Several authors thus proposed a more general theory of serializability, based on the

notion of conflict equivalence and serializability graphs [34–36]. Recall that Gray et al.’s defined
1The full formalisation includes the notion of committed projection to handle histories in which transactions do not

terminate
2The full paper includes Intention mode locking for hierarchical datastructures. We ignore it here.

15

serializability to mean equivalent to a serial schedule. Conflict serializability formalises this notion

as follows: two histories H and H ′ are conflict equivalent if:

• they are defined over the same set of transactions and have the same operations

• they order conflicting operations of non-aborted transactions in the same way; that is, for any

conflicting operations pi and pj , belonging to transactions Ti and Tj (where ai, aj 6∈ H): if

pi <H qj then pi <H′ qj .

Intuitively, this definition states that two histories are conflict equivalent as long as the ordering

of conflicting operations is identical; non-conflicting operations can be reordered. Serializability

is then defined as follows: a history is serializable if it is conflict equivalent to a serial history.

The authors further define an equivalent serializability condition in terms of serialization graphs.

A serialization graph (SG) for H, denoted SG(H), is a directed graph whose nodes are committed

transactions and whose edges are Ti → Tj such that one of Ti’s operation precedes and conflicts

with one of Tj’s operations in H. A history H is then serializable iff SG(H) is acyclic. Looking

at the serializability graphs of the executions previously shown in Figure 2.2, we indeed see that

the equivalent serialization graph of the serializable execution is acyclic (Figure 2.4). In contrast,

the serialization graph of the non-serializable execution displays a cycle (Figure 2.5). The two

transactions conflict on object a and object b. For the serializable schedule, transaction T1 always

executes the conflicting operations before T2, there is thus no cycle in the graph. In contrast, the

schedule in Figure 2.5 executes r2 followed by w1 followed again by w2: this creates a cycle

in the graph. The definition of conflict serializability is not equivalent to the definition of lock-

based serializability. There exists schedules which are conflict serializable but not lock-serializable.

Consider again the execution shown in Figure 2.4. The corresponding serialization graph is acyclic;

the execution is consequently conflict-serializable. It is however, not lock-serializable as w2(x) could

not execute before T1 commits (due to the read locks that transactions acquire).

View Serializability Yannakakis et al.[202] defines an alternative definition of equivalence called

view equivalence. View equivalence is premised on the assumption that if each transaction’s reads

observe the same value in two histories, then their writes will also produce identical values. A history

is thus view-equivalent to a serial history if its reads return the same value in both executions. More

16

s1

r1(a=100)

w1(a=100-20)

r2(a=80)

c1

w2(a=80-50)

s2

c2

w1(b=100+20)

r1(b=100)

w2(c=200+50)

r2(c=200)

T1 T2

Figure 2.4: Acyclic serialization graph for serial-
izable history

s1

r1(a=100)

w1(a=100-20)

r2(a=100)

c1

w2(a=100-50)

s2

c2

w1(b=100+20)

r1(b=80)

w2(c=200+50)

r2(c=200)

T1 T2

Figure 2.5: Cyclic serialization graph for non-
serializable history

s1

r1(a=Init)

w1(a=100)

c1

w2(a=50)

s2

c2

w3(a=200)

T1

T2

s3

c3

T3

Figure 2.6: An execution that is view-serializable
but not conflict- serializable

s1

r1(a0)

w1(a1=1)

c1

w2(b2=2)

s2

c2

T1

T2

r2(a1)

w1(b1=1)

T1

T2

b1 < b2
Version order set

SG(H) MSG(H)

Figure 2.7: An execution that is multiversioned-
serializable but not conflict or view-serializable

formally, two histories H , and H ′ are view-equivalent if

• they are over the same set of transactions and have the same operations

• for any object x, if Ti reads value xj from Tj inH then Ti reads xj from Tj inH ′. A transaction

17

reads a value from a transaction Tj if it Tj is the last transaction to write x before Ti’s read.

• for each x, if wi(x) is the final write of x in H then it is also the final write of x in H ′.

A history is view-serializable if it is view-equivalent to a serial history. While all conflict-serializable

histories are view-serializable, the converse is not true, as we illustrate in Figure 2.6. The execution

is not conflict-serializable as there is a cycle in the serialization graph. It is however view-serializable

and corresponds to the serial schedule T1 → T2 → T3 as T1 reads the initial value of a in both

schedules and T3 performs the final write in both executions.

Multiversioned Serializability Conflict serializability and view-serializability both implicitly as-

sume that a read operation must read the latest value of an object. Both notions were defined at a time

in which database systems stored a single value of every object in the system. However, the 1980s

demonstrated the potential performance gains of storing old values of every object in the system. To

take advantage of this new flexibility, Bernstein et al.[32] developed a new serializability theory of

multiversioned databases. As their name suggests, multiversioned databases introduce the notion

of versions for a given data item. A write on object x for transaction Ti creates a new version xi of

object x (written wi(xi)). A read of transaction Tj is said to read-from Ti if it reads the version of x

that Ti writes (written rj(xi)). Bernstein et al. further introduces the notion of a version order set�.

A version order for an object x is a total order over all of the versions of x written in H . A version

order set is for H is the union of the version orders for all data items. A multiversioned serialization

graph (MSG) for H, denoted MSG(H), is a directed graph whose nodes are committed transactions

and whose edges are Ti → Tj such that either Tj reads from Ti or xi < xj in the version order. A

history H is then multiversioned serializable iff there exists a version order set� such that MSG(H)

is acyclic.

Consider Figure 2.7, the execution is multiversioned serializable as there exists an assignment of

versions (a1 < a2, b1 < b2) such that MSG(H) is acyclic. This execution is not conflict serializable:

the SG(H) contains a cycle. It is also not view-serializable as T1 and T2 cannot be reordered without

changing the final database state. In effect, multiversioned serializability allows for write operations

to be re-ordered, unlike its view or conflict counterparts.

18

2.2.3 Living on the edge: weak isolation and anomalies

In spite of the algorithmic and implementation progress made over several decades, serializability

remains slow: it requires extensive coordination between concurrent transactions. As a result, the

majority of databases actually provide, as default, a guarantee that is strictly weaker than serializabil-

ity [132, 136, 148–150, 158, 168]; some databases do not offer serializability at all [148, 150, 168].

Instead, they weaken the isolation property in ACID.

Serializability
Slow but safe and

easy to use

Weak Isolation
Fast but

dangerous

Figure 2.8: Weak Isolation - a metaphor

Weak isolation guarantees are not unlike cool racing bikes (Figure 2.8). On the one hand, they

are fast: weaker isolation levels reduce the amount of coordination necessary and hence provide

better performance. On the other hand, relaxing isolation is dangerous: weak isolation levels admit

anomalies which are non-serializable behaviours that can break application logic. Application

developers must thus defensively program against these anomalies to ensure that the application logic

remains correct. In this subsection, we briefly summarise the most common types of anomalies and

illustrate their consequences.

Dirty-read anomaly Serializability ensures that no committed transaction will read values of an

uncommitted transaction. Consider what would happen if dirty reads were allowed (Figure 2.10),

that is, if a transaction were allowed to read uncommitted values. In our example, transaction T1

transfers $20 dollars from Alice to Bob’s account. It then aborts, canceling the deposit and reverting

Bob’s balance to $100. T2, however, reads the new balance and mistakenly believes that the deposit

is successful.

Lost-update anomaly Serializability ensures that no concurrent transactions can write the same

value. It thus prevents the lost update anomaly. To illustrate, consider a schedule in which two

19

s1

r1(s=100)

r2(s=100)

c1

s2

c2

w2(b=100-1)

w1(s=100-1)

Figure 2.9: Lost-update
anomaly

s1

r1(a=100)

r1(b1=100)

a1

s2

c2

r2(b=120)

w1(b1=120)

Figure 2.10: Dirty-read
anomaly

s1

r1(s=100)

w2(s=0)

c1

s2

c2

r1(s=0)

Figure 2.11: Non-
repeatable read anomaly

s1

r1(s=50)

w2(s=50-60)

c1

s2

c2

r1(c=50)

w1(c=50-60)

r2(s=50)

r2(c=50)

Figure 2.12: Write-skew
anomaly

transactions attempt to decrement stock from a warehouse (Figure 2.9: both transactions read the

initial value (100) of the stock object, and both decrement it by one. T1 writes 99 back to the stock

object, and T2 does the same. Two transactions decremented the stock object, yet the final value is

only 99, which is incorrect (it should be 98).

Non-repeatable read anomaly Serializability gives transactions the illusion that they are executing

in isolation and without concurrency. They are guaranteed, upon reading the same value multiple

times of a given object, that the value will remain the same. This is no longer true when allowing for

non-repeatable reads (Figure 2.11).

Phantom-read anomaly The phantom read anomaly follows the same logic as the non-repeatable

read anomaly: it allows for scans or aggregate queries (like max or min) to return different values

within the same transaction, betraying the fact that the transaction is not executing in isolation.

Write-skew anomaly Finally, the write-skew anomaly is an anomaly that arises exclusively in

multiversioned systems. Write-skew arises when two conflicting transactions miss each other’s

updates and can consequently not be ordered with respect to each other. To illustrate, consider the

following example (Figure 2.12). Alice and Bob share a checking and savings account and can

withdraw money from either as long as the joint balance is not negative. This execution is clearly

not serializable as T1 misses T2’s update while T2 misses T1’s update (which introduces a cycle).

Moreover, the application invariant, namely that the joint balance of the two accounts should never

be negative, is now broken.

20

Isolation Read lock duration Write lock duration
Degree 0 None Short write lock
Degree 1 None Long write lock
Degree 2 Short read lock Long write lock
Degree 3 Long read lock Long write lock

Table 2.2: Gray - Lock Modes

2.2.4 Formalising weak isolation

These anomalies are not artificial examples and arise in practice. A recent paper by Warszawski

et al. [195] observes that a majority of E-Commerce frameworks exhibit application-level bugs

when running under weaker isolation guarantees (recall that most databases do not actually provide

serializability). They allowed for inventories to become negative, gift vouchers to be overspent, and

cart checkout totals to become out of sync with the actual price of items in the cart. Programming

correctly against weak isolation levels thus requires a detailed understanding of semantics that is

currently lacking. As such, there has been a long quest to try and formalise isolation guarantees.

Unfortunately, much like the initial definitions of serializability, the various formalisms proposed

over the years remain tightly coupled to underlying system implementations. These formalisms

evolved as technology improved: from lock-based systems, to optimistic concurrency control, to

more aggressive multiversioned-based systems.

Degrees of Isolation The notion of weak isolation guarantees was first introduced by Gray et al. [86]

in 1976 with the goal of improving performance at the cost of more complex programming semantics.

The authors define four degrees of consistency (Degrees 0 to 3) that provide increased "protection"

from concurrent transactions. The author summarises each degree as follows:

• Degree 0 protects others from your update: a transaction T sees degree 0 consistency if T does

not overwrite dirty data of other transactions.

• Degree 1 additionally provides protection from losing updates: T sees degree 1 consistency if

T does not overwrite dirty data of other transactions and T does apply writes before commit

time.

• Degree 2 additionally provides protection from incorrect data items: T sees degree 2 consis-

21

tency if T does not overwrite dirty data of other transactions and T does not apply writes before

commit time and T does not read dirty data of other transactions.

• Degree 3 additionally provides protection from reading incorrect relationships among data

items (it is equivalent to serializability): T sees degree 3 consistency if T does not overwrite

dirty data of other transactions and T does not apply writes before commit time and T does

not read dirty data of other transactions and other transactions do not dirty any data read by T

before T completes.

The paper then formalises these degrees in terms of different types of shared (read) locks and

exclusive (write) locks (Table 2.2). To ensure that a transaction does not overwrite the dirty data

of other transactions, one must use short write locks that are released after the operation finishes

(degree 0 consistency). To additionally ensure that a transaction does not commit any writes before

commit time (ie. to guarantee degree 1 consistency), these locks must be upgraded to long write locks

(that are held until commit time). Degree 2 consistency then places constraints on read operations:

it mandates the use of short read locks to ensure that a transaction does not read the dirty data of

other transactions. Finally, degree 3 consistency upgrades these locks to long read locks to ensure

that other transactions do not write data read by a transaction T before T completes.

ANSI-SQL: Non-locked based formulation Gray’s proposed degrees of isolation are, however,

limited to lock-based system. In 1992, the ANSI/ISO SQL-92 specification thus set out as goal to

define an industry standard for weak isolation that would be implementation-independent and support

different concurrency control schemes. Each ANSI level is defined as proscribing specific anomalies

or phenomena. The specification (informally) defines three such phenomena:

• Dirty read Transaction T1 modifies object x. Another transaction T2 then reads x before T1

commits or aborts. If T1 aborts, T2 has read an object that was never committed and so never

really existed.

• Fuzzy or non-repeatable read Transaction T1 reads object x and then T2 modifies x and

commits. If T1 then attempts to reread x, it receives a modified value.

• Phantom read Transaction T1 reads a set of objects satisfying some <search

22

Phenomenon Strict (Anomaly) Interpretation Broad (Phenomena) Interpretation
Dirty Read A1: w1(x)...r2(x)... (a1 and c2 in either order) P1: w1(x)...r2(x) (all commit/abort)
Fuzzy Read A2: r1(x)...w2(x)...c2...r1(x)...c1 P2: r1(x)...w2(x)(all commit/abort)

Phantom A3: r1(P)...w2(y ∈ P)...c2...r1(P)...c1 P3: r1(P)...w2(y ∈ P)(all commit/abort)

Table 2.3: Broad and strict intepretations of the ANSI SQL phenomena

condition>. Transaction T2 then creates data items that satisfy T1’s <search

condition> and commits. If T1 then repeats its read with the same <search

condition>, it gets a set of data items different from the first read.

The authors then define three isolation guarantees (intended to be equivalent to aforementioned

degrees 1-3). Read uncommitted disallows no phenomena. Read committed disallows dirty reads,

repeatable read disallows both dirty reads and fuzzy reads, while serializable disallows all three

phenomena.

Formalising ANSI The ANSI SQL definitions are informally defined in plain English and offer

multiple possible interpretations. Berenson et al. [31] shows that these definitions could be interpreted

in ways that result in inconsistencies. They instead propose a new set of correct isolation definitions

that are precise. More specifically, the authors identify two possible interpretations of the informal

English definitions. The first interpretation applies the definition literally: it disallows only executions

in which the anomaly actually occurs. The authors refer to this as the strict interpretation of ANSI

SQL or as the anomaly-based interpretation. An alternative interpretation of the ANSI definitions

disallows all executions that may lead to those undesirable behaviours. The authors refer to this as

the broad interpretation or as the phenomena-based interpretation. The anomaly-based interpretation

naturally admits more executions than the phenomena based interpretation: some of these executions

turn out to be inconsistent.

To illustrate, consider the dirty read phenomenon: it can be interpreted to disallow one of two

schedules (see Table 2.3). In its most literal interpretation, it disallows only schedule A1 (where T1

aborts but T2 commits). Otherwise said, a transaction T2 that reads from an aborted transaction T1

must not be allowed to commit. In its broadest interpretation, the definition disallows any history

where T2 reads uncommitted data (P1). The same ambiguity is present for fuzzy reads and phantoms.

The strict, anomalous interpretation (A2) of fuzzy reads prevents a transaction T1 from reading an

23

Isolation level P0 Dirty write 4 P1 Dirty read P2 Fuzzy read P3 Phantom
ANSI Read uncommitted Not Possible Possible Possible Possible
ANSI Read committed Not Possible Not Possible Possible Possible
ANSI Repeatable Read Not Possible Not Possible Not Possible Possible

ANSI Serializable Not Possible Not Possible Not Possible

Table 2.4: ANSI SQL isolation levels defined in terms of the four phenomena

object twice if another transaction T2 overwrites x between the two reads and commits. In contrast,

the broad interpretation prevents any transaction from overwriting an object that has been read by

a concurrent transaction. The same logic applies to phantoms but extended to predicate reads and

writes. The question becomes: are both interpretations valid? Unfortunately, no. The authors show

that preventing the three phenomena A1, A2, and A3 in their strict interpretation does not necessarily

yield executions that are serializable (equivalent to a serial schedule). In contrast, preventing the

three phenomena in their broad interpretation is sufficient to yield serializable executions3. Consider

the execution in Figure 2.13, which involves a $40 transfer between bank balance rows x and y.

T1 is thus transferring $40 from x to y and maintains a total balance of 100. T2, however, reads

the total balance to be $60. This execution does not exhibit any of the anomalies A1, A2 or A3.

It does however, exhibit phenomenon P1, and would thus be rejected in the broad interpretation.

We summarise the final, correct definitions of the ANSI SQL isolation levels in terms of the four

phenomena in Table 2.4.

Is the problem solved? Not quite. The original goal of the ANSI-SQL specification was to provide

definitions independent of the underlying concurrency control mechanism. Yet, the authors acknowl-

edge that the preventative definitions of the ANSI phenomena are a disguised redefinition of the

earlier lock-based characterisation of isolation. The definitions they propose are equivalent to the

lock-based schemes proposed by Gray et al. [86]. As Adya et al. [4] points out, these definitions are,

as a result, overly restrictive. They fail to allow executions that one would think of as serializable.

Consider the following three executions H0, H1 and H2 in Figures 2.14, 2.15 and 2.16 respectively.

H0 does not even satisfy ANSI read uncommitted as it violates P0 (dirty writes). Recall that Bernstein

et al. [32] defined a history as multiversioned-serializable if its serialization graph is acyclic. If we
3as the authors acknowledge, this statement only holds under the assumption that there is a single version of every

object in the system (we describe this in more detail in the next chapter)

24

s1

r1(x=50)

w1(x=10)

c1

s2

c2

w1(y=90)

r2(x=10)

r2(y=50)

r1(y=50)

Figure 2.13: Anomaly ap-
proach error

s1

w2(b2=0)

c1

s2

c2

w1(b1=1)

w2(a2=0)

w1(a1=1)

T1 T2
a1<a2
b1<b2

Figure 2.14: Rejected se-
rializable schedule H0

s1

c1

s2

c2

w1(x1=50-40)

r1(x0=50)

r1(y0=50)

w1(y1=50+40)

r2(x1=10)

r2(y1=90)

T1 T2

Figure 2.15: Rejected se-
rializable schedule H1

s1

c1

s2

c2

w1(x1=50-40)

r1(x0=50)

r1(y0=50)

w1(y1=50+40)

r2(x0=50)

r2(y0=50)

T2 T1

Figure 2.16: Rejected se-
rializable schedule H2

look at the matching serialization graph of H0, we see that it is acyclic; hence H0 is serializable. It is

simply necessary to re-order its writes (which both conflict-serializability and view-serializability

disallows). The same logic applies to H1 and H2: they respectively violate P1 (T2 reads uncommitted

values) and P2 (T1 overwrites x and y that have already been read by uncommitted T2), yet they are

multiversion-serializable as their serialization graphs are acyclic.

Adding optimism As Adya et al. [4] point out, the preventative interpretation rules out any execution

in which conflicting operations execute concurrently. In effect, it rules out any implementation that

could not arise in a lock-based implementation. Namely, it disallows executions that could arise in a

multiversioned or optimistic concurrency control. Adya and his co-authors propose to address these

shortcomings in a framework that extends the theory of multiversioned serialization graphs to weak

isolation guarantees.

Adya’s model is expressed in terms of histories, which consist of two parts: a partial order of

events that reflect the operations of a set of transactions, and a version order that imposes a total

order on committed object versions. Every history is associated with a directed serialization graph

DSG(H) [32], whose nodes consist of committed transactions and whose edges mark the conflicts

(read-write, write-write, or write-read) that occur between them:

• Write-write conflict Ti writes a version of x, and Tj writes the next version of x, denoted as

Ti
ww−−→ Tj

25

• Write-read conflict Ti writes a version of x, and Tj reads the version of x Ti writes, denoted

as Ti
wr−→ Tj

• Read-write conflict Ti reads a version of x, and Tj writes the next version of x, denoted as

Ti
rw−→ Tj

For specific isolation levels, Adya further augments the model with logical start and commit times-

tamps for transactions, leading to start-ordered serialization graphs (SSG(H)) that add start-

dependency edges to the nodes and edges of the corresponding DSG(H) (two transactions T, T ′ are

start-ordered if the commit timestamp of one precedes the start timestamp of the other).We note that

Berstein’s theory of multiversioning applies to Adya’s cycle-based framework: a non-serializable

history has a cyclic serialization graph while a serializable execution’s DSG is acyclic. Berstein’s

framework, however, cannnot capture the differences between weak isolation guarantees.

Adya’s framework instead can express the subtle differences between isolation levels in terms of

specific cycles that are proscribed at each level. The model defines several phenomena:

• G0 A cycle consisting of write-write edges

• G1(a) (Aborted read) A transaction T1 reads a value produced by an aborted transaction T2

• G1(b) (Intermediate read) A transaction T1 reads a version of an object x written by a transac-

tion T2 that T2 subsequently overwrites.

• G1 A cycle consisting of any write-write/write-read edges

• G2 A cycle consisiting of any write-write/write-read/read-write edges

• G-SI(a) A write-write/write-read edge without a corresponding start-edge

• G-SI(b) A cycle consisting of any number of write-write/write-read/start edges and a single

read-write edge.

As before, an execution satisfies a given isolation level if it disallows specific phenomena. Read-

uncommitted then disallows cycles consisting only of write-write edges in the DSG(H) (G0)5. It
5We will use Adya’s shorthand for this and other phenomena in §3.2, when we prove that our new state-based definitions

of isolation guarantees are equivalent to his.

26

Isolation Proscribed phenomena
Read uncommitted G0

Read committed G0, G1
Snapshot isolation G0, G1, G-SI

Serializable G0, G1, G2

Table 2.5: Adya - Proscribed phenomena

s1

a1

s2

c2

r2(a2=0)

w1(a1=1)

T2

Figure 2.17: Valid under read-
uncommitted

s1

c1

s2

c2

r1(a0=1)

T1

T2

wr rw

w2(a2=100)

r1(a2=100)

Figure 2.18: Valid under read-
committed

s1

c1

s2

c2

r1(a0=1)

T1

T2

rwrw

w1(b1=0)

r2(b0=1)

w2(a1=0)

Figure 2.19: Valid under snapshot
isolation

places no constraints on reads. All remaining ANSI SQL isolation levels disallow cycles consisting

of write-write/write-read edges, as well as intermediate reads and aborted reads (phenomenon G1).

Serializability also disallows cycles that include read-write edges (G2). In contrast, snapshot isolation

disallows write-write/write-read edges without corresponding start edges (G-SI(a)) as well as cycles

containing a single read-write edge in the SSG(H) (G-SI(b)). We summarise the model in Table 2.5.

To provide more intuition, consider the following three executions in Figures 2.17, 2.18 and 2.19.

The execution in Figure 2.17 is allowed by read-uncommitted but disallowed by read-committed

(it reads an aborted read - this is an instance of the). T1 aborts and is consequently not shown

in the serialization graph. The execution violates G1(a), the aborted read property. The execution

in Figure 2.18 is allowed by read-committed but disallowed by snapshot isolation: it exhibits

phenomenon G-SI(b), a write-write/write-read cycle with a single read-write dependency edge.

This an instance of the non-repeatable read anomaly illustrated in §2.2.3. Finally, the schedule in

Figure 2.19 is allowed by snapshot isolation but disallowed by serializability (it exhibits a cycle

consisting of rw edges - this is an instance of the write-skew anomaly illustrated in §2.2.3).

Adya’s formalism, like its other existing counterparts, specifies isolation guarantees as constraints on

27

Figure 2.20: Read Consistency Levels - Cassandra

the ordering of the read and write operations that the storage system performs, and relies on low-level

implementation details like timestamps or version order. Unfortunately, applications cannot directly

observe this ordering: to them, the storage system is a black box. All they can observe are the values

returned by the read operations they issue: they experience the storage system as if it were going

through a sequence of atomic state transitions, of which they observe a subset. To make it easier for

applications to reason about different levels of isolation, this dissertation adopts the viewpoint of the

applications that must ultimately use their guarantees and introduce a new formalization of isolation

based on application-observable states. We present our new model of isolation in Chapter 3.

2.3 But what about distributed system consistency?

The introduction to this thesis defined two notions of correctness for transactional datastore:

• Isolation defines a contract that regulates the interaction between concurrent transactions.

28

w(a=1)Client 1

w(b=1)

r(a=0)r(b=1)

r(b=0)r(a=1)

r(a=1)

r(b=1)

w(c=1)

w(c=2)Client 2

Client 3

Client 4

r(c=1)

r(c=1)

Figure 2.21: Write anomalies

1) Remove
Advisor from

Friends

Dissertation
Author

Read Friend
List

2) Post
picture of
pasta in

microwave

Advisor Check
Pictures

2) Post
picture of
pasta in

microwave

1) Remove
Advisor from

Friends

Figure 2.22: Causal ordering anomaly

• Consistency defines a contract that regulates the ordering of operations across replicas and

places constraints on how much their state can diverge6

Isolation guarantees thus typically do not regulate how transactions should be ordered; they simply

regulate how their operations become visible to concurrent transactions. Consistency guarantees,

in contrast, exclusively constrain the ordering of operations with respect to all other operations.

They cannot, however, reason about transactional constructs. The reason behind these orthogonal

approaches to correctness is mainly historical. Isolation was defined in the context of centralised

database systems, where it was assumed that transactions from the same client would be processed in

the order in which they were executed. Consistency, instead, was primarily defined in the context of

shared multiprocessor systems that had no notion of multiword atomic operations (in other words, no

transactions), but whose different caches could cause operations to read stale values, or take effect out-

of-order at different processors. The notion of multiple, possibly incoherent caches, translates well to

large-scale distributed systems, and the distributed system community adopted that terminology.

In spite of these apparent ideological differences, the process through which consistency has been

formalised mirrors almost exactly that of isolation. The physical constraints imposed by network

latencies and network partitions in large-scale distributed systems has also fostered the growth of a

myriad of consistency guarantees [192]. The CAP theorem [39, 79] highlights that one must make

a trade-off between coordination (and consequently how much replicas can diverge) and partition-

tolerance. In light of the CAP theorem, many wide-area services and applications [44] choose to

renounce strong consistency and focus instead on prodiving the ALPS properties [118] of Availability,
6Unfortunately, the term consistency is overloaded: the database community defines consistency (the C in ACID) as a

database satisfying application invariants. The distributed system community in contrast, uses the term consistency to
specify constraints on operation ordering. For clarity, we will refer to the distributed system notion of consistency as
"consistency", and to the database notion of consistency as "database consistency".

29

low Latency, Partition tolerance and high Scalability. Cassandra alone, for instance, offers ten possible

consistency levels for read operations (Figure 2.20). Systems like Yahoo’s PNUTS [54] or Microsoft’s

DynamoDB [66] offer similar choices. Much like weak isolation, these guarantees balance ease of

programming with performance. Strong consistency guarantees provide users with the abstraction

that they are executing on a logically centralised replica (much like serializability provides users with

the abstraction that each transaction is executing serially) but are slow. Weaker consistency levels

offer lower latency and higher throughput, but introduce consistency anomalies, which are ordering

of operations that are inconsistent with the execution of a non-replicated system.

This section does not attempt to provide a full summary of all existing definitions (Vukolic et al.

elegantly summarises the vast majority of them in [192] - we reproduce it in Figure 2.23). Instead,

the section summarises the possible types of anomalies that can arise in weakly consistent systems

and outlines three main issues with current formalisms.

2.3.1 Consistency Anomalies

Consistency definitions, unlike isolation guarantees, center around the notion of a client. Each client

executes a totally ordered sequence of (read or write) operations in what is known as program order

(or client order) [111]. We note that some consistency guarantees center around the notion of a

replica. We describe later in the next section why this is suboptimal and choose the client-based

formalism here.

Real-Time Ordering Isolation guarantees allow for a transaction executed on a Wednesday to be

serialized before a transaction executed on the following Friday. A system without real-time ordering

constraints can return arbitrarily stale data. Distributed systems do not operate in a vacuum and

interact with the outside world, they must somehow remain synchronised with real time; a weather

forecast system that always returns the weather from January 1st, 2000 only has limited utility.

Consistency guarantees like linearizability [92] or bounded staleness [] prevent these anomalies.

Guarantees like sequential consistency [111] or causal consistency [9] do not.

Total Ordering The goal standard for consistency is to give users the abstraction that they are

executing with a single logical computer that processes all operations. However, many distributed

30

systems allow writes to be processed independently at different sites and replicated asynchronously.

This can cause different clients to observe writes as taking effect in different orders. Consider the

example in Figure 2.21. Client 1 issues a write to a concurrently with Client 2’s write to b. Client

3 perceives the write to a as taking effect before b. The opposite is true for Client 4. Consistency

guarantees like linearizability [92] or sequential consistency [111] prevent these anomalies. Others

like causal consistency [9] or session guarantees do not.

Causal Ordering Asynchronous replication may cause updates from the same client to reach

other clients in reverse order. This can cause correctness bugs if the clients’ updates are related.

To illustrate, consider the example in Figure 2.22. This dissertation’s author, who connects to

a photo-sharing application through one replica, wants, before posting pictures of herself pasta

cooking in the microwave, to defriend her advisor, who accesses the application through a different

replica [24, 54, 118]. Accordingly, this dissertation’s author first defriends her advisor and only then

uploads the photos. Unfortunately, these operations, originally performed on replica A, are replicated

on B in the opposite order: site B first receives the photos update, and then the defriending update,

allowing the advisor to see the photos nonetheless7. Guarantees like causal consistency prevent these

anomalies. Others like session guarantees or eventual consistency do not.

Write-write conflicts Traditionally, guarantees that impose a total order of operations (linearizability,

sequential consistency) are considered "strong" consistency guarantees while those that do not

are considered "weak". Weak consistency levels usually allow write operations to be processed

independently at different sites. Without systematic coordination, geographically distinct replicas

can issue conflicting operations that may cause replicas’ states to diverge, or operations to be lost.

Consider again the example in Figure 2.21: clients 1 and 2 issue a write to object c concurrently.

What should happen to these operations? Which write is the "correct" one? In the example, we apply

the same strategy as the one used in COPS [118] of arbitrarily choosing one update (client 1’s update

here), causing the loss of client 2’s update.

System-based Ordering System-based ordering notions use shards of replicas as the basic unit of

ordering in the system. They guarantee, for instance, that all operations within a partition or replica

will be totally ordered [60, 118, 178].
7and one should not underestimate the dangers of showing pasta cooked in the microwave to one’s Italian advisor

31

2.3.2 Issues with current formalisms

We identify three primary issues with current consistency formalisms in large-scale distributed

systems:

System-specificity First, many consistency guarantees rely on the system-based ordering we de-

scribed above [60, 118, 135, 178]. This approach is suboptimal for three reasons: first, it reveals a

system detail that the client is not necessarily aware of. It requires knowledge of system internals that

is not necessarily available. We highlight in Chapter 4 that understanding the specific guarantee pro-

vided by DocumentDB requires knowledge of how writes are ordered in the system. This information

is not readily available in the documentation. In fact, this dissertation’s author asked the question on

StackOverflow, and the DocumentDB developers could not answer for proprietary reasons. Second,

it constrains functionality: system-based ordering based on shards or replicas prevents resharding or

requires clients to be sticky [129] (clients must remain attached to the same replica). Finally, it often

precludes more optimistic implementations of certain definitions [129].

Consistency for transactions Second, cloud storage systems are increasingly adding support for

transactions [16, 66, 134, 138, 155], it is currently not clear what correctness guarantee the resulting

systems actually offer, as there lacks a unified framework for understanding consistency and iso-

lation. This lack of unified framework has also led to confusion in the database community: new

isolation guarantees defined in the context of replicated systems have incorporated limited notions of

consistency in ad-hoc ways. For instance, the new parallel snapshot isolation definition introduced

by Sovran et al. [178] turned out to be equivalent to the PL-2+ definition previously introduced by

Adya [4] (more on this in Chapter 3).

Write-write conflicts Consistency guarantees constrain the ordering of read and write operations.

They remain silent, however, on how to handle the write-write conflicts that naturally arise in

distributed systems. The previous section illustrated one such anomaly: Alice’s update was lost.

There is currently no clean way to reason about such conflicts. As we describe further in Chapter 5,

current systems suffer from two main limitations. First, to maintain the abstraction of sequential

storage, systems often use fixed, syntactic resolution policies to reconcile write-write conflicts. This is

the case for instance in Lloyd et al’s COPS system [118]. The system relies on a deterministic writer

32

wins strategy. These policies are ill-suited to deal with real-world semantics as they can arbitrarily

lose updates. Second, current systems ignore the cross-object semantics that naturally arise in real

applications. Systems like Bayou [68], Dynamo [62], Ficus [91] or Coda [100], even though they

support more flexible merging policies, resolve conflicts at the granularity of a single object. This is

insufficient to fully resolve the effects of write-write conflicts, as we detail in Chapter 5.

33

Figure 2.23: Hierarchy of consistency models (reproduced from Vukolic et al. [192])

34

Chapter 3

A new model of isolation

The context As highlighted in Chapter 1, modern applications increasingly offload the managing

of data to cloud-based replicated and/or distributed systems. These systems, which often span

multiple regions or continents, must sustain high-throughput, guarantee low-latency, and remain

available across failures. To mitigate the increased programming complexity that comes from

managing geo-replication, scalability and fault-tolerance, commercial databases and distributed

storage systems [29, 83, 84, 132, 133, 135, 148, 150, 158] interact with applications through a front-

end that gives applications the illusion of querying or writing to a logically centralized, failure-free

node. This node will simply scale as much as one’s wallet will allow [83, 84, 132, 133, 150]. PaaS

(Platform as a Service) cloud-based storage systems [83, 133], databases [84] or webservers [12], for

example, simply require applications to pay for guaranteed throughput [84, 133].

Chapter 2 summarised how, to meet performance and scalability demands, commercial databases

or distributed storage systems like MySQL [148], Oracle [150], or SQL Server [136] often give

up serializability [153] and instead privilege weaker but more scalable correctness criteria [4, 31,

105, 148, 157, 158, 178, 204] (referred to as weak isolation) such as snapshot isolation [31] or

read committed [31]. In fact, to the best of our knowledge, almost all SQL databases use read

committed as their default isolation level [132, 136, 148, 150, 158, 168], with some only supporting

read-committed or snapshot isolation [148, 168]1.
1As of June 2019

35

While necessary for performance, this trend poses an additional burden on the application programmer,

as these weaker isolation guarantees allow for counter-intuitive application behaviors: relaxing the

ordering of operations yields better performance, but introduces schedules and anomalies that could

not arise if transactions executed atomically and sequentially. These anomalies may affect application

logic; in §2.2.3, this thesis sketched out a number of executions that could arise under weak isolation

but not serializability. These anomalies (dirty reads, non-repeatable reads, write skew, etc.) could

break application logic.

Ensuring that the application remains correct with weak isolation is challenging. A careful under-

standing of the system that implements a given isolation level is oftentimes necessary to determine

which anomalies the system will admit and how these will affect application correctness. The suppos-

edly clean abstraction that the front-end sought to expose is in fact leaky. Worse, it actually obscures

details that are necessary to understand what guarantees a given isolation definition offers.

Indeed, the guarantees provided by isolation levels are often dependent on specific and occasion-

ally implicit system properties—be it properties of storage (e.g., whether it is single or multiver-

sioned [32]); of the chosen concurrency control (e.g., whether it is based on locking or times-

tamps [31]); or other system features (e.g., the existence of a centralized timestamp [73]).

T1 T2 T1 T2

No

Yes

No

No

No

Yes

No

No

Yes

Yes

No

No

Conflict Serializability (S)

Multiversion Serializability (MS)

Anomaly Serializable (AS)

Oracle 18c (O)

MySQL Community Edition (M)

Rococo (R)

Accepts AcceptsModel

Execution l Execution r

Start

Ti
m
e

Start

w(x,x1)

Commit
Commit

w(y,y1)

w(x,x2)

w(y,y2)

r(y,y0)

w(y,y1)

r(x,x0)

w(x,x2)

Commit

Commit

Start

Start

Figure 3.1: Serializability. Abbreviations refer to: S[153], MS[32], AS[31] O[150], M[148], R[139].

Recall for example serializability [153]: as we summarised in Chapter 2, the original ANSI SQL

specification states that guaranteeing serializability is equivalent to preventing four phenomena [31].

36

This equivalence, however, only holds for lock-based, single version databases. In a multi-versioned

system, preventing the four phenomena is insufficient to guarantee serializability. Consider for exam-

ple the schedule Figure 3.1(r): T1 missed T2’s write while T2 misses T1’s write. It is thus clearly not

serializable, yet admits none of the four phenomena. Alternatively, consider the schedule Figure 3.1(l):

conflict and view serializability disallow it while multiversioned serializability admits the execu-

tion. Such implicit dependencies continue to have practical consequences: current multiversioned

commercial databases that prevent these four phenomena, such as Oracle 18c, claim to implement

serializability, when they in fact implement the weaker notion of snapshot isolation [22, 73, 150].

In contrast, a majority reject the (serializable) schedule of Figure 3.1(l) because, for performance

reasons, these systems choose not reorder writes.

The problem We submit that the root of this complexity is a fundamental semantic gap between how

application programmers experience isolation guarantees and how they are currently formally defined.

From a client’s perspective, isolation guarantees are contracts between the storage systems and its

clients, specifying the set of behaviors that clients can expect to observe—i.e., the set of admissible

values that each read is allowed to return. When it comes to formally defining these guarantees,

however, the current practice is to focus on the mechanisms that can produce those values—i.e.,

histories capturing the relative ordering of low-level read and write operations. Instead, the focus

should be on the values that the clients can observe.

Expressing isolation in a system-centric way and at such a low level of abstraction has significant

drawbacks. First, it requires application programmers to reason about the ordering of operations that

they cannot directly observe. Second, it makes it easy, as we have seen, to inadvertently contaminate

what should be system-independent guarantees with system-specific assumptions. Third, by relying

on operations that are only meaningful within one of the layers in the system’s stack, it makes it hard

to reason end-to-end about the system’s guarantees.

The secret sauce To address these issues, this chapter proposes a new model that, for the first time,

expresses isolation guarantees exclusively as properties of states that applications can observe,

without relying on traditional notions—such as dependency graphs, histories, or version orders—

that are instead invisible to applications. This new client-centric foundation comes at no cost in terms

37

of generality or expressiveness: this thesis offers state-based and client-centric definitions of most

modern isolation definitions, and prove that they are equivalent to their existing counterparts. It does,

however, result in greater clarity, which yields significant benefits.

The benefits First, this model makes clear to developers what anomalies, if any, their applications

can expect to observe, thus bridging the semantic gap between how isolation is experienced and how

it is formalized. For example, we show (§3.3.1) how a state-based and client-centric definition brings

immediately into focus the root cause of the write-skew anomaly, which distinguishes snapshot

isolation from serializability.

Second, by removing the distorting effects of implementation artefacts, our approach makes it easy

to compare the guarantees of distinct, but semantically close, isolation guarantees. The results are

sometimes surprising. We prove (§3.3.2) that several well-known flavors of isolation in fact provide

the same guarantees: parallel snapshot isolation (PSI) [46, 178] is equivalent to lazy consistency

(PL-2+) [4, 5]; similarly, generalized snapshot isolation (GSI) [154] is actually equivalent to ANSI

snapshot isolation (ANSI SI) [31], though GSI was proposed as a more scalable alternative to ANSI

SI. Likewise, we also show that the lesser known strong session SI [61] and prefix-consistent SI [154]

are also equivalent. Ultimately, the insights offered by state-based definitions enable us to organize

in a clean hierarchy (§3.3.2) what used to be incomparable flavors of snapshot isolation [4, 19, 31,

61, 129, 154, 178].

Finally, by focusing on how clients perceive a given isolation guarantee, rather than on the mech-

anisms currently used to implement it, a state-based formalization can lead to a fresh, end-to-end

perspective on how that guarantee should be implemented. Specifically, a state-based definition of

parallel snapshot isolation (PSI) makes clear that the requirement of totally ordering transactions at

each datacenter, which is baked into its current definition [178], is only an implementation artefact.

Removing it offers the opportunity of an alternative implementation of PSI that makes it resilient to

slowdown cascades [129], a common failure scenario in large-scale datacenters that has inhibited the

adoption of stronger isolation models in industry [10].

Roadmap Chapter 2 reviewed the current approaches to formalizing isolation guarantees. We

introduce our state-based, client-centric model in Section 3.1, and use it in Section 3.2 to define

38

x: x0
y: y0
z: z0

x: x1
y: y0
z: z0

x: x1
y: y1
z: z0

x: x1
y: y2
z: z1

Read States of r3(z,z0)

Execution e
s0 s1 s3

Read States of r2(y,y1)

Ta Tc Td

sfr3 = s0

sfr2= slr2 = s2
w1(x,x1)

r2(y,y1) r3(z,z0)

w2(y,y1)

w3(y,y2) w4(z,z1)

r4(x,x0) r5(z,z1)

Ta

Tb

Tc

Td

Te

Transactions Ƭ slr3 = s2
Complete

State

Figure 3.2: Read States and execution.

several isolation guarantees. We highlight the benefits of our approach in Section 3.3 and summarize

related work in Section 3.4, before outlining our work’s limitations in Section 3.52.

3.1 A State-based Model

3.1.1 Towards a new formalism

Chapter 2 summarised existing approaches to formalise isolation guarantees. It highlighted that

isolation guarantees have been formalized in many different ways: as a function of schedule equiva-

lence [153], using implementation-oriented operational specifications [25, 31, 178], or by relating the

order in which transactions commit with the values that they observe [46, 47, 170]. The most preva-

lent approach, however, has been to formulate isolation guarantees as dependency graphs. Adya’s

formalism [4] was the first to define weak isolation guarantees in the context of these dependency

graphs. Adya’s specification has since been adopted as the de-facto language for specifying isola-

tion [69, 129, 183, 195]. We select Adya’s model as a baseline and prove our definitions equivalent

to his in §3.2.

While popular, Adya’s formalism, like its other existing counterparts, specified isolation guarantees

as constraints on the ordering of the read and write operations that the storage system performs. His

framework relies on low-level implementation details like timestamps or version order. Unfortunately,

applications cannot directly observe this ordering: to them, the storage system is a black box. All they
2This work revises the previously published paper: Seeing is Believing: A client-centric approach to isolation, published

at PODC 2017. Youer Pu contributed to defining and proving the isolation definitions

39

can observe are the values returned by the read operations they issue: they experience the storage

system as if it were going through a sequence of atomic state transitions, of which they observe a

subset.

To make it easier for applications to reason about different levels of isolation, we instead adopt

the viewpoint of the applications that must ultimately use their guarantees; we introduce a new

formalization of isolation based on application-observable states. To the best of our knowledge, our

model is the first to specify isolation in an exclusively client-centric fashion, without relying on some

notion of history. Instead, it associates with each transaction the set of candidate states (called read

states) from which the transaction may have retrieved the values it read during its execution. Read

states perform a role similar to Kripke structures [106]: they inform the application of the set of

possible worlds (i.e., states) consistent with what a transaction observed during its execution.

3.1.2 Model Overview

Intuitively, a storage system guarantees a specific isolation level I if it can produce an execution

(a sequence of atomic state transitions) that satisfies two conditions. First, the execution must be

consistent with the values observed by each transaction T ; in our model, this requirement is expressed

by associating every transaction T with a set of read states, representing the states that the storage

could have been in when the application executed T ’s operations. Second, the execution must be valid,

in that it must satisfy the constraints imposed by I; I effectively narrows down which transactions’

read states can be used to build an acceptable execution. If no read state proves suitable for some

transaction, then I does not hold.

3.1.3 Definitions

We now formally define the necessary concepts. They can be grouped as follows: our model refers to

a storage system that executes transactions consisting of operations. This storage system transitions

through a series of states as a result of executing these transactions. Transactions observe a subsect

of those states. Different states have differerent properties, that our model will subsequently use to

define the various isolation guarantees.

Storage system We define a storage system S with respect to a set K of keys and V of values; a

40

system state s is a unique mapping from keys to values produced by writes from aborted or committed

transactions. For simplicity, we assume that each value is uniquely identifiable, as is common practice

both in existing formalisms [4, 32] and in practical systems (ETags in Azure [133] and S3 [15],

timestamps in Cassandra [16]). There can thus be no ambiguity, when reading an object, as to which

transaction wrote its content. In the initial system state, all keys have value ⊥; later states similarly

include every key, possibly mapped to ⊥.

Transactions As is common in database systems, we assume that applications modify the storage

system’s state using transactions. A transaction T is a tuple (ΣT ,
to−→), where ΣT is the set of

operations in T , and to−→ is a total order on ΣT
3. Operations can be either reads or writes. Read

operation r(k, v) retrieves value v by reading key k; write operation w(k, v) updates k to its new

value v. The read set of T comprises the keys read by T : RT = {k|r(k, v) ∈ ΣT }. Similarly, the

write set of T comprises the keys that T updates: WT = {k|w(k, v) ∈ ΣT }. For simplicity of

exposition, we assume that a transaction only writes a key once.

Time Finally, we assume the existence of a time oracle O that assigns distinct real-time start

and commit timestamps (T.start and T.commit) to every transaction T ∈ T . A transaction T1

time-precedes T2 (we write T1 <s T2) if T1.commit < T2.start.

State Transition Applying a transaction T to a state s transitions the system to a state s′ that is

identical to s in every key except those written by T . Formally,

Definition 1 s T−→ s′ ≡
((

[(k, v) ∈ s′∧ (k, v) 6∈ s]⇒ k ∈ WT

)
∧
(
w(k, v) ∈ ΣT ⇒ (k, v) ∈ s′

))
.

We refer to s as the parent state of T (denoted as sp,T) 4; to the transaction that generated s as Ts;

and to the set of keys in which s and s′ differ as ∆(s, s′).

Execution An execution e for a set of transactions T is a totally ordered set defined by the pair

(Se,
T∈T−−−→), where Se is the set of states generated by applying, starting from the system’s initial

state, a permutation of all the transactions in T . We write s ∗−→ s′ (respectively, s +−→ s′) to denote

a sequence of zero (respectively, one) or more state transitions from s to s′ in e. For example, in
3Bernstein et al. in his formalism uses a partial order to specify a transaction. For simplicity, we consider a linearisation

of the total order here
4Henceforth, we will drop the subscripted T unless there is ambiguity.

41

Figure 3.2, T comprises five transactions, operating on a state that consists of the current version of

keys x, y, and z.

Read States Note that while e identifies the state transitions produced by each transaction T ∈ T , it

does not specify from which states in Se each operation in T reads. In particular, reading a key in

replicated distributed systems will not necessarily return the value produced by the latest write to

that key, as writes may become visible in different orders at different replicas. In general, multiple

states in Se may be compatible with the value returned by any given operation. We call this subset

the operation’s read states. To prevent operations from reading from the future, we restrict the valid

read states for the operations in T to be no later than sp. Further, once an operation in T writes v to

k, we require all subsequent operations in T that read k to return v [4]: in this case, their set of read

states by convention includes all states in Se up to and including sp.

Definition 2 Given an execution e for a set of transactions T , let T ∈ T and let sp denote T ’s parent

state. The read states for a read operation o = r(k, v) ∈ ΣT define the set of states

RSe(o) = {s ∈ Se|s
∗−→ sp ∧

(
(k, v) ∈ s ∨ (∃w(k, v) ∈ ΣT : w(k, v)

to−→ r(k, v))
)
}.

Figure 3.2 illustrates the notion of read states for the operations executed by transaction Tb. Since

r2 returns y1, its only possible read state is s2, i.e., the only state containing y1. When it comes to

r3, however, z0 could have been read from any of s0, s1, or s2: from the perspective of the client

executing Tb, these read states are indistinguishable. By convention, write operations have read states

too: for a write operation in T , they include all states in Se up to and including T ’s parent state. It

is easy to prove that the read states of any operation o define a subsequence of contiguous states in

the total order that e defines on Se. We refer to the first state in that sequence as sfo and to the last

state as slo. For instance, in Figure 3.2, sfr3 is s0 (the first state that contains z0) and slr3 is s2 (z0 is

overwritten in s3). When the predicate PREREADe(T) holds, then such states exist for all transactions

in T :

Definition 3 Let PREREADe(T) ≡ ∀o ∈ ΣT : RSe(o) 6= ∅.

Then PREREADe(T) ≡ ∀T ∈ T : PREREADe(T).

Complete States We say that a state s is complete for T in e if every operation in T can read from s.

We write:

42

Definition 4 COMPLETEe,T (s) ≡ s ∈
⋂

o∈ΣT

RSe(o).

Looking again at Figure 3.2, s2 is a complete state for transaction Tb, as it is in the set of candidate

read states of both r2(y, y1) ({s2}) and r3(z, z0) ({s0, s1, s2}). A complete state is not guaranteed

to exist: no such state exists for Te, as the sole candidate read states of r4 and r5 (respectively, s0 and

s3) are distinct. As we will see in §3.2, complete states are key to determining whether transactions

read from a consistent snapshot.

3.2 Formalising Isolation

Serializability (CTSER(T, e)) COMPLETEe,T (sp)

Snapshot Isolation (CTSI(T, e)) ∃s ∈ Se.COMPLETEe,T (s) ∧ NO-CONFT (s)

Read Committed (CTRC(T, e)) PREREADe(T)

Read Uncommitted (CTRU (T, e)) True

Parallel Snapshot Isolation (CTPSI(e, T)) PREREADe(T) ∧ ∀T ′ . T : ∀o ∈ ΣT : o.k ∈ WT ′ ⇒ sT ′
∗−→ slo

Strict Serializability (CTSSER(e, T)) COMPLETEe,T (sp) ∧ ∀T ′ ∈ T : T ′ <s T ⇒ sT ′
∗−→ sT

Read Atomic (CTRA(e, T)) ∀r1(k1, v1), r2(k2, v2) ∈ ΣT ∧ k2 ∈ WTsfr1
⇒ sfr1

∗−→ sfr2

Table 3.1: Commit Tests

Isolation guarantees specify the valid set of executions for a given set of transactions T . We show

that it is possible to formalize these guarantees solely in terms of each transaction’s read and parent

states, without relying on histories of low-level operations or on implementation details such as

timestamps. The underlying reason is simple: ultimately, it is through the visible states produced

during an execution that the storage system can prove to its users that a given isolation guarantee

holds. Histories are just the mechanism that generates those probatory states; indeed, multiple

histories can map to the same execution.

In a state-based model, isolation guarantees constrain each transaction T ∈ T in two ways. First,

they limit which states, among those in the candidate read sets of the operations in T , are admissible.

Second, they restrict which states can serve as parent states for T . We express these constraints

by means of a commit test: for an execution e of a set T of transactions to be valid under a given

isolation level I, each transaction T in e must satisfy the commit test CTI(T, e) for I.

Definition 5Given a set of transactions T and their read states, a storage system satisfies an isolation

43

level I iff ∃e : ∀T ∈ T : CTI(T, e).

Table 3.1 summarizes the commit tests that define the isolation guarantees most commonly-used in

research and industry: the ANSI SQL isolation levels (serializability, read committed, read uncommit-

ted, and snapshot isolation) as well as parallel snapshot isolation [46, 178], strict serializability [153],

and the recently proposed read atomic [25] isolation level. Though our state-based definitions make

no reference to histories, we prove that they are equivalent to those in Adya’s classic treatment. As

the proofs follow a similar structure, we provide an informal proof sketch only for serializability and

snapshot isolation, deferring a more complete and formal treatment to Appendices A, B and E.

Serializability Serializability requires the values observed by the operations in each transaction T to

be consistent with those that would have been observed in a sequential execution. The commit test

enforces this requirement through two complementary conditions on observable states. First, all of

T ’s operations must read from the same state s (i.e., s must be a complete state for T). Second, s

must be the parent state of T , i.e., the state that T transitions from. These two conditions suffice to

guarantee that T will observe the effects of all transactions that committed before it. This definition

is equivalent to Adya’s cycle-based definition. Specifically, we prove that (a more formal proof can

be found in Appendix A.2):

Theorem 1 ∃e : ∀T ∈ T : CTSER(T, e) ≡ ¬G1 ∧ ¬G2.

Proof sketch. (∃e : ∀T ∈ T : CTSER(T, e) ⇒ ¬G1 ∧ ¬G2). By definition, e is a totally-ordered

execution where the parent state of every transaction T is a complete state for T . Considering the

order of transactions in e, we make three observations. First, all write-write edges in the DSG point

in the same direction, as they map to state transitions in the totally-ordered execution e. Second, all

write-read edges point in the same direction as write-write edges: given any transaction T , since all

operations in T read from T ’s parent state, all write-read edges that end in T must originate from a

transaction that precedes T in e’s total order. Finally, all read-write dependency edges point in the

same direction as write-write and write-read edges: as all read operations in T read from T ’s parent

state, the value they return cannot be later overwritten by a transaction T ′ ordered before T in e.

Since all edges point in the same direction, no cycle can form in the DSG.

44

(∃e : ∀T ∈ T : CTSER(T, e) ⇐ ¬G1 ∧ ¬G2). If no cycle exists in the DSG, we can construct

an execution e′ such that the parent state sp of each transaction T is a complete state for T . We

construct e′ by topologically sorting the DSG (it is acyclic) and by applying every transaction in

the resulting order. Thus, if a transaction T ′ writes a value that T subsequently reads (write-read

edge), the state associated with T ′ is guaranteed to precede T ’s state in the execution e′. Moreover,

as there are no backpointing read-write edges, no other transaction in e′ will update an object read by

T between the state produced by T ′ and sp. sp is therefore a valid read state for every operation in T

and, consequently, a complete state for T .

Snapshot isolation (SI) Like serializability, SI prevents transaction T from seeing the effects of

concurrently running transactions. The commit test enforces this requirement by having all operations

in T read from the same state s, produced by a transaction that precedes T in the execution e. However,

SI no longer insists on that state s being T ’s parent state sp: other transactions, whose operations T

will not observe, may commit in between s and sp. The commit test only forbids T from modifying

any of the keys that changed value as the system’s state progressed from s to sp. Denoting the set of

keys in which s and s′ differ as ∆(s, s′), we express this as NO-CONFT (s) ≡ ∆(s, sp) ∩WT = ∅. We

prove that this definition is equivalent to Adya’s (a more formal proof can be found Appendix A.3):

Theorem 2 ∃e : ∀T ∈ T : CTSI(T, e) ≡ ¬G1 ∧ ¬G-SI.

Proof sketch. (∃e : ∀T ∈ T : CTSI(T, e)⇐ ¬G1∧¬G-SI). We construct a valid execution for any

history satisfying ¬G1 ∧ ¬G-SI using the time-precedes partial order introduced by Adya. First, we

topologically sort transactions according to their commit point, and apply them in the resulting order

to generate an execution e. Next, we prove that every transaction T satisfies the commit test: we

first show that the state created by the last transaction Trs on which T start-depends is a complete

state. As T start-depends on Trs, it must also start-depend on all transactions that precede Trs, since,

by construction, these transactions have a commit timestamp smaller than Trs. Moreover, as Trs

is the last transaction that T starts-depend on, all subsequent transactions will either be concurrent

with T , or start-depend on T . Adya’s (¬G-SI) requirement (formally, that there cann be neither a

write-read /write-write edge without also a start dependency edge nor a cycle including a single

read-write edge) implies that T can only read or overwrite a value written by a transaction T ′ if

45

T start-depends on T ′. Any such T ′ must either be Trs or precede Trs in e. Similarly, if another

transaction T ′′ overwrites a value that T reads, T cannot start-depend on T ′′ as it would otherwise

create a cycle with a start-edge and a single read-write edge. T ′′ is therefore ordered after Trs in e.

We conclude that sTrs necessarily contains all the values that T reads: it is a complete state. Next,

we show that ∆(sTrs , sT) = ∅. By construction, T cannot start-depend on any transaction T ′ that

follows Trs in the execution but precedes T . By G-SI, there cannot be a write-write dependency edge

from T ′ to T , and their write-sets must therefore be distinct. Consequently: ∆(sTrs , sT) = ∅.

(∃e : ∀T ∈ T : CTSI(T, e) ⇒ ¬G1 ∧ ¬G-SI). We show that the serialization graph SSG(H)

corresponding to e does not exhibit phenomena G1 or G-SI. Every transaction in e reads from some

previous state and commits in the total order defined by e. It follows that all write-write and write-read

edges follow the total order introduced by e: there can be no cycle consisting of write-write/write-read

dependencies. ¬G1 is thus satisfied. To show that SSG(H) does not exhibit G-SI, we first select the

start and commit point of each transaction. We assign commit points to transactions according to

their order in e. We assign the start point of each transaction T to be directly after the commit point of

the first transaction Trs in e whose generated state satisfies COMPLETEe,T (s) ∧ (∆(s, sp) ∩WT = ∅).

It follows that Trs (and all the transactions that precede it in e) start-precede T . Proving ¬G-SIa is

then straightforward: any transaction T ′ that T write-read/write-write depends on precedes Trs in

the execution, and consequently start-precedes T . Proving ¬G-SIb requires a little more care. By

¬G-SIa, there necessarily exists a corresponding start-depend edge for any write-read or write-write

edge between two transactions T and T ′: if there exists a cycle with exactly one read-write edge

in the SSG(H), there must exist a cycle with exactly one read-write edge and only start-depend

edges in SSG(H). Assuming by contradiction that G-SIb holds and that there exists a cycle with

one read-write edge and multiple start-depend edges (we reduce this cycle to a single start-depend

edge as start-edges are transitive). Let T read-write depend on T ′: sT ′ is ordered after sTrs in e

(otherwise sTrs cannot be a valid read state for T). However, as previously mentioned, T only has

start-depend edges with transactions that precede Trs (included) in e. T ′ thus does not start-depend

on T , a contradiction.

Unlike Adya’s, however, the correctness of our state-based definition does not rely on using start

and commit timestamps. This is a crucial difference. Including these low-level attributes in the

46

definition has encouraged the development of variations of SI that differ in their use of timestamps,

whose fundamental guarantees are, as a result, difficult to compare. In §3.3.2 we show that, when

expressed in terms of application-observable states, several of these variations, thought to be distinct,

are actually equivalent!5

Read committed Read committed allows T to see the effects of concurrent transactions, as long

as they are committed. The commit test therefore no longer constrains all operations in T to read

from the same state; instead, it only requires each of them to read from a state that precedes T in the

execution e. We prove in Appendix A.4 that:

Theorem 3 ∃e : ∀T ∈ T : CTRC(T, e) ≡ ¬G1.

Read uncommitted Read uncommitted allows T to see the effects of concurrent transactions,

whether they have committed or not. The commit test reflects this permissiveness, to the point of

allowing transactions to read arbitrary values. Still, we prove in Appendix A.5 that:

Theorem 4 ∃e : ∀T ∈ T : CTRU (T, e) ≡ ¬G0.

The reason behind the laxity of the state-based definition is that isolation models in databases consider

only committed transactions and are therefore unable to distinguish values produced by aborted

transactions from those produced by future transactions. This distinction, however, is not lost in

environments, such as transactional memory, where correctness depends on providing guarantees

such as opacity [89] for all live transactions. We discuss this further in Section 3.5.

Strict Serializability Strict serializability guarantees that the real-time order of transactions will be

reflected in the final history or execution. It can be expressed by adding the following condition to

the serializability commit test: ∀T ′ ∈ T : T ′ <s T ⇒ sT ′
∗−→ sT .

Parallel Snapshot Isolation Parallel snapshot isolation (PSI) was recently proposed by Sovran et

al. [178] to address SI’s scalability issues in geo-replicated settings. Snapshot isolation requires

transactions to read from a snapshot (a complete state in our parlance) that reflects a single commit
5As proofs follow a similar structure, we defer all subsequent proofs to Appendices.

47

ordering of transactions. The coordination implied by this requirement is expensive to carry out in a

geo-replicated system and must be enforced even when transactions do not conflict. PSI aims to offer

a scalable alternative by allowing distinct geo-replicated sites to commit transactions in different

orders. The specification of PSI is given as an abstract specification code that an implementation must

emulate. Specifically, a PSI execution must enforce three properties. First, site snapshot read: all

operations read the most recent committed version at the transaction’s origin site as of the time when

the transaction began (P1). Second, no write-write conflicts: the write sets of each pair of somewhere-

concurrent committed transactions must be disjoint (two transactions are somewhere-concurrent

if they are concurrent on site(T1) or site(T2)) (P2). And finally, commit causality across sites: if

transaction T1 commits at a site A before transaction T2 starts at site A, then T1 cannot commit after

T2 at any site.

Our first step towards a state-based definition of PSI is to populate, using solely client-observable

states, the precede-set of each transaction T , i.e., the set of transactions after which T must be

ordered. A transaction T ′ is in T ’s precede-set if (i) T reads a value that T ′ wrote; or (ii) T writes an

object modified by T ′ and the execution orders T ′ before T ; or (iii) T ′ precedes T ′′ and T ′′ precedes

T . Formally: D-PRECe(T̂) = {T |∃o ∈ ΣT̂ : T = Tsfo} ∪ {T |sT
+−→ sT̂ ∧WT̂ ∩WT 6= ∅}. We write

Ti I Tj if Ti ∈ D-PRECe(Tj) and Ti . Tj if Ti transitively precedes Tj . PSI guarantees that the state

observed by a transaction T ’s operation includes the effects of all transactions that precede it. We

can express this requirement in PSI’s commit test as follows:

Definition 6 CTPSI(T, e) ≡ PREREADe(T) ∧ ∀T ′ . T : ∀o ∈ ΣT : o.k ∈ WT ′ ⇒ sT ′
∗−→ slo.

This client-centric definition of PSI makes immediately clear that the state which operations observe

is not necessarily a complete state, and hence may not correspond to a snapshot of the database at a

specific time. We prove the following theorem in Appendix E.3:

Theorem 5 ∃e : ∀T ∈ T : CTPSI(T, e) ≡ PSI.

Read Atomic Read atomic [25], like PSI, aims to be a scalable alternative to snapshot isolation. It

preserves atomic visibility (transactions observe either all or none of a committed transaction’s effects)

but does not preclude write-write conflicts nor guarantees that transactions will read from a causally

consistent prefix of the execution. These weaker guarantees allow for efficient implementations and

48

Withdraw(acc,amnt)
s = READ(S) ; c = READ(C)

If (s+c>=amt)
If (acc = s) WRITE(S,s-amnt)

else WRITE(C,c-amnt)
else WRITE(Log,Fail) ; abort

C=30
S=30

C=-10
S=30 Fail

C=30
S=30

C=-10
S=30

C=-10
S=-10
OK

C=-10,S=30C=30,S=30

T1 T2

T1 T2

C=30,S=30

s1 s2 s3

s1 s2 s3

a)

b)

State Transition Read State

C=-10,S=30

C=30,S=30

Figure 3.3: Simple Banking Application. Alice and Bob share checking and savings accounts. Withdrawals are
allowed as long as the sum of both account is greater than zero.

nonetheless ensure synchronization independence: one client’s transactions cannot cause another

client’s transactions to fail or stall. Read atomic can be expressed in our state-based model as follows:

Definition 7 CTRA(T, e) ≡ ∀r1(k1, v1), r2(k2, v2) ∈ ΣT ∧ k2 ∈ WTsfr1
⇒ sfr1

∗−→ sfr2 .

Intuitively, if an operation o1 observes the writes of a transaction Ti’s, all subsequent operations that

read a key included in Ti’s write set must read from a state that includes Ti’s effects. We prove the

following theorem in Appendix B:

Theorem 6 ∃e : ∀T ∈ T : CTRA(T, e) ≡ RA.

3.3 Benefits of a state-based approach

Specifying isolation using client-observable states rather than histories is not only equally expressive,

but brings forth several benefits: it gives application developers a clearer intuition for the implications

of choosing a given isolation level (§3.3.1), brings additional clarity to how different isolation levels

relate (§3.3.2), and opens up opportunities for performance improvements in existing implementations

(§3.3.3).

49

Strong SI C-ORD(Tsp , T) ∧ ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ (Ts <s T) ∧ (∀T ′ <s T : sT ′
∗−→ s)

Strong Session SI/PC-SI C-ORD(Tsp , T) ∧ ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ (Ts <s T) ∧ (∀T ′ se−→ T : sT ′
∗−→ s)

ANSI SI /GSI C-ORD(Tsp , T) ∧ ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ (Ts <s T)

Adya SI ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s)

PSI/PL-2+ PREREADe(T) ∧ ∀T ′ . T : CAUS-VIS(e, T)

Table 3.2: Commit tests for snapshot-based protocols

3.3.1 Minimizing the intuition gap

A state-based model makes it easier for application programmers to understand the anomalies allowed

by weak isolation levels, as it precisely captures the root cause of these anomalies. Consider, for

example, snapshot isolation: it allows for a non-serializable behavior called write-skew, illustrated in

the simple banking example of Figure 3.3. Alice and Bob share checking (C) and savings (S) accounts,

each holding $30, the sum of which should never be negative. Before performing a withdrawal,

they check that the total funds in their accounts allow for it. They then withdraw the amount from

the specified account, using the other account to cover any overdraft. Suppose Alice and Bob try

concurrently to withdraw $40 from, respectively, their checking and savings account, and issue

transactions T1 and T2. Figure 3.3(a) shows an execution under serializability. Because transactions

read from their parent state (see Table 3.1), T2 observes T1’s withdrawal and, since the balance of

Bob’s accounts is below $40, aborts. In contrast, consider the execution under snapshot isolation in

Figure 3.3(b). As it is is legal for both T1 and T2 to read from a complete but stale state s1, Alice and

Bob can both find that the combined funds in the two accounts exceed $40, and, unaware of each

other, proceed to generate an execution whose final state s3 is illegal. The state-based definitions of

snapshot isolation and serializability make both the causes and the danger of write-skew immediately

clear: to satisfy snapshot isolation, it suffices that both transactions read from the same complete

state s1, even though this behavior is clearly not serializable, as s1 is not the parent state of T2.

The link is, arguably, less obvious with the history-based definition of snapshot isolation, which

requires “disallowing all cycles consisting of write-write and write-read dependencies and a single

anti-dependency”.

50

☰

 ⊂

☰

 ⊂
 ⊂

 ⊂

☰

Figure 3.4: Snapshot-based isolation guarantees hierarchy. (ANSI SI [31, 61], Adya SI [4], Strong SI [61],
GSI [154], PSI [178], Strong Session SI [61], PL-2+ [5], PC-SI [61]).

3.3.2 Removing implementation artefacts

By cleanly separating high-level properties from low-level implementation details, a state-based

model makes the plethora of isolation guarantees introduced in recent years easier to compare. We

leverage this newfound clarity below to systematize snapshot-based guarantees, including ANSI

SI [31], Adya SI [4], Weak SI [61], Strong SI [61], generalized snapshot isolation (GSI) [154],

parallel snapshot isolation (PSI) [178], Strong Session SI [61], PL-2+ (Lazy Consistency) [5], Prefix-

Consistent SI (PC-SI) [61]. We find that several of these isolation guarantees, previously thought

to be distinct, are in fact equivalent from a client’s perspective, and establish a clean hierarchy that

encompasses them.

Snapshot-based isolation guarantees, broadly speaking, are defined as follows. A transaction is

assigned both a start and a commit timestamp; the first determines the database snapshot from which

the transaction can read (it includes all transactions with a smaller commit timestamp), while the

second maintains the “first-committer-wins” rule: no conflicting transactions should write to the same

objects. The details of these protocols, however, differ. Each strikes a different performance trade-off

in how it assigns timestamps and computes snapshots that influences its high-level guarantee in

ways that can only be understood by applications with in-depth knowledge of the internals of the

underlying systems. As a result, it is hard for application developers and researchers alike to compare

and contrast them.

51

In contrast, formulating isolation in terms of client-observable states forces definitions that specify

guarantees according to how they are perceived by clients. It then becomes straightforward to under-

stand what guarantees are provided, and to observe their differences and similarities. Specifically, it

clearly exposes the three dimensions along which snapshot-based guarantees differ: (i) time (whether

timestamps are logical [4, 129, 178] or based on real-time [31, 61, 154]); (ii) snapshot recency

(whether the computed snapshot contains all transactions that committed before the transaction start

time [4, 61] or can be stale [19, 61, 154, 178]); and state completeness (in our parlance, whether

snapshots must correspond to a complete state [4, 31, 61, 154] or whether a causally consistent [9]

snapshot suffices [5, 19, 129, 178]).

Grouping isolation guarantees in this way highlights a clean hierarchy between these definitions,

and suggests that many of the newly proposed isolation levels proposed are in fact equivalent to

prior guarantees. We summarize the different commit tests in Table 3.2 and the resulting hierarchy in

Figure 3.4. As the existence of the hierarchy follows straightforwardly from the commit tests, we

defer the proof of its soundness to Appendix F, along with proofs of the corresponding equivalences.

At the top of the hierarchy is Strong SI [61]. It requires that a transaction T observe the effects of all

transactions that have committed (in real-time) before T (in other words, read from the most recent

database snapshot) and obtain a commit timestamp greater than any previously committed transaction.

We express this (Table 3.2, first row) by requiring that the last state in the execution generated by a

transaction that happens before T in real time must be complete (∀T ′ <s T : sT ′
∗−→ s), and that the to-

tal order defined by the execution respects commit order (C-ORD(T, T ′) ≡ T.commit < T ′.commit).

We prove that this formulation is equivalent to its traditional implementation specification in Ap-

pendix C.4:

Theorem 7 ∃e : ∀T ∈ T : CTStrongSI(T, e) ≡ Strong SI .

Skipping for a moment one level in the hierarchy, we consider next ANSI SI [31]. ANSI SI weakens

Strong SI’s requirement that the snapshot from which T reads include all transactions that precede

T in real-time (including those that access objects that T does not access). This weakening, which

improves scalability by avoiding the coordination needed to generate Strong SI’s snapshot, can be

expressed in our state-based approach by relaxing the requirement that the complete state be the most

52

recent in real-time (Table 3.2, third line). An attractive consequence of this new formulation is that it

clarifies the relationship between ANSI SI and generalized snapshot isolation [154], a refinement of

ANSI SI for lazily replicated databases. We prove that these two decade-old guarantees are actually

equivalent in Appendices C.2 and D.2:

Theorem 8 ∃e : ∀T ∈ T : CTANSI SI(T, e) ≡ GSI ≡ ANSI SI.

This is not an isolated case: we find that the two less popular notions of isolation that occupy the

level of the hierarchy between Strong SI and ANSI SI (Strong Session SI (SSessSI) [154] and

Prefix-Consistent SI (PC-SI) [61]) are also equivalent These guarantees seek to prevent transaction

inversions [61] (a client c1 executes a transaction T1 followed, in real-time by T2 without T2 observing

the effects of T1) that can arise when transactions read from a stale snapshot—but without requiring

all transactions to read from the most recent snapshot. To this effect, they strike a balance between

ANSI SI and Strong SI: they introduce the notion of sessions and require a transaction T to read from

a snapshot more recent than the commit timestamp of all transactions that precede T in a session

(formally: a session se is a tuple (Tse,
se−→) where se−→ is a total order over the transactions in Tse such

that T se−→ T ′ ⇒ T <s T
′). Our model straightforwardly captures this definition (Table 3.2, second

row) by requiring that the complete state from which a transaction reads follow the commit state of

all transactions in a session. We prove the following theorem in Appendices C.3 and D.3:

Theorem 9 ∃e : ∀t ∈ T : CTSession SI(t, e) ≡ SSessSI ≡ PC-SI .

Though ANSI SI or Strong Session SI are both more scalable than Strong SI, their definitions still

include several red flags for efficient large-scale implementations. First, they require a total order on

transactions (C-ORD(s, sp)), forcing developers to implement expensive coordination mechanisms,

even as transactions may access different objects. Second, they limit a transaction T to reading only

from complete states that do not include transactions that committed in real time after T ’s start

timestamp. This implementation choice often forces transactions to read further in the past than

necessary, making them more prone to write-write conflicts with concurrent transactions. Moreover, it

prevents transactions from reading uncommitted operations, precluding efficient implementations for

high-contention workloads [72, 201]. Adya’s reformulation of SI [4] side-steps many of these baked-

in implementation decisions by removing the dependence on real-time, instead allocating logical

53

timestamps consistent with the transactions’ observations. Our model can capture this distinction

by simply removing the two aforementioned clauses from the commit test (Table 3.2, fourth row),

allowing for maximum flexibility for how snapshot isolation can be implemented without affecting

client-side guarantees.

The lowest level of the hierarchy covers snapshot-based isolation guarantees intended for large-scale

geo-replicated systems. When transactions may be asynchronously replicated for performance and

availability, it is challenging to require that transactions read a database snapshot that corresponds to

a single moment in time (and hence read from a complete state) as it would require transactions to

become visible atomically across all (possibly distant) datacenters. PSI [178] (introduced in §3.2)

and PL-2+ [4, 5] consequently weaken Adya’s SI to address these new challenges: PSI requires

that transactions read from a committed snapshot but allows concurrent transactions to commit in a

different order at different sites, while PL-2+ disallows cycles consisting of either write-write/write-

read dependencies, or containing a single anti-dependency edge. Unlike what these widely different

low-level definitions suggest, taking a client-centric view of these guarantees indicates that PSI

and PL-2+ in fact weaken Adya’s snapshot isolation in an identical fashion: they no longer require

transactions to read from a complete state, and instead require that operations read from a (possibly

different) state that includes the effects of all previously observed transactions. Our model cleanly

captures the shared guarantee provided by PL-2+/PSI: that a transaction T must observe the effects

of all transactions that it is not concurrent with (Table 3.2, fifth line). We write: for every transaction

T ′ that a transaction T depends on: ∀o ∈ ΣT : o.k ∈ WT ′ ⇒ sT ′
∗−→ slo ≡ CAUS-VIS(e, T). From

this client-centric formulation, we prove the following theorem in Appendix E:

Theorem 10 ∃e : ∀T ∈ T : CTPSI(T, e) ≡ PSI ≡ PL-2+.

3.3.3 Identifying performance opportunities

Beyond improving clients’ understanding, defining isolation guarantees in terms of client-observable

states helps prevent them from subjecting transactions to stronger requirements than what these

guarantees require end-to-end. Indeed, by removing all implementation-specific details (timestamps,

replicas) present in system-centric formulations, our model gives full flexibility to how these guaran-

tees can be implemented. We illustrate this danger, and highlight the benefits of our approach, using

54

the specific example of PSI/PL-2+.

In its original specification, the definition of parallel snapshot isolation [178] requires datacenters to

enforce snapshot isolation, even as it globally only offers (as we prove in Theorem 10) the guarantees

of lazy consistency/PL-2+. This baked-in implementation decision makes the very definition of PSI

unsuitable for large-scale partitioned datacenters as it makes the definition (and therefore any system

that implements it) susceptible to slowdown cascades. Slowdown cascades (common in large-scale

systems [10]) arise when a slow or failed node/partition delays operations that do not access that

node itself, and have been identified by industry [10] as the primary barrier to adoption of stronger

consistency guarantees. By enforcing SI on every site, the history-based definition of PSI creates a

total commit order across all transactions within a datacenter, even as they may access different keys.

Transactions thus become dependent on all previously committed transactions on that datacenter, and

cannot be replicated to other sites until all these transactions have been applied. If a single partition

is slow, all transactions that artificially depend on transactions on that node will be unnecessarily

delayed, creating a cascading slowdown.

An approach based on client-observable states, in contrast, makes no such assumptions: the depend-

set of a transaction is computed using client observations and read states only, and thus consists

exclusively of transactions that the application itself can perceive as ordered with respect to one

another. Every dependency created stems from an actual observation: the number of dependencies

that a client-centric definition creates is consequently minimal (and the fewer dependencies a system

creates, the less likely it will be subject to slowdown cascades). To illustrate this potential benefit,

we simulated the number of transactional dependencies created at each datacenter by the traditional

definition of PSI as compared to the “true” dependencies generated by the proposed client-centric

definition, using an asynchronously replicated transactional key-value store, TARDiS [59] (described

in Chapter 5). On a workload consisting of read-write transactions (three reads, three writes) accessing

data uniformly over 10,000 objects (Figure 3.5), we found that a client-centric approach decreased

dependencies, per transaction, by two orders of magnitude (175×), a reduction that can yield

significant dividends in terms of scalability and robustness.

State-based specifications of isolation guarantees can also benefit performance, as they abstract away

55

0 50 10
0

15
0

20
0

25
0

30
0

Time (s)

103

104

105

106

D
ep

en
de

nc
ie

s

PSI

Client-Centric

Figure 3.5: Number of dependencies per transaction as a function of time. TARDiS [59] runs with three
replicas on a shared local cluster (2.67GHz Intel Xeon CPU X5650, 48GB memory and 2Gbps network).

the details of specific mechanisms used to enforce isolation, and instead focus on how different flavors

of isolation constrain permissible read states. A case-in-point is Ardekani et al.’s non-monotonic

snapshot isolation (NMSI) [19]: NMSI logically moves snapshots forward in time to minimize the

risk of seeing stale data (and consequent aborts due to write-write conflicts), without violating any

consistency guarantees. This technique is premised on the observation that, given the values read by

the client, the states at the earlier and later snapshot are indistinguishable.

3.4 Related work

Most past definitions of isolation and consistency [4, 19, 31, 32, 32, 40, 73, 92, 153, 178, 185]

refer to specific orderings of low-level operations and to system properties that cannot be easily

observed or understood by applications. To better align these definitions with what clients perceive,

recent work [20, 46, 123, 192] distinguishes between concrete executions (the nuts-and-bolts

implementations details) and abstract executions (the system behaviour as perceived by the client).

Attiya et al., for instance, introduce the notion of observable causal consistency [20], a refinement

of causal consistency where causality can be inferred by client observations. Likewise, Cerone

et al. [46, 47] introduce the dual notions of visibility and arbitration to define, axiomatically, a

large number of existing isolation levels. The simplicity of their formulation, however, relies on

restricting their model to consider only isolation levels that guarantee atomic visibility [25], which

prevents them from expressing guarantees like read-committed, the default isolation level of most

56

common database systems [132, 136, 148, 148, 149, 158, 168, 195], and the only supported level

for some [148]6. Shapiro and Ardekani [170] adopt a similar approach to identify three orthogonal

dimensions (total order, visibility, and transaction composition) that they use to classify consistency

and isolation guarantees. All continue, however, to characterize correctness by constraining the

ordering of read and write operations and often let system specific details (e.g., system replicas) leak

through definitions. Our model takes their approach a step further: it directly defines consistency and

isolation in terms of the observable states that are routinely used by developers to express application

invariants [11, 23, 59]. Finally, several practical systems have recognized the benefits of taking a

client-centric approach to system specification and development. These systems target very different

concerns, from file I/O [143] to cloud storage [131], and from Byzantine fault-tolerance [104] to

efficient Paxos implementations [157]. In the specific context of databases and key-value stores,

in addition to Ardekani et al.’s work [19], Mehdi et al. [129] recently proposed a client-centric

implementation of causal consistency that is both scalable and resilient to slowdown cascades

(§6.2.2).

3.5 Limitations

TThe model presented in this chapter currently has two main limitations, which we plan to address

in future work. First, it does not constrain the behavior of ongoing transactions. It thus cannot

express consistency models, like opacity [89] or virtual world consistency [93] , designed to prevent

STM transactions from accessing an invalid memory location. This limitation is consistent with the

assumption, made in most isolation and consistency research, that applications never make externally

visible decisions based on uncommitted data, so that their actions can be rolled back if the transaction

aborts. Second, our model focuses on the traditional transactional/read/write model, predominant in

database theory and modern distributed storage systems. To support semantically rich operations,

abstract data types, and commutativity, we will start from Weikum et al’s theory of multi-level

serializability [196], which maps higher-level operations to reads and writes.
6as of June 2019

57

3.6 Conclusion

This chapter presents a new, client-centric way to reason about isolation based on application-

observable states and proves it to be as expressive as prior approaches based on histories. We present

evidence suggesting that this approach (i) maps more naturally to what applications can observe

and illuminates the anomalies allowed by distinct isolation/consistency levels; (ii) makes it easy

to compare isolation guarantees, leading us to prove that distinct, decade-old guarantees are in

fact equivalent; and (iii) facilitates reasoning end-to-end about isolation guarantees, enabling new

opportunities for performance optimization.

58

Chapter 4

Extending our model to consistency

Chapter 3 introduced a new state-based, client-centric model of isolation guarantees. It demonstrated

that such an approach minimised the gap between how isolation guarantees are defined and how they

are perceived.

The context Isolation guarantees, however, as we mentioned in Chapter 2 regulate only the interaction

between concurrently executing transactions. For instance, serializability allows the transactions of

the same client to be reordered. In contrast, consistency guarantees explicitly regulate the ordering of

individual operations; sequential consistency, session guarantees [50, 185], or causal consistency [9]

thus explicitly regulate the ordering of individual operations that pertain to individual clients. These

guarantees ensure that, as operations are replicated across different replicas, clients observe a state

that remains coherent. As with isolation, "coherent" depends on the specific consistency guarantee.

The problem We identify two primary problems with how consistency guarantees are currently de-

fined. First, as with isolation, large scale distributed systems offer a myriad of consistency guarantees

to applications. The strongest consistency notion, linearizability [92], provides the clean abstraction

of a centralised, non-replicated system. While easy to program, the coordination necessary to ensure

that replicas operate in lock-step implies that linearizable systems provide only limited throughput

and cannot make progress during network partitions. The CAP theorem [39, 79] highlights that one

must make a trade-off between coordination (and consequently how much replicas can diverge)

59

and partition-tolerance. In light of this theorem, many wide-area services and applications [44]

choose to renounce strong consistency and focus instead on prodiving the ALPS properties [118]

of Availability, low Latency, Partition tolerance and high Scalability. Some systems provide only

eventual consistency [138, 167, 193], which provides little to no guarantees on far replicas can

diverge. Guarantees like session guarantees [185] or causal consistency [9, 118, 135] provide a

balance between these two extremes. Unfortunately, as with isolation, understanding the precise

meaning of these guarantees requires specific knowledge of how the system implements them (for

example, whether writes are totally ordered across sessions): yet, these details are not available

to applications. For example, the exact meaning of session guarantees (Bayou [187], Corba [50]

and, more recently, in Pileus [186] and Microsoft’s DocumentDB [135]) depends on whether the

system implements a total order of write operations across client sessions. Consider the execution

in Figure 4.1: does it satisfy the session guarantee monotonic reads, which calls for reads to reflect

a monotonically increasing set of writes? The answer depends on whether the underlying system

provides a total order of write operations across client sessions, or just a partial order based on the

order of writes in each session. The specification of monotonic reads, however, is silent on this issue.

C1 C2

Start

Ti
m
e

Start

w(x,xa)

Commit

Commit

w(x,xb)

w(x,xc)

w(x,xd)

C3 C4

Start
r(x,xb)

Commit
r(x,yc)

Start
r(x,xb)

Commit
r(x,xc)

Figure 4.1: Monotonic Read Execution

Second, cloud storage systems are increasingly adding support for transactions [16, 66, 134, 138, 155],

60

it is currently not clear what correctness guarantee the resulting systems actually offer, as there lacks

a unified framework for understanding consistency and isolation.

The benefits We consequently extend our state-based model of isolation to consistency. Extending

this client-centric approach to consistency guarantees brings forth two benefits. First, it allows us to

define session guarantees [50, 185] without making assumptions on the order of writes in the system.

Second, it allow us to unify the often disparate theories of isolation and consistency and provides a

structure for composing their guarantees. We leverage this modularity to extend to transactions the

equivalence between causal consistency and session guarantees that Chockler et al. had proved for

single operations [50], showing, moreover, that it holds independently of the isolation level under

which they execute.

Roadmap Chapter 2 reviewed the current approaches to formalizing consistency guarantees. We

introduce our state-based, client-centric model in Section 4.1, and use it in Section 4.2 to define

several consistency guarantees. We highlight the benefits of our approach in Section 4.3, before

outlining our work’s limitations in Section 4.4.

4.1 A State-based Model

Chapter 3 introduced a client-centric model for isolation that does not on notions of history or

implementation like timestamps or write versions. It associates with each transaction the set of

candidate states (called read states) from which the transaction may have retrieved the values it

read during its execution. Read states inform the application of the set of possible worlds (i.e.,

states) consistent with what a transaction observed during its execution. To unify our treatment of

consistency and isolation, we also assume here that applications modify the storage system’s state

using transactions.

Isolation guarantees typically do not regulate how transactions from a given client should be ordered 1.

They instead tacitly assume that transactions from the same client will execute in client-order, as

they would in a centralized or synchronously replicated storage system. In weakly consistent systems

however, where transactions can be replicated asynchronously, this assumption no longer hold. To
1Strict serializability is the exception to this rule.

61

reestablish order, distributed systems introduce the notion of sessions. Sessions encapsulate the

sequence of operations performed by each entity (thread, client, or application) and provide each

with a view of the system consistent with its own actions. We thus introduce this notion of sessions

to the model defined in Chapter 3. Formally, a session se is a tuple (Tse,
se−→) where se−→ is a total

order over the transactions in Tse. The set of all sessions is denoted by SE.

We additionally introduce the notion of internal read consistency: the predicate IRCe(T) t states that

operations that follow each other in the transaction order should appear to read from a monotonically

increasing state.

4.2 A new model for consistency

Session guarantees are today’s most popular consistency guarantees, but have so far only been defined

for operations [40, 50, 185]: to build the foundation of a common theory of isolation and consistency,

we proceed to define session-based consistency guarantees for transactions. We start by offering a

state-based definition of sequential consistency (SC) [112]. SC requires that read operations within

each transaction observe monotonically increasing states and have non-empty candidate read sets;

further, like previously defined isolation levels, it demands that all sessions observe a single execution.

Unlike isolation levels, however, SC also requires transactions to take effect in the order specified by

their session. We define the commit test (CT) for SC as follows:

Definition 1 CTSC(e, T) ≡ PREREADe(T)∧ IRCe(T)∧ (∀se ∈ SE : ∀Ti
se−→ Tj : (sTi

+−→ sTj
∧∀o ∈ ΣTj

:

sTi

∗−→ slo))

Guaranteeing the existence of a single execution across all clients is often prohibitively expensive if

sites are geographically distant. Many systems instead allow clients in different sessions to observe

distinct executions. Clients consequently perceive the system as consistent with their own actions, but

not necessarily with those of others. To this effect, we reformulate the commit test into a session test:

for an execution e to be valid under a given session se and session guarantee SG, each transaction T

in Tse must satisfy the session test for SG, written SESSIONSG(se,T, e).

Definition 2 A storage system satisfies a session guarantee SG ≡ ∀se ∈ SE : ∃e : ∀T ∈ Tse :

SESSIONSG(se,T, e).

62

Intuitively, session tests invert the order between the existential qualifier for execution and the

universal quantifier for sessions. Table 4.1 shows the session tests for the most common session

guarantees. We informally motivate their rationale below.

Read-My-Writes RMW states that a client will read from a state that includes any preceding writes

in its session. RMW is a fairly weak guarantee: it does not constrain the order in which writes take

effect, does not provide any guarantee on the reads of a client who never writes or on the outcome of

reads performed in other sessions (as it limits the scope of PREREAD only to the transactions of

its session). The session test simply requires that the read state of every operation in a transaction’s

session be after the commit state of all preceding update transactions in that session.

Monotonic Reads MR, instead, constrains a client’s reads to observe increasingly up-to-date states:

this applies to transactions in a session, and to operations within the transaction (by IRC). The notion

of “up-to-date" varies by client, as the storage is free to arrange transactions differently for each

session’s execution. Violations of MR can thus only be detected by clients reading the same value

three times: reading the initial value, a new value, and the initial value again. Moreover, a client is

not guaranteed to see the effects of its own write: MR allows reading from monotonically increasing

but stale states.

Monotonic Writes In contrast, MW constrains the ordering of writes that belong to the same session:

the sequence of state transitions in each execution must be consistent with the order of update

transactions in every session. Unlike MR and RMW, monotonic writes is a global guarantee. The

PREREAD requirement for read operations, instead, continues to apply only within each session.

Writes-Follow-Reads Like MW, WFR is a global guarantee, this time covering reads as well as

writes. It states that, if a transaction reads from a state s, all transactions that follow in that session

must be ordered after s in the execution.

Causal Consistency Finally, causal consistency guarantees that any execution will order transactions

in a causally consistent order: read operations in a session will see monotonically increasing read

states, and commit in session order. Likewise, transactions that read from a state s will be ordered

after s in all sessions. This relationship is transitive: every transaction that reads s (or that follows in

the session) will also be ordered after s.

63

Read-My-Writes (RMW) PREREADe(Tse) ∧ ∀o ∈ ΣT : ∀T ′ se−→ t :WT ′ 6= ∅ ⇒ sT ′
∗−→ slo

Monotonic Reads (MR) PREREADe(Tse) ∧ IRCe(T) ∧ ∀o ∈ ΣT : ∀T ′ se−→ t : ∀o′ ∈ ΣT ′ : ¬(slo
+−→ sfo′)

Monotonic Writes (MW) PREREADe(Tse) ∧ ∀se′ ∈ SE : ∀Ti
se′−−→ Tj : (WTi

6= ∅ ∧WTj
6= ∅)⇒ sTi

+−→ sTj

Writes-Follow-Reads (WFR) PREREADe(T) ∧ ∀se′ ∈ SE : ∀Ti
se′−−→ Tj : ∀oi ∈ ΣTi

:WTj
6= ∅ ⇒ sfoi

+−→ sTj

Causal Consistency (CC)
PREREADe(T) ∧ IRCe(T) ∧ (∀o ∈ ΣT : ∀T ′ se−→ t : sT ′

∗−→ slo)

∧(∀se′ ∈ SE : ∀Ti
se′−−→ Tj : sTi

+−→ sTj
)

Table 4.1: Session test for session guarantees

4.3 From Session Guarantees to Causal Consistency

Unifying consistency with isolation makes it straightforward to compose these guarantees and

understand how they interact. Using this model, we generalize a seminal result by Chockler et

al’s [50]: we prove the four session guarantees, taken together, remain equivalent to causal consistency

when using transactions. Interestingly, we note that this result holds independently of the transactions’

isolation level, as it enforces no relationship between a transaction’s parent state and the read states

of the operations of that transaction.

Theorem 1. Let G = {RMW,MR,MW,WFR}, then

∀se ∈ SE : ∃e : ∀T ∈ Tse : SESSIONG(se,T, e) ≡ ∀se ∈ SE : ∃e : ∀T ∈ Tse : SESSIONCC(se,T, e)

We prove this result in Appendix G. The proof is non-trivial and relies on one key observation:

if there exists an execution that satisfies all four session guarantees, there must exist a (possibly

different) execution with the same set of transactions and read values that is causally consistent.

This result allows us to, for the first time, precisely characterize the guarantees that result from

combining multiple session gurantees with the increasing support for transactions that modern cloud

storage systems provide.

4.4 Limitations

The current formalism takes an exclusively client-centric view of consistency. It defines the commit

test per session, as different clients may observe a different ordering of operations. Our model

presents three limitations. First, guarantees like causal consistency regulate the order in which

writes are observed by different clients. They remain silent however on how conflicting, concurrent

64

write operations are handled. Asynchronously replicated systems like COPS [118], Ficus [163],

Bayou [187], Walter [178], Coda [99] or conflict replicated data types (CRDTs) [172] use different

merging functions to incorporate conflicting writes. As we discuss in the next chapter (Chapter 5),

these merging functions can be significantly impact the overall correctness of the system. Formalising

these merging strategies in our framework is consequently important. Second, our model takes a

strictly local view of consistency: it defines a commit test per session. Investigating alternative

strategies to account for the differing executions and how they relate to each other would be an

interesting avenue for future work. Finally, our model considers only read/write operations. Some

merging functions, like CRDTs, inherently rely on the semantic of objects for correctness. Extending

our model to abstract datatypes would consequently enhance the expressivity of our framework.

4.5 Conclusion

This chapter extends the state-based formulation of isolation to consistency and presents the first

unified framework of consistency and isolation. It demonstrates that a state-based formalism can not

only simplify the expression of traditional isolation guarantees, but also consistency guarantees.

65

Chapter 5

Simplifying weak consistency with

client-centric forking and merging

The previous two chapters identified a new client-centric and state-based formalism for reasoning

about consistency and isolation. We demonstrated that this formalism could bring semantic benefits

to the complex field of weak isolation and weak consistency. The second half of this thesis focuses on

the practical benefits that this new way of thinking can bring. Specifically, it focuses on the design of

two systems, TARDiS in this chapter, and Obladi in Chapter 6. Both embrace the client, state-centric

approach that we advocate to improve the functionality and performance of transactional datastores.

The context As we highlight in previous chapters, applications that favour weaker notions of con-

sistency must deal with the complexity of programming on top of these systems. Many different

consistency definitions have been proposed that trade-off consistency for performance. These con-

sistency guarantees place constraints on what read operations can observe at a given point in time

(potentially as a function of what they have already observed, and of where they originate). These

definitions, however, remain silent on the impact of conflicting write operations. Without systematic

coordination, geographically distinct replicas can issue conflicting operations, and the read-write and

write-write conflicts that can ultimately result from these operations may cause replicas’ states to

diverge.

66

Many prior systems have attempted to insulate applications from this complexity by relying on a

combination of two techniques: causal consistency [9, 26, 64, 119, 178, 186] to mitigate the effects

of read-write conflicts, and per-object eventual convergence [62, 118, 123, 124, 178, 187] to address

write-write conflicts. These systems strive to keep complexity in check by aggressively preserving

the familiar abstraction that an application’s state evolves through a linear sequence of updates. Any

perturbation to this abstraction is nipped in the bud, either within the storage layer—by enforcing

per-object convergence through simple deterministic resolution policies (i.e. taking a system-centric

view to merging)—or by asking the application to resolve the state of objects with conflicting updates

as soon as conflicts arise (i.e. taking an operational view to merging) [62, 91, 118, 187].

These techniques, however, are not sufficient to uphold the abstraction of sequential storage in

the presence of concurrent updates. Worse, causal order and per-object convergence provide no

support for meaningfully resolving conflicts between concurrent sequences of updates that involve

multiple objects: indeed, they often destroy information that could have helped the application

address these anomalies. For example, deterministic writer-wins, a common technique to achieve

convergence [118], hides write-skew from applications. Similarly, exposing multivalued objects

without context obscures cross-object semantic dependencies (§5.1).

Our secret sauce Anomalies like write-skew are intrinsic to ALPS applications. The issue is then

neither how to prevent them (one can’t), nor how to resolve them transparently (application-specific

knowledge is often indispensable): rather, it is how to provide ALPS applications with the best

possible system support when merging conflicting states. This thesis argues that geo-replicated storage

should eschew the system-centric and operational centric view of merging that hides distribution

from users. Instead, it should adopt a client, state-centric view of conflict resolution and let clients

drive the process. To this end, this thesis proposes a new storage system, TARDiS (Transactional

Asynchronously Replicated Divergent Storage). TARDiS deliberately abandons a strictly sequential

view of storage, and instead gives applications flexibility. If all is well, storage at each replica appears

sequential; when conflicts must be resolved, however, the intricate details of distribution become

available. As in Git [80], users operate on their own branch and explicitly request (when convenient)

to see concurrent modifications, using the history recorded by the underlying branching storage to

help them resolve conflicts. Unlike Git, however, branching in TARDiS does not rely on specific

67

user commands, but occurs implicitly, to preserve availability in the presence of conflicts, using

three core mechanisms: (i) branch-on-conflict, (ii) inter-branch isolation, and (iii) application-driven

cross-object merge.

1. Branch-on-conflict Branch-on-conflict lets TARDiS logically fork its state whenever it detects

conflicting operations, and store the conflicting branches explicitly.

2. Inter-branch isolation Inter-branch isolation guarantees that storage will appear as sequential

to any thread of execution that extends a branch, keeping application logic simple. This view

aligns with how the client perceives the system as evolving.

3. Application-driven cross-object merge Finally, TARDiS leaves the task of deciding if, when,

and how divergent branches should be merged to the application, rather than to the storage

layer, which is generally unsuited to leverage relevant semantic information.

The benefits At first glance, TARDiS’ design may appear counter-intuitive: isn’t a simpler abstraction,

such as sequential storage, easier to reason about? Our view is that abstractions should indeed be

made as simple as possible—but no simpler: a simplistic abstraction that overlooks critical context

can actually make reasoning harder. Through its richer interface, TARDiS gives applications access

to context that is essential to reasoning about concurrent updates, reducing the complexity of

programming ALPS applications and improving their performance. It does so via the following four

key properties.

• TARDiS knows history. Each TARDiS site stores a DAG that records all branches generated

during an execution, and uses a new algorithm, DAG compression, to track the minimal

information needed to support branch merges. This context, which traditional storage systems

hastily discard, can prove invaluable when programming ALPS applications (§5.6). We find,

for example, that using TARDiS rather than BerkeleyDB [144] to implement CRDTs [171]—a

library of scalable, weakly-consistent datatypes—cuts code size by half, improves performance

by four to eight times, and reduces development time by a factor of three.

• TARDiS merges branches, not objects. Prior systems that, like TARDiS, admit parallel

versions of the same object [8, 62, 124, 187] have systematically taken a strictly per-object

68

view of multiversions. With no support for enforcing the cross-object consistency demands

expressed in many application invariants, such systems make conflict resolution more difficult

and error prone. Instead, TARDiS merges branches. Conflict resolution is done at the granularity

of entire states, not individual objects. This is in line with the approach outlined in the prior

chapters: clients observe states, not objects. To efficiently construct and maintain branches,

TARDiS introduces the notion of conflict tracking. By summarizing branches as a set of

fork points and merge points, conflict tracking significantly reduces the metadata overhead

experienced by many systems that enforce causal consistency [24, 64].

• TARDiS is expressive. Despite exposing a different abstraction, TARDiS supports many

isolation levels (serializability, snapshot isolation, read-committed [31]) and consistency

guarantees (read-my-writes [185], causal consistency [9]). It does so with minimal changes to

applications’ code and with performance comparable to that of BerkeleyDB, a commercially

available Java database. TARDiS achieves this flexibility by reformulating isolation and

consistency requirements as a set of pre- and post- conditions, derived from the commit tests

defined in Chapter 3 and 4.

• TARDiS improves performance of the local site. A unique feature of TARDiS is that it

allows ALPS applications to apply weak-consistency principles end-to-end, by triggering

branch-on-conflict not only for operations issued by different sites, but also for locally conflict-

ing operations. This is inline with our initial observation: individual components of the system

do not need to enforce a guarantee stronger than what clients perceive. When so configured,

TARDiS handles local conflicts not through abort/rollback and locking, but by logically forking

the local datastore, which in our implementation is a very fast operation. Of course, this feature

is not beneficial to all applications, as producing a large number of additional branches may

increase merging complexity dramatically. However, we find that the ALPS applications that

TARDiS targets, where weak consistency and merging are first-order concerns, can leverage

this feature to increase their throughput significantly: applying this technique to Retwis [165],

a commonly used Twitter-like ALPS application [151, 165, 178, 200], yields a three-fold im-

provement in throughput with negligible increase in complexity. TARDiS enables this speedup

by extending the copy-on-write techniques present in multiversioned systems to support not

69

just stale snapshots, but also branches.

In summary, this chapter makes three contributions:

1. It highlights how conflicting writes can corrupt the full database state, not simply the individual

objects to which they are applied.

2. It identifies a new abstraction that is better suited to how clients perceive the diverging

executions that replicas in weakly storage systems execute.

3. It presents the design of TARDiS, an asynchronously replicated, multi-master, transactional

key-value store designed for applications built above weakly-consistent systems. TARDiS re-

nounces the one-size-fits-all abstraction of sequential storage and instead exposes applications,

when appropriate, to concurrency and distribution. This unconventional design is predicated

on a simple notion: to help developers resolve the anomalies that arise in such applications,

each replica should faithfully store the full context necessary to understand how the anomalies

arose in the first place, but only expose that context to applications when needed.

Roadmap This chapter is structured as follows: we first illustrate why isolating application from

conflict resolution is problematic (§5.1), and suggest alternative abstractions, better suited to large

scale distributed systems (§5.2). We then describe how developers can use TARDiS (§5.4) along with

the system’s architecture (§5.3) and design (§5.5). Finally, we report on performance and application

experiences (§5.6), summarize related work (§5.7), highlight limitations (§5.8), conclude (§5.9).1.

5.1 The gap between causality and reality

Chapter 2 illustrated the virtues of causal consistency by sketching out the dangers of causally related

writes arriving out of order at a replicated site (recall this dissertation’s author removing their advisor

from social media before attempting to cook pasta). ALPS applications, however, face another class

of anomalies—write-write-conflicts—that causal consistency cannot prevent, detect, or repair.

To illustrate, consider the process of updating a Wikipedia page consisting of multiple HTML objects
1This work revises the previously published paper: TARDiS: A branch-and-merge approach to weak consistency,

published at SIGMOD 2016. Youer Pu, Nancy Estrada and Trinabh Gupta contributed the evaluation of the paper as well
as general discussions on paper writing

70

Site A

Site B

Content

Refs

Image

Initial
State

(a)

Bruno
updates
content

Davide
reads

content and
updates
image

to match
content

Against Banditoni For Banditoni Neutral

Operations
from Site A
reach Site B

Operations
from Site B
reach Site A

(d)(c)

Alice
updates
content

Carlo reads
content and

updates
references
to match
content

(b)

Figure 5.1: Weakly-consistent Wikipedia

(Figure 5.1(a)). The page in our example, about a controversial politician, Mr. Banditoni, is frequently

modified, and is thus replicated on two sites, A and B. Assume, for simplicity, that the page consists

of just three objects—the content, references, and an image. Alice and Bruno, who respectively

strongly support and strongly oppose Mr. Banditoni, concurrently modify the content section of the

webpage on sites A and B to match their political views (Figure 5.1(b)). Carlo reads the content

section on site A, which now favors Mr. Banditoni, and updates the reference section accordingly

by adding links to articles that praise the politician. Similarly, Davide reads the update made by

Bruno on site B and chooses to strengthen the case made by the content section by updating the

image to a derogatory picture of Mr. Banditoni (Figure 5.1(c)). Eventually, the operations reach the

other site and, although nothing in the preceding sequence of events violates causal consistency,

produce the inconsistent state shown in Figure 5.1(d): a content section that exhibits a write-write

conflict; a reference section in favor of Mr. Banditoni; and an image that is against him. Worse, there

is no straightforward way for the application to detect the full extent of the inconsistency: unlike

the explicit conflict in the content sections, the discrepancy between image and references is purely

semantic, and would not trigger an automatic resolution procedure.

To the best of our knowledge, this scenario presents an open challenge to existing weakly-consistent

systems, which exhibit at least one of the following two properties:

71

(i) Syntactic conflict resolution. To maintain the abstraction of sequential storage, many systems use

fixed, syntactic resolution policies to reconcile write-write conflicts [118]. Deterministic writer-wins

(DWW), for example, resolves write-write conflicts identically at all sites, ensuring that applications

never see conflicting writes and guaranteeing eventual convergence. In our example, this policy

would choose Bruno’s update. However, this is not sufficient to restore consistency, as it ignores the

relationship between the content, references, and images of the webpage. The datastore’s greedy

attempt at syntactic conflict resolution is not only inadequate to bridge this semantic gap, but leads to

losing valuable information (here, Alice’s update).

(ii) Lack of cross-object semantics. Some systems choose to push conflict resolution to the applica-

tion [62, 187], but on a per-object basis only. Though more flexible than a purely syntactic solution,

this approach, which reduces conflict resolution to the merging of explicitly conflicting writes, is still

overly narrow. For example, it would not address the inconsistencies, such as the one between the

references and the image, that do not produce a write-write conflict. Yet, the effects of a write-write

conflict on an object do not end with that object: Carlo and Davide update references and images

as they do because they have read the conflicting updates to the original content section. Indeed,

any operation that depends on one of two conflicting updates is potentially incompatible with all

the operations that depend on the other: the shockwaves from even a single write-write conflict may

spread to affect the state of the entire database.

There is currently no straightforward way for applications to resolve consistently the kind of multi-

object, indirect conflicts that our example illustrates. Transactions [118, 119], an obvious candidate,

are powerless when the objects that directly or indirectly reflect a write-write conflict are updated,

as in our example, by different users. After Bruno’s update, the application has no way to know

that Davide’s update is forthcoming: it must therefore commit Bruno’s transaction, forcing Bruno’s

and Davide’s updates into separate transactions. Nor would it help to change the granularity of the

object that defines the write-write conflict—in our example, by making that object be the entire

page. It would be easy to correspondingly scale up the example, using distinct pages that link each

other. Short of treating the entire database as the “object”, it is futile to try to define away these

inconsistencies by redrawing the objects’ semantic boundaries.

72

5.2 Bridging the gap: branches

TARDiS’ design is motivated by the belief that isolating ALPS applications from the harsh but

inescapable reality of independent conflicting writes, and from the resolution process that they

require, is a well-intentioned fallacy. This fallacy is driven both by looking at consistency in a

bottom-up fashion, starting from the system that implements these guarantees, and by viewing objects

as the unit of conflict resolution. This dissertation instead argues that one should look at consistency

in a top-down fashion, starting from the clients that perceive these guarantees, and should consider

states as the unit of conflict resolution. TARDiS thus embraces transparency. By default, applications

execute on a branch, and hence perceive storage as sequential. But when anomalies arise, TARDiS

provides two novel features that simplify reconciliation.

First, it exposes applications to the resulting independent branches, and to the states at which the

branches are created (fork points) and merged (merge points). Second, it supports atomic merging of

conflicting branches and lets applications choose when and how to reconcile them (§5.2.1). These

features allow TARDiS to offer ALPS applications the opportunity to pursue, down to each site’s

local datastore, an intriguing notion: that of turning weak consistency, through a bit of system-design

judo, from a weakness to an unlikely strength (§5.2.2).

5.2.1 State branching and merging

As the discussion in Section 5.1 has illustrated, even a single write-write conflict has the potential

to affect the entire state of a database. In essence, conflicting operations fork the entire state of the

system, creating distinct branches, each tracking the linear evolution of the datastore according to a

separate thread of execution. The Wikipedia example hence consists of two branches: one in support

of Banditoni, and one against him. Elevating branches to the datastore’s fundamental abstraction has

two complementary advantages. First, users that operate within a given thread of execution continue

to perceive the application’s state as evolving linearly. Second, when it becomes necessary to alert

users to the existence of concurrent updates that conflict with that linear view, branches are the

natural unit of merging.

Resolving conflicts in ALPS applications often requires semantic context. Replicas, however, only

73

see a sequence of read/write operations and are unaware of the application-level logic and invariants

that relate these operations [11]. Therefore, they should avoid deterministic quick fixes, and instead

give applications the information they need to decide what is best. Branches, together with their

fork and merge points, naturally encapsulate such information: they make it easy to identify all the

objects to be considered during merging and pinpoint when and how the conflict developed. This

context can reduce the complexity and improve the efficiency of automated merging procedures, as

well as help system administrators when user involvement is required. In our example, a Wikipedia

moderator presented with the two conflicting branches would be able to reconstruct the events that

led to them and handle the conflicting sources according to Wikipedia’s guidelines [197]. Note that

merging need not simply involve deleting one branch. Indeed, branching and merging states enables

merging strategies with richer semantics than aborts or rollbacks [178].

5.2.2 Weak consistency end-to-end

Write-write conflicts in distributed systems are not restricted to remote sites: conflicting operations

can also happen locally. Unlike remote conflicts, however, they are immediately detectable, and

hence they are typically handled by the datastore through locking or rollback. When considering the

specific nature of ALPS applications, however, two observations bring this common-sense approach

into question. First, desirable as it may be, the abstraction of a sequential store cannot be preserved

end-to-end: at the distributed system level, it falls apart. Second, the design complexity of having to

program against the possibility of remote conflicts is already factored into ALPS applications, whose

semantics often support simple merging procedures.

These observations lead us to explore an unconventional proposition: design and implement a

datastore for ALPS applications with branching as its fundamental abstraction, used to model

conflicts end-to-end, from the level of the distributed system down to that of local storage. This stance

does not simply have an aesthetic appeal: eliminating locks and rollbacks from the performance

critical path offers the potential, through a lightweight implementation of branching, to improve

throughput at local sites.

Accordingly, TARDiS gives ALPS applications the option of handling local conflicts through branch-

on conflict, rather than syncronization. Naturally, one must tread carefully: out-of-control branching

74

can turn reasoning about the state of the system into a nightmare. TARDiS thus lets applications

tune the degree of local branching allowed, so they can strike the balance between performance and

complexity that best meets their requirements.

5.2.3 System Goals

The challenge is then to develop a datastore that can keep track of independent execution branches,

record fork and merge points, facilitate reasoning about branches and, as appropriate, atomically

merge them—while keeping performance and resource overheads comparable to those of weakly-

consistent systems. Such a system should satisfy the following three requirements:

• Simple interface The datastore should expose an interface that allows developers to navigate

and manipulate branches; that interface should minimize any increase in complexity and need

to modify legacy code.

• Good Performance The datastore should efficiently create, track, and merge branches; its

performance should match or surpass that of a storage system that is strictly sequential and

does not keep track of history.

• Minimal Space Overhead The datastore should have a reasonable memory footprint and

manage efficiently the space overhead associated with keeping multiple executions and their

fork points.

The rest of this chapter presents the design of TARDiS, focusing on how it satisfies these three

requirements.

5.3 TARDiS Architecture

The TARDiS transactional key-value store tracks conflicting execution branches using three mech-

anisms: branch-on-conflict, inter-branch isolation, and application-specific merge. TARDiS uses

multi-master asynchronous replication: transactions first execute locally at a specific site, and are

then asynchronously propagated to all other replicas. Each replica consists of four components: a

storage layer, a consistency layer, a garbage collector unit, and a replicator service (Figure 5.2).

75

Constraint B E Description
Any

√ √
Always Satisfies

Serializability
√

Guarantees Serializability
Snapshot Iso

√
Guarantees Snapshot Isolation

Read Committed
√

Guarantees Read Committed
No Branching

√
State has no children

K-Branching
√

State has fewer than k-1 children
Parent

√
State where client last committed

Ancestor
√

Child of client’s last committed state
State Identifier

√
State ID matches the specified ID

Table 5.1: Begin (B) and end (E) constraints supported by TARDiS

Clients

Clients

Clients

Mapping

Mapping

Consistency Layer Storage Layer

Executing
New

Transaction

Replicator
Service

 Garbage Collector Unit

Record Pruning UnitDAG Compression
Unit

Replicate
Transaction

A 9,4,1
B 12,8,4
C 3,1

A-1 A-4 A-9

B-4 B-8 B-12

C-1 C-3

Records

Key-Version
Mapping

State DAG

Figure 5.2: TARDiS architecture

The storage layer stores records in a disk-backed B-Tree. Currently, every site stores a full copy of

the database, though TARDiS can be extended to support data partitioning (§5.5.4). TARDiS is a

multiversioned system: every update operation creates a new record version. The mapping between

versions and keys is stored in an in-memory cache for fast traversal.

The consistency layer tracks branches with the help of a directed acyclic graph, whose vertices

correspond to logical states of the datastore: each transaction that updates a record generates a new

state. TARDiS’ logic is geared towards efficiently mapping the consistency layer to the storage layer:

when a transaction creates a new state, it extends the State DAG by appending the state to its chosen

branch of execution. Any newly created record version is marked by this state’s identifier. When a

transaction executes a get operation, it uses information contained in the State DAG to determine

which object versions are visible to its branch.

76

S M return type method√
transaction begin(beginConstraint)√
transaction beginMerge(beginConstraint)√ √

void put(key, value)√
value get(key)√
value getForID(key, StateID[])√
key[] findConflictWrites(StateID[])√

forkPoints[] findForkPoints(StateID[])√ √
abort|commit commit(endConstraint)

Table 5.2: TARDiS API - S:single mode, M:merge mode

TARDiS’ garbage collector unit comprises a DAG compression submodule and a record pruning

submodule. DAG compression periodically discards intermediate states that are no longer needed,

and record pruning then removes the associated object versions. Garbage collection allows TARDiS’

to maintain memory and storage overheads that are comparable to traditional weakly-consistent

systems that do not track history.

Finally, the replicator service propagates committed transactions and applies remote transactions as

appropriate.

5.4 Using TARDiS

To help weakly-consistent applications deal with the complexity of resolving the conflicts they en-

counter, TARDiS’ API (Table 5.2) addresses three competing concerns: (i) minimizing programming

complexity, (ii) simplifying reasoning about concurrent branches, and (iii) controlling the degree of

local branching.

5.4.1 Interface

To ease programming, TARDiS can operate in either single mode or merge mode. In the default

single mode, the programmer is allowed to (transactionally) read from and write to a single branch.

Programming proceeds exactly as in traditional transactional systems, except that programmers must

now select a branch to operate on. Thus, porting an application to TARDiS requires only adding a

branch-selection call. Figure 5.3 illustrates this point by sketching the implementation of a simple

77

counter. The two single mode operators, increment and decrement, now take as parameters

predicates that specify the properties of the desired branch (more on these predicates below), but

these operators are otherwise implemented exactly as one would on sequential storage.

In merge mode, programmers can instead explicitly reconcile conflicting branches via merge trans-

actions, that read from multiple states and write back to a single, merged state. TARDiS’ merge

mode allows users to perform cross-object resolution atomically: this simplifies conflict resolution

significantly, much like transactions simplify application logic by allowing users to modify multiple

objects atomically.

When reconciling branches, applications will typically (i) detect conflicting objects; (ii) identify

where branches forked; and (iii) determine the values of conflicting keys at this fork point (§5.2). To

help applications obtain the information that they need for merging, TARDiS adds three new API calls:

findConflictWrites, findForkPoints, and getForID. findConflictWrites re-

turns the list of objects with conflicting values across all selected branches, freeing programmers

from the need to implement application-level mechanisms for tracking what has to be resolved.

findForkPoints returns, for a given set of states, the structured set of fork points that reveals

the branching structure of the corresponding State DAG. For simplicity of exposition, we restrict

ourselves to the case where findForkPoints returns a single fork point. Finally, getForID

allows the application to request any object version, freeing application programmers from the need to

track how the datastore evolves. We expect applications to call this function primarily to obtain object

values at the fork point(s), and to use this information to resolve conflicts in an application-specific

way before writing the merged value back. Though TARDiS supports concurrent merges for full

flexibility, we expect that, for simplicity, most applications will restrict merging to a single site.

TARDiS helps applications reason about concurrent execution branches and control the degree of

local branching through begin and end constraints—predicates associated with begin and commit

commands that specify which branch a transaction can execute from. Intuitively, begin constraints

select what states the transaction can read, while end constraints specify what conditions must

hold upon commit. TARDiS supports the constraints listed in Table 5.1: along with their union and

intersection, they are sufficiently flexible to express traditional database isolation levels, such as

78

1 func increment(counter)
2 Tx t = begin(AncestorConstraint)
3 int value = t.get(counter)
4 t.put(counter, value + 1)
5 t.commit(SerializabilityConstraint)

7 func decrement(counter)
8 Tx t = begin(AncestorConstraint)
9 int value = t.get(counter)

10 t.put(counter, value - 1)
11 t.commit(SerializabilityConstraint)

13 func merge()
14 Tx t = beginMerge(AnyConstraint)
15 forkPoint forkPt =
16 t.findForkPoints(t.parents).first
17 int forkVal = t.getForID(counter,forkPt)
18 list<int> currentVals =
19 t.getForID(counter, t.parents)
20 int result = forkVal
21 foreach c in currentVals
22 result += (c - forkVal)
23 t.put(counter,result)
24 t.commit(SerializabilityConstraint)

Figure 5.3: TARDiS’ counter implementation

serializability and snapshot isolation [31], as well as distributed-system guarantees such as read-my-

writes [185]. For example, an application could use the Ancestor begin constraint and the union of the

Serializability and No Branching end constraint to mimic the local behavior of a traditional sequential

storage and achieve causal consistency globally. Similarly, applications using the Ancestor begin

constraint and the Snapshot Isolation end constraint would always see their own writes and maintain

snapshot isolation within a branch. Alternatively, the K-Branching constraint explicitly bounds the

degree of branching in the system, giving developers the ability to balance the performance benefit

of allowing local branching with the degree of divergence that this entails.

By default, TARDiS uses the Ancestor begin constraint and Serializability end constraint. Though

some applications may benefit from multiple consistency levels [186], in most cases this default will

let programmers write almost unmodified code, without explicitly specifying constraints.

5.4.2 Coding with TARDiS

TARDiS’ greater fidelity in capturing the context that leads to conflicting operations is key to reducing

the complexity of developing ALPS applications and improving their performance. This feature

79

is evident even in simple programs, such as the counter presented in Figure 5.3. In a traditional,

non-branching causally consistent system, counters are often implemented as two separate vector

clocks (one for increment operations, the other for decrement operations) with an entry for each

replica [171]. Reading the value of a counter requires adding the values in the increment vector and

substracting those in the decrement vector. Similarly, applying a remote operation requires merging

the local increment and decrement vectors with those of the incoming remote operation by taking

the maximum of each corresponding vector element. Thus, all operations, including non-conflicting

reads, in effect involve a merge: the system must reconstruct the global view from each replica’s

local view, at a cost linear in the number of replicas.

In TARDiS, instead, single mode and merge mode are cleanly separated. In single mode (see

Figure 5.3), increment and decrement operations access a single field, just as they would in a non-

distributed scenario. Access to fork points makes merge operations both simpler and more flexible.

In TARDiS, merging distinct counter branches is easy: one can simply compute the merged value by

summing, for all branches, the difference between the value of the counter at the fork point and the

current value for the branch. The application can then choose to merge branches periodically, during

periods of low load, or to do so more frequently, if the counter nears boundary values.

The benefits of the TARDiS API become especially notable in examples that involve multiple objects

with richer semantics. Consider the case of an online game store that sells both board games and

extension packs that are only playable after buying the corresponding board game. The store tracks

inventory by keeping a counter object per each item it sells, and associates each customer with

a shopping cart. Suppose Alice and Bruno have, on different sites, both bought the last copy of

a boardgame. Bruno has additionally bought an extension pack. Figure 5.4 gives the simplified

pseudocode of the merging process.2 On a merge, the application iterates over the keys in conflict

and detects which items have been bought on different sites (lines 19-44), reconciling counter values

through the merging process discussed above (lines 22-24). When the counter for a particular item

falls below zero, as in our scenario, the merging logic must select the shopping cart from which

the oversold items should be removed, while maintaining the invariant that no user should buy the

extension pack without the game. The application has several options: it can choose, as does the
2For clarity of explanation, we assume two branches only.

80

1 func buy(customer, item, cart)
2 Tx t = client.begin(AncestorConstraint)
3 list<itemId> items = t.get(cart.items)
4 items += item.itemId
5 t.put(cart.items, items)
6 int stock = t.get(item.stock)
7 t.put(item.stock, stock-1)
8 list<cartId> carts = t.get(item.carts)
9 carts += cartId

10 t.put(item.carts, carts)
11 t.commit(SerializabilityConstraint)

13 func merge()
14 Tx t = client.beginMerge(AnyConstraint)
15 list<item> conflictItems =
16 t.findConflictWrites(t.parents)
17 forkPoint forkP =
18 t.findForkPoints(t.parents).first
19 foreach item in conflictItems
20 list<int> stockVals = new list
21 int forkPtStock = t.getForID(item.stock,forkP)
22 foreach branch in t.parents:
23 stockVals.add(t.getForID(item.stock,branch))
24 int newStock = mergeCounter(stockVals, forkPtStock)
25 if(newStock > 0)
26 t.put(item.stock,newStock)
27 confirmItem(item.itemId, item.carts)
28 else
29 // get orders since fork point
30 set<cartId> carts = new set
31 foreach branch in t.parents:
32 carts+= t.get(item.carts)
33 carts = carts - t.getForID(item.carts,forkP)
34 carts.sortBy(valueOfCart)
35 foreach cart in carts
36 if (forkPtStock > 0)
37 // confirm item until run out
38 --forkPtStock
39 confirmItem(item.itemId, cart.cartId)
40 else
41 // apologize to other users
42 removeRelatedItems(item,cart)
43 sendApology(cart.clientId)
44 t.put(item.stock,0)
45 t.commit(SerializabilityConstraint)

Figure 5.4: TARDiS’ shopping cart implementation

81

pseudocode in Figure 5.4 (lines 30-44), to leave Bruno with both the game and the expansion pack,

and send an apology to Alice, maximizing its overall profit. Alternatively, it can observe that Alice is

a better customer than Bruno, and choose to privilege customer loyalty.

In current systems, merging that spans conflicts across multiple objects and requires application

involvement is not achievable without significant engineering effort. Through the combination of

branch-on-conflict, inter-branch isolation, and application-specific merge, TARDiS makes it easy for

applications to acquire the context that led to such conflicts and empowers them with the flexibility

and expressiveness necessary to meaningfully reconcile them.

5.5 Design and Implementation

To ensure that branches are cheaply created, maintained, and merged, TARDiS proceeds as follows.

A transaction starts by identifying a most recent state that satisfies its begin constraint: this is the state

from which the transaction can read (its read state). Likewise, upon commit, the transaction identifies

a most recent state since its read state that satisfies the end constraint (the commit state). Since this

process is identical for all transactions and independent of concurrently executing transactions, it

naturally leads to state forking and to transactions aborting. If two concurrent transactions select

the same state from which to commit, a new branch is created; alternatively, if no state satisfies a

transaction’s end constraint, the transaction aborts. There is thus no conceptual difference between

sequential execution and forking, and TARDiS’ design ensures that the implementation is similarly

uniform. We describe this process in further detail below, focusing on the life of a particular

transaction and relying on Figure 5.5 to illustrate the TARDiS’ main datastructures.

5.5.1 Basic Operation

Begin Transaction: Read State Selection A TARDiS transaction begins by selecting a branch. To

choose one among the most recent suitable states, the transaction conducts a breadth-first search

through the State DAG from its leaves up, looking for a state that satisfies the transaction’s begin

constraint. For example, given the State DAG in Figure 5.6(a), a newly executing transaction (t13)

would visit, in order, s8, s7, and s4 and select the latter—the first state to satisfy the transaction’s

begin constraint—as its read state. Some constraints may require states to store additional information

82

V 6

s1

s4

s5

s2

s6

s9s8 s7

s3

State 2:

V 1

V 1 V 3 V 8

V 1 V 4

V 9

V 5 V 9

A

B

C

D

V 0

s0

State 3:
State 4:
State 1:

State 6:
State 7: State 8:

State 5:
State 9:

Fork Paths

State
DAG

Record B-Tree

A 2,1,0

B 8,3,1

D 9

Key-Version
Mapping C 9,6,5,4,1

{(1,1)}

{(1,2)}

{(1,1)(3,2)}

{(1,1)}

{(1,2)(4,2)}{(1,2)(4,1)}

{(1,1)(3,1)} {(1,2)(4,1)(4,2)}

t10 t11 t12

V 2

Figure 5.5: Main system datastructures

beyond pointers to their parents or children: the Parent and StateID constraints, for example, require

all states in the DAG to be uniquely identifiable. Similarly, the Serializability and Snapshot Isolation

(end) constraints demand to store, with each state, the read and write sets of the transaction responsible

for creating it. In practice, there is often a unique state that satisfies the begin constraint; if instead

multiple states are suitable, TARDiS simply selects one of them at random.

Commit Transaction: Commit State Selection The process for committing a transaction is similar:

it requires identifying the most recent state, since the read state, that satisfies the end constraint. At

commit, the transaction first checks whether its read state satisfies the end constraint. If it does not,

the transaction aborts, as it read from an invalid state. Otherwise, the transaction checks whether

more recent states also satisfy the end constraint. In effect, starting from its read state, the transaction

“ripples” down the DAG, stopping before the first state that no longer satisfies the end constraint.

Figure 5.6(b) illustrates the process. Transaction t13 first checks that the read state s4 satisfies the

end constraint, and then ripples down through states s6 and s11 until it encounters s12. As s12 does

not satisfy t13’s end constraint, t13 commits after s11, creating a new branch (Figure 5.6(c)).

Reading records Logically, non-read-only transactions create a new database state every time they

83

s1

s4s2

s8 s7

s3

s1

s5

s2

s6

s9s8 s7

s3

s11

s4

s12

s1

s5

s2

s6

s9s8 s7

s3

s11

s4

s12

 a) Begin: Select read state b) Commit: Select commit state c) Commit: Final commit state chosen

Concurrently
Executing

Transactions

Begin & end
constraint unsatisfied

Begin & end
constraint satisfied

Final Committed State

Selected read state

t13

Candidate commit state

t13

Figure 5.6: Transaction commit logic

execute. Storing each of these states as physically distinct instances is unsustainable. Write operations

therefore simply create new record versions, and TARDiS relies on system logic to reconstruct the

appropriate state for reads. This copy-on-write approach is similar to that of most multiversioned

concurrency control (MVCC) systems [32], but with one key difference: TARDiS must not only

provide support for stale snapshots, but also for divergent snapshots. As in traditional MVCC systems,

to read a record a transaction must determine the most recent record version in the key-version map.

Unlike MVCC systems, however, TARDiS must also ensure that the record version belongs to the

branch it has selected. The selected version is then read from the record B-tree and returned.

To quickly determine whether a record version belongs to the selected branch, TARDiS abandons

traditional dependency checking [64, 118, 124], which quickly becomes a bottleneck in causally

consistent systems [24, 64], and instead relies on fork point checking. In TARDiS, a branch is

summarized only by its fork points (§3). A fork point is a tuple (i, b), indicating that the current state

is a descendant of the bth child of state i. Together, the set of fork points for a branch denotes its

fork path. A record version belongs to the selected branch if the fork path of the state associated

with this record version is a subset of the fork path of the transaction’s read state (see pseudocode in

84

1 descendantCheck(x, y):
2 if x.id = y.id then return true
3 else if x.id > y.id then return false
4 else if x.path 6⊆ y.path then return false
5 else return true

Figure 5.7: Check if state y can see records associated with state x

Figure 5.7). Figure 5.5 shows the fork path associated with each state: one can quickly determine

that s7 is on the same branch as s3, as the fork path of s3 is a subset of that of s7. Similarly, s9 is on

the same branch as both s5 and s6.

By capturing conflicts (fork points) instead of dependencies, fork paths allow TARDiS to track

concurrent branches efficiently. The small size of fork paths (conflicts are a small percentage of the

total number of operations) not only limits memory overhead, but makes it possible to check quickly

whether two states are on the same branch.

To guarantee that transactions select the most recent version, TARDiS keeps a topological sort of

versions in each key-version mapping entry. Consider, for example, key C in Figure 5.5. The list

stored in the key-version mapping is a topological order of the true structure of C’s record versions,

as saved in the record B-tree. As transactions iterate through the list, the first record version identified

as belonging to the selected branch will necessarily be that branch’s most recent version.

Putting this together, consider Figure 5.5. It shows three transactions t10, t11, and t12, with respective

read states s8, s7, and s9. t10 would read v2 for key A, v8 for B, v1 for C, and empty for D. Similarly,

t11 would read v2, v3, v1, and empty respectively for keys A to D. Finally, t12 would read v1, v1, v9,

and v9.

Writing values To handle uniformly branching and non-branching scenarios, TARDiS’s write logic

ensures (i) that writes, whether conflicting or not, never block, and (ii) that updating the appropriate

record on the correct branch is cheap.

Both aims can be very simply achieved by pushing most of the work to reads. As long as writes

preserve the topological order of versions in the key-version mapping, the read logic ensures that the

appropriate version is returned. Hence, a write operation in TARDiS simply creates a new record

version storing the transaction’s state identifier and the pertinent data, inserts it into the record B-tree,

85

and appropriately updates the corresponding key-version mapping. Since state identifiers (and thus

record identifiers) are monotonically increasing along a branch, TARDiS can cheaply maintain a

topological order as a sorted list (more precisely, as a lock-free skip list). Thus, independently of

whether conflicting writes occurred, all a transaction needs to do to complete a write is to insert the

new version into the skip list.

Read-only Transactions Since read-only transactions cannot induce conflicts, TARDiS does not

add them to the State DAG. This optimization limits unnecessary DAG growth, easing pressure on

the garbage collector.

5.5.2 Merge Transactions

Merge transactions in TARDiS function similarly to single mode, but with a key difference: they

select multiple read states, and hence operate on multiple branches. In merge mode, the application

is thus directly exposed to any conflicting writes that forked the state of the datastore.

Merge transactions must atomically reconcile all conflicting objects, writing back a single merged

state. As stated previously (§5.2), merging often requires providing the application with detailed

information about the structure of the State DAG, including how branches diverged and the values of

conflicting objects at the branches’ fork points. This information must be made available efficiently,

as a slow merge will stop applications from seeing up-to-date values. TARDiS thus provides an API to

aid applications understand branch divergence. It consists of three operations: findForkPoints,

to identify the fork point(s) of a set of branches; findConflictWrites, to list conflicting keys

across branches; and getForID, to obtain, at the specified state, the record corresponding to a given

key. TARDiS leverages the properties of the existing storage and consistency layers to make these

operations fast. It implements findForkPoints by identifying the fork point(s) of the merge

transaction’s read states. For findConflictWrites, TARDiS similarly identifies the fork points

of the branches and computes the conflicting key list from the write set of each intermediate state.

Finally, for getForID, it uses the key-version mapping to select the appropriate record for a given

state.

86

s1

s2

s3 s5s4

s6

s7

s8 s9

s10

s11

(13,14)

s2

(13,14)

s1

s4

s6

s7

s10

s8 s9

s3 s5

s11

s2

(13,14)

s1

s4

s6

s7

s10

s8 s9

s3 s5

s11

s2

(13,14)

s1

s4

s6

s7

s10

s8 s9

s3 s5

s11

s9

s5

s2

(13,14)

s7

s10

s9

s11

(13,14,)

s7

s10

s9

s11

 Ceiling

 Gc-able

 Safe-to-gc

(13,14,15)

Read State Set

 Marked

Promote(1)= 2
Promote(3)=7
Promote(4)=7
Promote(5)=7
Promote(6)=7
Promote(8)=10

Promote(2)=7

a) b) c) d)

e)

f)

Figure 5.8: Path Compression Algorithm - Ceiling placed above s11. s8 and ancestors are marked as safe-to-gc;
since s10 is the read state for several pending transactions, it cannot be marked as safe-to-gc. Non fork points
safe-to-gc states are marked as gc-able and deleted.

5.5.3 Garbage Collection

Most traditional databases store only the active frontier of records, keeping space overhead manage-

able as old transactions commit. TARDiS, on the contrary, stores by default all stale and parallel

versions or states. For performance and efficiency under finite storage, TARDiS implements an

aggressive, three-pronged garbage collection policy that runs concurrently with regular operations:

(i) users place ceilings on specific states, promising never to use any state that precedes them as a

read state; (ii) a path-compression algorithm compresses the State DAG to remove all states that are

neither fork points nor leaf states; and (iii) a record-promotion algorithm removes record versions

that are no longer visible because of ceilings or path compression.

Path Compression Path compression relies on one core heuristic: since most merging policies only

require the fork points and the leaf states of a given execution, all intermediate states can be safely

removed from the State DAG. In effect, this reduces the DAG to explicitly tracking the nearest

conflict dependency using a three-staged process (Figure 5.8).

First, a ceiling marking bottom-up pass marks all the states above a recently placed ceiling. Marked

states can no longer be selected as read states, ensuring that no new transaction starts above a ceiling

(Figure 5.8(b)). Second, a safe to garbage-collect top-down pass labels as safe-to-gc all marked

states (i) that are not currently selected as read states by some executing transaction and (ii) whose

87

ancestors are also safe to garbage collect. This pass prevents committing transactions from rippling

down deleted states and ensures that a state will only be deleted after all its ancestors have been

deleted (Figure 5.8(c)). Finally, a garbage collecting pass marks safe-to-gc states that are not fork

points as garbage collectable (gc-able). Garbage-collectable states are then “promoted” by mapping

their state identifier to that of their most recent non-deleted child. All accesses looking up a deleted

state are henceforth forwarded to the promoted state. In effect, the child node takes over the identity

of its parent as well as its own, allowing for the parent to be garbage collected (Figure 5.8(d.e.f)).

Consider in Figure 5.8 an object D that is last modified in s1. Its state identifier is therefore 1. All

transactions whose read states are a descendant of s1 see D. But, when s1 is garbage collected, any

transaction that tries to read D and thus looks up the fork path of s1 would fail. Promoting s1 to s7

ensures that any such transaction is redirected to s7. Once promoted, garbage collectable states can

safely be removed.

Record Promotion Next, TARDiS deletes record versions that are no longer needed. Record versions

associated with previously deleted states are promoted to their first non-garbage-collected descendants

and updated to reflect their new identifier. This promotion creates long chains of records with the

same state identifier. Since TARDiS’ get/put algorithm returns only the most recent visible record,

none but the first of the promoted records that share an identifier will ever be accessed: the rest can

therefore be safely discarded. A full record-promotion pass, as in path compression, hence ensures

that the only record versions maintained are those that are either current or at a fork point.

5.5.4 Replication

The Replicator (§5.3) uses a gossip protocol [2] to asynchronously propagate locally executing

transactions. These transactions carry a StateID constraint that specifies the state to which they

should be applied. The Replicator applies a newly received transaction if the required parent state

is present. If not, the transaction is cached to be appended later. The StateID constraint removes

the need to track expensive dependency meta-data: it reduces dependency checking to looking up

whether the state with the corresponding id is present in the remote DAG, which can be done in

constant time.

Garbage collection is triggered by each local Replicator and can operate either optimistically or

88

pessimistically. When pessimistic, TARDiS garbage collects states only after receiving unanimous

consent from all Replicators [124]. As this can cause garbage collection to trail significantly during

partitions, optimistic mode lets sites garbage collect states independently. If a replica later needs a

state it garbage-collected, the replica simply retrieves the missing information from the appropriate

replica. This may cause some transactions to block. If an application erroneously places a ceiling

that causes states to be prematurely garbage collected, TARDiS simply aborts the transactions that

try accessing the missing states.

The current prototype of TARDiS does not support data partitioning, but it can be extended to support

this feature by using an approach similar to the one taken by COPS [118]—in essence, by executing

distributed transactions within a datacenter (with the State DAG collocated with the transaction

manager) and replicating transactions asynchronously across datacenters.

5.5.5 Fault Tolerance and Recovery

TARDiS guarantees consistency, atomicity, and (optionally) durability if, at all times, the write

operations of all transactions present in the State DAG are observable by future transactions. TARDiS

maintains this invariant across failures by logging, at transaction commit time, the id of the corre-

sponding commit state, its parent state(s) ids, and the transaction’s write set keys.

Recovery During recovery, TARDiS reconstructs the State DAG and key-version mapping by

iterating chronologically over the log. For each log entry, the recovery process (i) inserts a new

state in the DAG with matching id and adds it as a child of the states with matching parent ids; and

(ii) adds a new entry in the key-version mapping for each key in the recorded write set. Iterating

over the log chronologically guarantees that no child is recovered before its parents; the skip-list

implementation of the key-version mapping guarantees that the order of entries in the key-version

mapping is preserved across failures.

Asynchrous Flush To mitigate the overheads of writing to disk, TARDiS offers the option of

asynchronously flushing both record updates and the commit log (at the cost of durability). To

preserve atomicity, TARDiS ensures that the commit log is flushed sequentially and further checks,

on recovery, whether each entry in the write set has been made persistent to stable storage. If only part

89

of a transaction’s effect has been made persistent, the corresponding state and all subsequent states

are discarded. Orphaned records (resulting from operations that belong to, or depend on, partially

applied transactions) have no effect on correctness, as it is the DAG and key-version mapping that

determine what can be read. These records are simply eventually garbage collected.

Checkpointing To reduce log size, TARDiS periodically takes non-blocking checkpoints by (i) se-

lecting a state id sc, (ii) flushing all outstanding writes, and (iii) saving every DAG state with id

smaller than sc.

Replication To recover transactions that have committed elsewhere but are lost locally, the recovery

process broadcasts a vector with the id of the latest surving state received from each Replicator.

Replicas respond by sending states and records more recent than their corresponding entry in the

vector. If these states have already been garbage collected, it may be necessary to send the full DAG.

5.5.6 Implementation notes

Our prototype consists of 15K lines of Java in two configurations. In TARDiS-BDB, record persis-

tence to disk is via BerkeleyDB with concurrency control turned off, while TARDiS-MDB depends

on MapDB [125]. We rely on Google Protobuffers v2.4.5 for message serialization and on the Netty

networking library for inter-site communication.

5.6 Evaluation

TARDiS proposes branching as the fundamental abstraction to model conflicts end-to-end. To quan-

tify the cost and benefits of this new abstraction with respect to both performance and complexity,

we first benchmark the performance of the system itself. We then use the abstraction to program two

representative ALPS applications: CRDTs [171], a library of scalable, weakly consistent datatypes

(counters, sets, maps, and more); and Retwis [165], a Twitter clone. We find that using state branch-

ing/merging cuts the number of lines of code in half, while judicious branch-on-conflict yields a

speedup of between two and eight times.

90

5.6.1 Microbenchmarks

Our microbenchmarks answer the following questions:

1. What impact has expressiveness on performance?

2. What are the overheads of tracking state?

3. When does local branching improve performance?

4. What impact has expressiveness on performance?

Evaluation Setup Unless otherwise stated, we run our experiments on a shared local cluster of

machines equipped with a 2.67GHz Intel Xeon CPU X5650 with 48GB of memory and connected

by a 2Gbps network. Inter-machine ping latencies average 0.15 ms. Each experiment is run with

three dedicated server machines, three dedicated Replicators and with clients spread equally among

separate machines. To the best of our ability, all runs were performed in the absence of interfering

workloads.

We compare TARDiS with both BerkeleyDB v6.2.31 Java Edition (BDB) and a custom OCC

implementation (OCC) that uses BDB as its backend. BerkeleyDB, as a widely-used, pure-Java

ACID datastore, provides a sound basis for comparison against our TARDiS prototype. We configure

BerkeleyDB so that (i) read-write transactions are flushed to disk asynchronously; and (ii) all requests

hit the cache. Our OCC implementation is based on a modified version of Kung et al.’s algorithm [107]

that does not require read-write transactions to be verified against read-only transactions.

Each client issues transactions consisting of six operations in a closed loop, running for two minutes.

We use a set of clients large enough to saturate the system. Read-only transactions contain only

reads; read-write transactions contain three reads and three writes. We consider four transaction

mixes differentiated by the ratio of read-only transactions to read-write transactions: Read-only (R-O,

100/0), Read-heavy (R-H, 75/25), Mixed (M, 25/75), and Write-Heavy (W-H, 0/100). We report

only on the read-heavy and write-heavy workloads. We further consider two access patterns from

the YCSB benchmark [55]: uniform and Zipfian (p=0.99). We report on TARDiS-BDB only: the

performance of TARDiS-MDB is similar (approximately 10% better).

91

Baseline TARDiS performance We begin by establishing a baseline for the performance of TARDiS:

we want to determine how it compares, when local branch-on-conflict is not enabled, against both our

simple implementation of OCC and a commercial system like BDB. Transactions use Ancestor as

begin constraint and the union of Serializability and No Branching as end constraint. We expect this

setup to be common: it guarantees that each application sees its own writes and that the execution is

serializable.

The throughput-latency graph in Figures 5.9 and 5.10 shows that, despite tracking the full system’s

history and paying the overhead of selecting a read and commit state, TARDiS-BDB performs

similarly to BDB for both read-heavy and write-heavy workloads. TARDiS incurs a 10% slowdown

as its begin and commit phase are more costly than in BDB. As contention increases, however,

TARDiS-BDB’s lock-free writes reduce the performance gap. In both cases, our OCC implementation

lags behind. For the read-heavy workload, OCC must verify read-only transactions, which increases

latency and reduces throughput. For the write-heavy workload, OCC suffers from a long validation

phase. Though also optimistic, TARDiS’s validation phase (commit state identification) is less costly:

it requires checking only the write set of those transactions that already committed as children of

the selected read state. In contrast, OCC requires checking against all concurrently committing

transactions.

0

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

12
00

00

Throughput(Trx/s)

0

1

2

3

4

5

L
at

en
cy

(m
s)

TARDiS

BDB

OCC

Figure 5.9: TARDiS-BDB vs BerkeleyDB vs OCC - Read-Heavy

Impact of branching TARDiS lets ALPS applications choose to branch on conflict rather than abort.

92

0

1
00

00

2
00

00

3
00

00

4
00

00

5
00

00

Throughput(Trx/s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

L
at

en
cy

(m
s)

TARDiS

BDB

OCC

Figure 5.10: TARDiS-BDB vs BerkeleyDB vs OCC - Write-Heavy

Workload Begin Get Put Commit

RH-Uniform
TARDiS 0.6 0.6 1 0.2

BDB 0.3 0.4 1.2 0.1
OCC 0.5 0.6 1.1 3.5

WH-Uniform
TARDiS 1 1.2 1.1 1.8

BDB 0.6 0.8 2.7 0.1
OCC 0.9 1.2 1.1 6.7

WH-Zipfian
TARDiS 1 1.4 1.2 0.8

BDB 0.6 8 23 0.1
OCC 0.4 0.9 1.2 9

Table 5.3: Per-operation latency breakdown (×10−2ms)

93

0

2
00

00

4
00

00

6
00

00

8
00

00

1
00

00
0

1
20

00
0

Throughput(Trx/s)

0

1

2

3

4

5

L
at

en
cy

(m
s)

TARDiS

BDB

OCC

Figure 5.11: Uniform Read-Heavy

Unsurprisingly, we find that the relative benefits of branching increase with contention. Results are

shown in Figures 5.11, 5.12, and 5.13 (all transactions run with branch-on-conflict enabled and with

Ancestor and Serializability as, respectively, their begin and end constraint). Table 5.3 provides a

per-operation breakdown of the same experiments, excluding network latency and retries. Figure 5.11

shows that, when contention is low, branching indeed does not help: TARDiS’s performance is

slightly lower than BDB’s. By contrast, with higher contention (Figure 5.12), TARDiS outperforms

BDB by 35%. The performance of BDB drops by half, as transactions wait longer for locks to become

available, increasing the cost of gets and puts by a factor of almost two (Table 5.3 shows that reads

take 0.004ms in the R-H workload, and 0.008ms in the W-H workload). The 37% throughput drop

in TARDiS is due to several factors. First, the lack of read-only transactions: since all transactions

now have to identify a commit state, the commit cost of the transaction increases (from Table 5.3:

from 0.002ms to 0.018ms). Second, reads become more expensive, as more record versions need

to be checked (from 0.006ms to 0.012ms). With both low and high contention, the throughput of

OCC is bottlenecked by the verification phase. The relative performance increase of branching

over sequential storage is most marked when requests follow a Zipfian workload in which a small

number of objects, accessed very frequently, experience a high degree of contention (Figure 5.13).

In this scenario, TARDiS outperforms BDB by a factor of eight. Whereas moving from a uniform

to a Zipfian distribution causes BDB’s performance to collapse (7x throughput decrease), TARDiS’

94

0

1
00

0
0

2
00

0
0

3
00

0
0

4
00

0
0

5
00

0
0

6
00

0
0

7
00

0
0

Throughput(Trx/s)

0

1

2

3

4

5

L
at

en
cy

(m
s)

TARDiS

BDB

OCC

Figure 5.12: Uniform Write-Heavy

throughput is much less affected: the lock-free implementation of the write skip-list ensures that

writes never block, even when conflicting. Table 5.3 confirms this: the cost of writes increases only

moderately in TARDiS (from 0.011ms to 0.012ms). Similarly, the use of fork points to efficiently

summarize the DAG means that, despite an eight-fold increase in the branching factor in the Zipfian

workload, the cost of reads only increases by 16%. In contrast, locking causes the read and write

time for BDB to increase by a factor of ten. OCC performs comparatively better, as it ensures that

(i) at least one transaction will always commit, and (ii) readers will not block writers. Nonetheless,

its high abort rate and expensive validation phase limit its throughput to a fifth of TARDiS’.

Branching, however, is not always beneficial. In the workload of Figure 5.14 transactions consist of a

single write accessing the database uniformly, conflicts are rare, and locks are held for a very short

period of time: here, branching does not help, but still incurs the cost of tracking past states. Since

the current implementation of TARDiS’ garbage collector is unable to keep up with the speed at

which new states are generated, the increased memory pressure grows the number of stalls induced

by garbage collection, causing TARDiS to perform 10% worse than BDB.

Impact of constraint choice

The choice of begin and end constraints involves a complex trade-off between consistency and per-

formance. To shed some light on this trade-off for our current implementation, we plot in Figure 5.15

the throughput of TARDiS for several different constraint choices for the same configuration (15

95

0

1
00

0
0

2
00

0
0

3
00

0
0

4
00

0
0

5
00

0
0

6
00

0
0

Throughput(Trx/s)

0

1

2

3

4

5

L
at

en
cy

(m
s)

TARDiS p=0.99

BDB p=0.99

OCC p=0.99

Figure 5.13: Zipfian Write-Heavy

machines, each with seven clients) that led TARDiS to reach the elbow in the write-heavy through-

put/latency graph of Figure 5.10. We focus on the Ancestor and Parent begin constraints because we

expect them to be the most popular. Ancestor ensures that clients will see their own writes, along

with those of any non-conflicting clients. In the Wikipedia example, this would allow Alice to read

back Carlo’s operations, but not Davide’s or Bruno’s. Parent results in a behavior very much akin

to that of a local Git branch, as clients will see their own operations only. A detailed per-operation

performance breakdown (omitted for lack of space) gives us clues for why, despite commit selection

being 30% cheaper in Parent (as only the read state can satisfy it), Ancestor still outperforms Parent

by 21%. First, read state selection is 40% more expensive in Parent, as it requires a look-up over the

full DAG rather than one that only involves its leaves. Second, since Parent results in more branches,

fork path checking becomes more expensive, increasing the cost of reads by 15%. Finally, Parent

prevents states from being quickly garbage collected.

Unlike begin constraints, we find that end constraints, as long as they do not cause transactions

to abort, do not significantly affect throughput or latency: throughput results for the (branching)

Serializability and Snapshot Isolation constraints are within 5% of each other, mostly because the

former, by creating twice as many branches, increases the cost of reads by 10%. Non-branching

serializability and snapshot isolation both perform poorly in comparison. Though each individual

operation is cheap, they see repeated aborts due to write-write or read-write conflicts.

96

0

2
00

00

4
00

00

6
00

00

8
00

00

1
00

00
0

1
20

00
0

1
40

00
0

1
60

00
0

1
80

00
0

Throughput(Trx/s)

0

1

2

3

4

5

L
at

en
cy

(m
s)

TARDiS

BDB

OCC

Figure 5.14: Uniform Blind Writes

Garbage Collection Figures 5.17 and 5.18 report, respectively, the throughput and number of DAG

states and records generated by a single server running TARDiS, with and without garbage collection,

over a ten minute run with Ancestor begin constraint, Serializability end constraint, and clients

placing ceilings (§5.5.3) every 1000 transactions. Without DAG compression, throughput drops

dramatically after three minutes, since old and new generation Java garbage collection pause TARDiS

constantly. With DAG compression, throughput instead remains constant, as (i) states are removed

from the DAG and their underlying datastructures recycled for incoming transactions, and (ii) record

promotion/deletion keeps the key-version mapping structure small. Compression should ideally

bound the DAG size to the product of the number of clients times the ceiling placing interval (i.e.,

30× 1000 = 30, 000 states) but, as Figure 5.18 shows, the DAG is 55, 000—98% fewer states than

without gargage collection, but still two times higher than the ideal. This mismatch is due to record

compression. Though, in principle, states can be removed from the DAG as soon as they become

garbage-collectible, in practice the promotion table must first be flushed, which can only happen after

a full record promotion pass. Unfortunately, these records are often not present in the cache and must

be read from disk, causing the record promotion threads to trail behind. Likewise, the storage size in

TARDiS is 15x larger than in OCC or BDB. We are currently investigating alternative schemes that

do not have this drawback.

Replication We measure the scalability of TARDiS when running in geographically distinct replicas.

97

A
n

c-
S

er

P
ar

en
t-

S
er

A
n

c-
S

er
-N

B

A
n

c-
S

I-
N

B

A
n

c-
S

I

0

10000

20000

30000

40000

50000

60000

70000

80000

T
h

ro
u

gh
p

u
t

(T
rx

/s
)

TARDiS

Figure 5.15: Constraint Choice

1
S

it
es

2
S

it
es

3
S

it
es

0

10000

20000

30000

40000

50000

60000

70000

T
h

ro
u

gh
p

u
t

(T
rx

/s
)

Read-Heavy

Write-Heavy

Figure 5.16: TARDiS Scalability

98

0

10
0

20
0

30
0

40
0

50
0

60
0

Time (s)

0

5000

10000

15000

20000

T
h

ro
u

gh
p

u
t(

T
rx

/s
)

T-GC

T-NoGC

Figure 5.17: Throughput over time

B
D

B
/O

C
C

T
A

R
-G

C

T
A

R
-N

oG
C

10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
101
102
103
104
105

S
ta

te
s

(x
10

00
)

States

Records

10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102
103
104
105

R
ec

or
d

s
(x

10
00

)

Figure 5.18: Number of records/states

We use a Google Cloud Services cluster of three machines (2.5GHz Intel Xeon E5 v2 machines with

60GB of memory), running in three geographical zones (us-central1-f, europe-west1-b, asia-east-1).

Figure 5.16 shows how the aggregated throughput scales with the number of sites. As transactions

are asynchronously replicated, latency is unchanged from the single site experiments. TARDiS scales

linearly with the number of sites, as its design ensures that transactions, when applied to remote sites,

do not contend with local transactions.

5.6.2 Applications

In porting ALPS applications to TARDiS, we answer two questions: (i) Do explicit state branching

and merging simplify conflict resolution? (ii) Can ALPS applications use local branch-on-conflict to

improve their performance?

99

Op-C PN-C LWW MV Set
0

100

200

300

400

500

L
O

C

TARDiS

BDB

Figure 5.19: CRDT lines of Code on BerkeleyDB and TARDiS. Op-C:Operation Based Counter, PN-C: State
Based Counter, LWW: Last-Writer-Wins Register, MV: Multivalued Register, Set: Or-Set

Op-C PN-C LWW MV Set
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

T
h

ro
u

gh
p

u
t

(T
rx

/s
)

TARDiS

BDB

OCC

Figure 5.20: CRDT Throughput

Figure 5.21: Retwis Throughput

Read-Only Read-Heavy Post-Heavy
0

5000

10000

15000

20000

25000

T
h

ro
u

gh
p

u
t(

T
rx

/s
)

TARDiS

BDB

OCC

100

Figure 5.22: Application Goodput

Counter Retwis-RH Retwis-PH
0.0

0.2

0.4

0.6

0.8

1.0

%

TARDiS

OCC

BDB

Simplifying Merging: CRDTs Convergent Replicated Data Types (CRDTs) [171] are a family

of data types that support lazy replication by including a set of semantically meaningful conflict

resolution functions. A variety of CRDTs have been developed [159, 171], including counters, sets,

registers, and trees. To date, they have been incorporated into cooperative text editing tools [159] and

in the Riak key-value store [101].

We followed the algorithms developed Shapiro et al. [171] to implement, on top of both TARDiS and

BDB, a subset of CRDTs sufficient to design realistic applications. The TARDiS implementation

proved easier to write and required less code, often by a factor of two or more (Figure 5.19): the

entire effort took less than a day with TARDiS, compared to over three days with BDB. Two features

of TARDiS account for this: StateID replication and conflict tracking. StateID replication guarantees

that operations that execute locally on a given state will execute on the same state at all remote

sites, and therefore eliminates the need to capture and replicate side-effects. In turn, conflict tracking

makes it easy, for each CRDT replica implemented in TARDiS, to access, through the State DAG, a

consistent view of the updates that need to be merged. Implementations on flat storage systems like

BDB, in contrast, need to explicitly track the updates applied at each replica and make sure that the

state of the CRDTs is replicated consistently everywhere. Consider, for example, the counter CRDT,

which is modeled as two separate increment and decrement vectors, containing an entry per replica.

On BDB, it is up to the CRDT developer to ensure that, as new operations are applied, the global

state is tracked correctly at each replica. TARDiS instead tracks the necessary information by design.

With access to the fork point, merging becomes as easy as adding, for each branch, the difference

101

between the counter’s value at the fork point and at the current state.

To guarantee eventual convergence, CRDTs implemented on sequential storage must mutate local

state atomically and sequentially (e.g., new vector clocks must be created atomically to guarantee

causal delivery, and updating counters requires read-modify-write operations). Each replica must

consequently be serializable, thus limiting the throughput at each site. Branch-on-conflict removes

this limitation without sacrificing consistency. For a workload consisting of 90% reads and 10%

writes, with transactions configured to use the Ancestor and Serializability constraint set and periodic

merging, TARDiS’ CRDT implementations achieve a four to eight times speedup over their sequential

counterparts (Figure 5.20). Three factors contribute to this speedup. First, each individual operation

is simpler: for instance, reading or updating a counter no longer involves manipulating a vector, but

simply requires reading or writing an integer. Second, operations are no longer serialized, but fork on

conflict, and are later merged back. Finally, merges can be batched. Traditional CRDTs require a

merge for every remote operation received; in TARDiS, merges need only take place periodically, as

operations are consistently recorded in separate branches. These effects are displayed in Figure 5.22.

It shows, for a CRDT counter implemented in TARDiS, BDB, and OCC, the percentage of useful

work, measured as the time spent executing committed transactions (i.e., excluding time spent waiting

on locks, aborted transactions, and merge transactions): useful work in TARDiS is at 0.96, while for

BDB and OCC almost half the time is wasted.

Pushing weak consistency down: Retwis To understand the performance implications of building

ALPS applications in TARDiS, we implemented Retwis [165], a popular Twitter clone [151, 178,

200]. Retwis users can create accounts (createAccount), follow users (followUser), post new content

(post), and read their own timeline (readOwnTimeline), which includes their own tweets and those

of the users they follow. In our implementation, readOwnTimeline returns the 50 most recent posts.

Contention primarily arises when a user posts new content, as the Retwis implementation must ensure

that the tweet becomes visible to all the user’s followers. Retwis, like many ALPS applications,

has relatively weak consistency requirements: as long as posts are not incorrectly attributed and are

presented in causal order, users can tolerate small delays in seeing posts. Porting Retwis on TARDiS

was straightforward. We simply extended each transactional call to take the Ancestor begin constraint

and Serializability end constraint, and implemented a separate conflict resolver that periodically

102

merges conflicting branches by resolving duplicate user ids and merging timelines (preserving the

order of posts).

Figure 5.21 shows the throughput of Retwis on TARDiS, BDB, and OCC, for three workloads:

read-only (100% reads), read-heavy (85% reads, 5% follows, and 10% posts), and post-heavy (65%

reads, 5% follows, and 30% posts). Branching does not benefit the read-only workload, but it

significantly softens the performance blow caused by contention in the remaining two workloads.

An analysis of the per-transaction behavior (omitted for lack of space) reveals that the throughput

of readOwnTimeline operations drops by 70% for OCC in the read-heavy workload, as posts cause

these transactions to abort, and by 80% in BDB, as write operations block both reads and other writes

(causing in turn read operations to block for longer). These effects are amplified in the post-heavy

workload. Moving to Figure 5.22, we see that TARDiS, by branching and merging asychronously, is

able to maintain a much higher fraction of useful work than OCC and BDB for both of these worklods

because, unlike waiting on locks, merging does not prevent the system from making progress. The

small drop in TARDiS’ throughput is due to the need to identify commit states for posts. Thus, for

ALPS applications, executing conflicting transactions optimistically and reconciling them later can

improve scalability within a site, much like weak consistency improves scalability across sites.

5.7 Related Work

Avoiding Conflicts The core challenge in geo-replication is handling conflicts at different sites. One

option is to preemptively ensure that conflicts do not happen, either through strong synchronization [7,

32, 56] or through scheduling transactions to avoid conflicts (using static analysis [205] or upon

admission [188]). TARDiS explicitly targets applications whose availability or latency constraints

preclude this option.

Weakening Consistency Systems designed for ALPS applications trade-off strong consistency for

performance and provide weaker guarantees such as causal consistency [9, 62], timeline consis-

tency [54], parallel snapshot isolation [178], and non-monotonic snapshot isolation [19]. Others have

sought to give applications the flexibility of adapting the consistency level required as a function of

the operation (Pileus [186], Red-Blue Consistency [114], MDCC [105]) or the object (Continuous

103

Consistency Model [203], CRDTs [171], Escrow Transactions [176]). TARDiS instead allows for

general conflict resolution strategies defined by the application.

Resolving Conflicts When conflicts are allowed, most systems resolve conflicting executions by

projecting them onto sequential storage. COPS [118] adopts a first-writer-wins policy; Ficus [91],

Dynamo [62], and Bayou all leave resolution up to the users; and operational transforms [184]

leverage specific textual properties. Unlike in TARDiS, these resolution functions are per-object and

do not allow programmers to see and resolve the entire state atomically.

Branching Conflicts in a distributed system introduce implicit branching that must be reconciled

when conflicts are detected. A number of systems expose this branching: version control systems

(Git) allow users to operate on different branches; the Olive [8] file-system allows users to create/and

fork snapshots efficiently; and ORI [126] tracks possibly divergent histories across multiple devices.

They contrast with TARDiS as their branching is explicit (git branch) rather than implicit: explicit

branching requires synchronization, which is precisely what ALPS applications want to avoid. Some

causally consistent systems also allow for concurrent writes to be exposed to the users (Ficus [91],

Dynamo [62]). This is a limited notion of branching, which forks individual objects rather than a state.

These systems, as a result, provide neither conflict tracking nor branches, and increase complexity for

the application by systematically exposing it to multiple values. By contrast, in TARDiS programmers

only deal with multivalued objects if they explicitly request it in merge mode. In the Byzantine

context, SUNDR [115] and FAUST [42] develop fork consistency/linearizability to isolate clients

that see different values in a faulty server, and Depot [124] extends SUNDR’s model to support

fork-joining. Depot does not, however, expose the abstraction of branches, and provides no support

for cross-object atomic merges, unlike TARDiS. Finally, Sporc [74] does provide atomic joining

of forks, but only for the restricted case of collaborative text applications, and uses operational

transformation to resolve conflicts.

5.8 Limitations

TARDiS’s DAG, begin constraints and end constraints are inspired by our state-based approach to

isolation and consistency. Begin constraints (, for instance, select candidate read states for a given

104

transaction, while end constraints define a given isolation level’s commit test. There is however,

currently no equivalent to the notions of single mode and merge mode. Likewise, our model does

not explicitly incorporate the notion of branching nor does it provide support for defining merging

functions. Instead, it projects all isolation guarantees onto a totally ordered execution. Our consistency

model allows for different sessions to observe different executions, but continues to require these

executions to be totally ordered. Yet, some of these isolation and consistency guarantees implicitly

create (limited) forms of branching. Consider snapshot isolation and parallel snapshot isolation

for instance. These guarantees allow, respectively, an anomaly called a short fork and a long fork.

Short forks allows concurrent transactions to make concurrent updates to different objects, causing

the system to temporarily fork. Once transactions commit, these forks are merged back. As the

concurrent writes cannot be conflicting, there is no need for an explicit merging procedure. Long

forks extend this notion to non-concurrent transactions. The state can remain forked for an arbitrary

time. As there can be no conflicting writes, the merging is once again trivial. Expressing parallel

snapshot isolation in our model requires reconstructing these observed forks through read states.

We suspect that these definitions could be simplified if the existence of branches became explicit

in the model. Extending our formalism to support TARDiS’s branch and merging model is thus an

interesting avenue for future work that we hope to explore.

5.9 Conclusion

This chapter introduced TARDiS, a novel transactional key-value store designed to support weakly-

consistent systems. By explicitly tracking concurrent branches and exposing them, when needed, to

applications, TARDiS simplifies conflict resolution. By giving applications the option of applying

weak consistency principles end-to-end, TARDiS can significantly improve the performance of the

local site.

105

Chapter 6

Oblivious transactions through

client-centric serializability

The previous chapters have focused on improving semantic and system support for programming

atop the weak consistency and isolation guarantees that large scale cloud storage systems provide.

By taking a client-centric approach to expressing these guarantees, we were able to simplify how

these guarantees were expressed and understood, while also improving system support for handling

the write-write conflicts that inherent in weak consistency.

The context Applications offload data to cloud storage for convenience: cloud services [13, 14, 134,

135, 155] offer clients scalable, reliable IT solutions and present application developers with feature-

rich environments (transactional support, flexible consistency [66, 138], etc.). Medical practices,

for instance, increasingly prefer to use cloud-based software to manage electronic health records

(EHR) [53, 108]. Cloud storage thus provides performance and scalability with relatively low

management overheads.

Offloading data to a third party cloud service, however, raises significant privacy concerns. Appli-

cations that could benefit from cloud services store personal data. This data can reveal sensitive

information even when encrypted or anonymized [140, 141, 177, 194]. For example, charts accessed

by oncologists can reveal not only whether a patient has cancer, but also, depending on the frequency

106

of accesses (e.g., the frequency of chemotherapy appointments), indicate the cancer’s type and

severity. Similarly, travel websites have been suspected of increasing the price of frequently searched

flights [194]. Hiding access patterns—that is, hiding not only the content of an object, but also when

and how frequently it is accessed, is thus often desirable.

This chapter targets precisely this scenario: it seeks to mitigate the tension that exists between

the privacy concerns that doing so creates. To this effect, we introduce the notion of oblivious

transactions, and presents the design of Obladi, the first cloud-based key value store that supports

transactions, while also hiding access patterns from cloud providers.

The problem To mitigate the privacy concerns associated with offloading data to the cloud, the

systems community has recently taken a fresh look at private data access. Recent solutions, whether

based on private information retrieval [6, 90], Oblivious RAM [45, 120, 167], function sharing [194],

or trusted hardware [17, 27, 70, 120, 190], show that it is possible to support complex SQL queries

without revealing access patterns.

This chapter addresses a complementary issue: supporting ACID transactions while guaranteeing

data access privacy. This combination raises unique challenges as concurrency control mechanisms

used to enforce isolation, and techniques used to enforce atomicity and durability make hiding access

patterns more problematic (§6.2).

We take as our starting point Oblivious RAM, which provably hides all access patterns. Existing

ORAM implementations, however, cannot support transactions. First, they are not fault-tolerant.

For security and performance, they often store data in a client-side stash; durability requires the

stash content to be recoverable after a failure, and preserving privacy demands hiding the stash’s

size and contents, even during failure recovery. Second, ORAM provides limited or no support

for concurrency [38, 167, 179, 199], while transactional systems are expected to sustain highly

concurrent loads.

Our secret sauce This chapter demonstrates that the demands of supporting transactions can be

met at a reasonable cost. Its key insight is that transactions actually afford more flexibility than the

single-value operations supported by previous ORAMs. The traditional system-centric definition

of serializability [153] requires that the effects of transactions be reflected consistently in the state

107

of the database only after they commit. Consistent with the approach taken in prior chapters, we

reformulate this definition in a client-centric way as follows: only transactions that are observed by

clients as committed need be serializable. Using this notion of client-centric serializability, we design

a system, Obladi, which is the first system to support oblivious ACID transactions.

Obladi achieves serializable transactions, guarantees durability with moderate overhead by relying on

one key principle: that of delayed visibility. Delayed visibility embraces the client-centric approach

that this dissertation has been advocating. It recognises that transactions should only be serializable

when a transaction is observed by the client as committed, but makes the additional observation

that commit notfications can be delayed. Obladi leverages this flexibility to delay committing

transactions until the end of fixed-size epochs, buffering their execution at a trusted proxy and

enforcing consistency and durability only at epoch boundaries.

The benefits The ethos of delayed visibility is the core that drives Obladi’s design. First, it allows

Obladi to implement a multiversioned database atop a single-versioned ORAM, so that read opera-

tions proceed without blocking, as with other multiversioned databases [32], and intermediate writes

are buffered locally: only the last value of any key modified during an epoch is written back to the

ORAM. Delaying writes reduces the number of ORAM operations needed to commit a transaction,

lowering amortized CPU and bandwidth costs without increasing contention: Obladi’s concurrency

control ensures that delaying commits does not affect the set of values that transactions executing

within the same epoch can observe.

Second, it allows Obladi to securely parallelize Ring ORAM [164], the ORAM construction on which

it builds. Obladi pipelines conflicting ORAM operations rather than processing them sequentially, as

existing ORAM implementations do. This parallelization, however, is only secure if the write-back

phase of the ORAM algorithm is delayed until pre-determined times, namely, epoch boundaries.

Finally, delaying visibility gives Obladi the ability to abort entire epochs in case of failure. Obladi

leverages this flexibility, along with the near-deterministic write-back algorithm used by Ring

ORAM, to drastically reduce the information that must be logged to guarantee durability and

privacy-preserving crash recovery.

The results of a prototype implementation of Obladi are promising. On three applications (TPC-

108

Clients

Clients

Trusted
Proxy

Untrusted
Cloud

Storage
Untrusted

Communication
Trusted

Communication

Figure 6.1: Trusted Proxy Model

C [189], SmallBank [63], and FreeHealth [116], a real medical application) Obladi is within 5×-12×

of the throughput of non-private baselines. Latency is higher (70×), but remains reasonable (in the

hundreds of milliseconds).

To summarize, this chapter makes three contributions:

1. It presents the design, implementation, and evaluation of the first ACID transactional system

that also hides access patterns.

2. It introduces an epoch-based design that leverages the flexibility of transactional workloads to

increase overall system throughput and efficiently recover from failures.

3. It provides the first formal security definition of a transactional, crash-prone, and private

database. Obladi uses the UC-security framework [43], ensuring that security guarantees hold

under concurrency and composition.

Roadmap The rest of this chapter is organised as follows: we first discuss our threat model (§6.1)

and summarise the necessary background (§6.3). We then overview the design of Obladi (§6.4)

focusing on the proxy (§6.5) and the ORAM (§6.6). We then discuss how to support durability (§6.7)

and integrity (§6.9), before proving the security of our system (§6.8) and evaluating it (§6.11). We

summarise related work in Section 6.12 and conclude in Section 6.141.

6.1 Threat and Failure Model

Obladi’s threat and failure assumptions aim to model deployments similar to those of medical

practices, where doctors and nurses access medical records through an on-site server, but choose to
1This chapter revises the previously published paper: Obladi: Oblivious Serializable Transactions, previously published

at OSDI 2018. Ethan Cecchetti, Sitar Harel and Matthew Burke contributed to the implementation of parallel Ring ORAM,
to the evaluation of the paper and to the formal proof of the system.

109

outsource the integrity and availability of those records to a cloud storage service [53, 108].

Threat Model. Obladi adopts a trusted proxy threat model [167, 179, 199]: it assumes multiple

mutually-trusting client applications interacting with a single trusted proxy in a single shared

administrative domain. The applications issue transactions and the proxy manages their execution,

sending read and write requests on their behalf over an asynchronous and unreliable network to an

untrusted storage server (Figure 6.1). This server is controlled by an honest-but-curious adversary

that can observe and control the timing of communication to and from the proxy, but not the on-site

communication between application clients and the proxy. We extend our threat model to a fully

malicious adversary in Section 6.9. We consider attacks that leak information by exploiting timing

channel vulnerabilities in modern processors [41, 102, 117] to be out of scope. Obladi guarantees

that the adversary will learn no information about: (i) the decision (commit/abort) of any ongoing

transaction; (ii) the number of operations in an ongoing transaction; (iii) the type of requests issued

to the server; and (iv) the actual data they access. We does not seek to hide the type of application

that is currently executing (ex: OLTP vs OLAP).

Failure Model. Obladi assumes cloud storage is reliable, but, unlike previous ORAMs, explicitly

considers that both application clients and the proxy may fail. These failures should invalidate neither

Obladi’s privacy guarantees nor the Durability and Atomicity of transactions.

6.2 Towards Private Transactions

Many distributed, disk-based commercial database systems [28, 56, 147] separate concurrency

control logic from storage management: SQL queries and transactional requests are regulated in

a concurrency control unit and are subsequently converted to simple read-write accesses to key-

value/file system storage. As ORAMs expose a read-write address space to users, a logical first

attempt at implementing oblivious transactions would simply replace the database storage with an

arbitrary ORAM. This black-box approach, however, raises both security concerns (§6.2.1) and

performance/functionality issues (§6.2.2)

Security guarantees can be compromised by simply enforcing the ACID properties. Ensuring Atomic-

ity, Isolation, and Durability imposes additional structure on the order of individual reads and writes,

110

introducing sources of information leakage [17, 173] that do not exist in non-transactional ORAMs

(§6.2.1). Performance and functionality, on the other hand, are hampered by the inability of current

ORAMs to efficiently support highly concurrent loads and guarantee Durability.

6.2.1 Security for Isolation and Durability

The mechanisms used to guarantee Isolation, Atomicity, and Durability introduce timing correlations

that directly leak information about the data accessed by ongoing transactions.

Concurrency Control. Pessimistic concurrency controls like two-phase locking [71] delay op-

erations that would violate serializability: a write operation from transaction T1 cannot execute

concurrently with any operation to the same object from transaction T2. Such blocking can poten-

tially reveal sensitive information about the data, even when executing on top of a construction that

hides access patterns: a sudden drop in throughput could reveal the presence of a deadlock, of a

write-heavy transaction blocking the progress of read transactions, or of highly contended items

accessed by many concurrent transactions. More aggressive concurrency control schemes like times-

tamp ordering or multiversioned concurrency control [32, 97, 113, 160, 161, 201] allow transactions

to observe the result of the writes of other ongoing transactions. These schemes improve performance

in contended workloads, but introduce the potential for cascading aborts: if a transaction aborts,

all transactions that observed its write must also abort. If a write-heavy transaction Theavy aborts, it

may cause a large number of transactions to rollback, again revealing information about Theavy and,

perhaps more problematically, about the set of objects that Theavy accessed.

Failure Recovery. When recovering from failure, Durability requires preserving the effects of com-

mitted transactions, while Atomicity demands removing any changes caused by partially-executed

transactions. Most commercial systems [136, 147, 148] preserve these properties through variants of

undo and redo logging. To guarantee Durability, write and commit operations are written to a redo

log that is replayed after a failure. To guarantee Atomicity, writes performed by partially-executed

transactions are undone via an undo log, restoring objects to their last committed state. Unfortunately,

this undo process can leak information: the number of undo operations reveals the existence of

ongoing transactions, their length, and the number of operations that they performed.

111

6.2.2 Performance/functionality limitations

Current ORAMs align poorly with the need of modern OLTP workloads, which must support large

numbers of concurrent requests; in contrast, most ORAMs admit little to no concurrency [38, 167,

179, 199] (we benchmark the performance of sequential Ring ORAM in Figure 6.13).

More problematically, ORAMs provide no support for fault-tolerance. Adding support for Durability

presents two main challenges. First, most ORAMs require the use of a stash that temporarily buffers

objects at the client and requires that these objects be written out to server storage in very specific

ways (as we describe further in §6.3). This process aligns poorly with guaranteeing Durability for

transactions. Consider for example a transaction T1 that reads the version of object x written by T2

and then writes object y. To recover the database to a consistent state, the update to x should be

flushed to cloud storage before the update to y. It may however not be possible to securely flush x

from the stash before y. Second, ORAMs store metadata at the client to ensure that cloud storage

observes a request pattern that is independent of past and currently executing operations. As we show

in §6.7, recovering this metadata after a failure can lead to duplicate accesses that leak information.

6.2.3 Introducing Obladi

These challenges motivate the need to co-design the transactional and recovery logic with the

underlying ORAM data structure. The design should satisfy three goals: (i) security—the system

should not leak access patterns; (ii) correctness—Obladi should guarantee that transactions are

serializable; and (iii) performance—Obladi should scale with the number of clients. The principle of

workload independence underpins Obladi’s security: the sequence of requests sent to cloud storage

shoud remain independent of the type, number, and access set of the transactions being executed.

Intuitively, we want Obladi’s sequence of accesses to cloud storage to be statistically indistinguishable

from a sequence that can be generated by an Obladi simulator with no knowledge of the actual

transactions being run by Obladi. If this condition holds, then observing Obladi’s accesses cannot

reveal to the adversary any information about Obladi’s workload. We formalize this intuition in our

security definition in §6.8.

Much of Obladi’s novelty lies not in developing new concurrency control or recovery mechanisms,

112

Stash
Temporary client-side storage

for recently accessed or evicted objects

Position Map Current assignment of real objects to paths

Bucket Every bucket contains Z + S slots

S
S slots reserved in each bucket

for dummy objects (dummy slots)

Z
Z slots reserved in each bucket for real objects

(real slots). Max # of real objects that can be stored.

z Current number of real objects in a bucket (z<Z)

(In)valid A slot is marked as invalid after it is accessed

A Evict path is run every A accesses

Table 6.1: Ring ORAM Terminology

but in identifying what standard database techniques can be leveraged to lower the costs of ORAM

while retaining security, and what techniques instead subtly break obliviousness.

To preserve workload independence while guaranteeing good performance in the presence of con-

current requests, Obladi centers its design around the notion of delayed visibility. Delayed visibility

leverages the observation that, on the one hand, ACID consistency and Durability apply only when

transactions commit, and, on the other, commit operations can be delayed. Obladi leverages this

flexibility to delay commit operations until the end of fixed-size epochs. This approach allows Obladi

to (i) amortize the cost of accessing an ORAM over many concurrently executing requests; (ii) re-

cover efficiently from failures; and (iii) preserve workload independence: the epochs’ deterministic

structure allows Obladi to decouple its externally observable behavior from the specifics of the

transactions being executed.

6.3 Background

Oblivious Remote Access Memory is a cryptographic protocol that allows clients to access data

outsourced to an untrusted server without revealing what is being accessed [82]; it generates a

sequence of accesses to the server that is completely independent of the operations issued by the

client. Most ORAM constructions follow a similar pattern: data objects are stored encrypted on

untrusted storage in a fixed-size recursive datastructure. The exact position of these objects is

113

obfuscated through the use of encryption and empty "filler" objects. Clients store a small mount

of metadata to track objects’ position within the datastructure use it to access individual objects

without the server learning their exact position., This is usually achieved by remapping objects to a

new random location on every access, and periodically reshuffling parts of the datastructure. ORAM

constructions can be split into two types:

• Hierarchical ORAMS are split into O(log(N)) fixed-size levels, where each level is exactly

twice the size of its children. Each data object is stored in exactly one level of the ORAM; any

empty slot is encrypted so as to appear indistinguishable from slots containing real objects.

Each level is periodically merged into its parent level and shuffled. This shuffling operation is

the primary source of overhead in hierarchical ORAMS: most recent research efforts focus on

reducing its cost.

• Tree-based ORAMS were recently introduced by Shi et al. [174] (and subsequently refined

in [164, 182]). These constructions remove the traditional expensive sort or shuffling phase

that made previous ORAM constructions expensive and difficult to implement [174]. The

conceptual simplicity of these tree-based schemes makes them susceptible to efficient imple-

mentations in real systems: to date, they have been implemented in hardware [75, 122] and

as the basis for blockchain ledgers [45] with reasonable overheads. Most tree-based ORAMs

follow a similar structure: objects (usually key-value pairs) are mapped to a random leaf (or

path) in a binary tree and physically reside (encrypted) in some tree node (or bucket) along that

path. Objects are logically removed from the tree and remapped to a new random path when

accessed. These objects are eventually flushed back to storage (according to their new path) as

part of an eviction phase. Through careful scheduling, this write-back phase does not reveal the

new location of the objects; objects that cannot be flushed are kept in a small client-side stash.

Ring ORAM. Obladi builds upon Ring ORAM [164], a tree-based ORAM with two appealing

properties: a constant stash size and a fully deterministic eviction phase. Obladi leverages these

features for efficient failure recovery. We summarize Ring ORAM terminology in Table 6.1.

As shown in Figure 6.2, server storage in Ring ORAM consists of a binary tree of buckets, each

with a fixed number Z + S of slots. Of these, Z are reserved for storing actual encrypted data

114

a

b

b 2

Stash

Position
Mapb 1

b a 4

Server
Storage

Client
Storage

a

1 2 3 4

Path Index
Valid Bit
Invalid Bit
Real Object
Dummy Slot
Empty Real Slot

 1

Figure 6.2: Ring ORAM - Read (Z=1, S=2)

(real objects); the remaining S exclusively store dummy objects. Dummy objects are blocks of

encrypted but meaningless data that appear indistinguishable from real objects; their presence in

each bucket prevent the server from learning how many real objects the bucket contains and which

slots contains them. A random permutation (stored at the client) determines the location of dummy

slots. In Figure 6.2, the root bucket contains a real slot followed by two dummy slots; the real slot

contains the data object a; its left child bucket instead contains dummy slots in positions one and

three, and an empty real slot in second position.

Client storage, on the other hand, is limited to (i) a constant sized stash, which temporarily buffers

objects that have yet to be replaced into the tree and, unlike a simple cache, is essential to Ring

ORAM’s security guarantees; (ii) the set of current permutations, which identify the role of each

slot in each bucket and record which slot have already been accessed (and marked invalid); and

(iii) a position map, which records the random leaf (or path) associated with every data object. In

Ring ORAM, objects are mapped to individual leaves of the tree but can be placed in any one of the

buckets along the path from the root to that leaf. For instance, object a in Figure 6.2 is mapped to

path 4 but stored in the root bucket, while object b is mapped to path 2 and stored in the leaf bucket

of this path.

115

Ring ORAM maintains two core invariants. First, each data object is mapped to a new leaf chosen

uniformly at random after every access, and is stored either in the stash, or in a bucket on the path

from the tree’s root to that leaf (path invariant). Second, the physical positions of the Z+S dummy

and real objects in each bucket are randomly permuted with respect to all past and future writes to

that bucket (i.e., no slot can be accessed more than once between permutations) (bucket invariant).

The server never learns whether the client accesses a real or a dummy object in the bucket, so the

exact position of the object along that path is never revealed.

Intuitively, the path invariant removes any correlation between two accesses to the same object (each

access will access independent random paths), while the bucket invariant prevents the server from

learning when an object was last accessed (the server cannot distinguish an access to a real slot from

a dummy slot). Together, these invariants ensure that, regardless of the data or type of operation, all

access patterns will look indistinguishable from a random set of leaves and slots in buckets.

Access Phase. The procedures for read and write requests is identical. To access an object o, the

client first looks up o’s path in the position map, and then reads one object from each bucket along

that path. It reads o from the bucket in which it resides and a valid dummy object from each other

bucket, identified using its local permutation map. Finally, o is remapped to a new path, updated to

a new value (if the request was a write), and added to the stash; importantly, o is not immediately

written back out to cloud storage.

Figure 6.2 illustrates the steps involved in reading an object b, initially mapped to path 2. The client

reads a dummy object from the first two buckets in the path (at slots two and three respectively), and

reads b from the first slot of the bottom bucket. The three slots accessed by the client are then marked

as invalid in their respective buckets, and b is remapped to path 1. To write a new object c, the client

would have to read three valid dummy objects from a random path, place c in the stash, and remap it

to a new path.

Access Security. Remapping objects to independent random paths prevents the server from detecting

repeated accesses to data, while placing objects in the stash prevents the server from learning the

new path. Marking read slots as invalid forces every bucket access to read from a distinct slot

(each selected according to the random permutation). The server consequently observes uniformly

116

a

b

bc b 1
c 2

a 4a

Read remaining unread
real objects into stash

1 2 3 4

Figure 6.3: Eviction - Read Phase

distributed accesses (without repetition) independently of the contents of the bucket. This lack of

correlation, combined with the inability to distinguish real slots from dummy slots, ensures that the

server does not learn if or when a real object is accessed. Accessing dummy slots from buckets not

containing the target object (rather than real slots), on the other hand, is necessary for efficiency: in

combination with Ring ORAM’s eviction phase (discussed next) it lets the stash size remain constant

by preventing multiple real objects from being addded to the stash on a single access.

Eviction Phase and Reshuffling. The aforementioned protocol falls short in two ways. First, if

objects are placed in the stash after each access, the stash will grow unbounded. Second, all slots will

eventually be marked as invalid. Ring ORAM sidesteps these issues through two complementary

processes: eviction and bucket reshuffling. Every A accesses, the evict path operation evicts objects

from the client stash to cloud storage. It deterministically selects a target path, flushes as much data

as possible, and permutes each bucket in the path, revalidating any invalid slots. Evict path consists

of a read and write phase. In the read phase, it retrieves Z objects from each bucket in the path: all

remaining valid real objects, plus enough valid dummies to reach a total of Z objects read. In the

write phase, it places each stashed object—including those read by the read phase—to the deepest

bucket on the target path that intersects with the object’s assigned path. Evict path then permutes

the real and dummy values in each bucket along the target path, marking their slots as valid, and

117

b

c

a

bc
2

a

Shuffle
buckets

1 2 3 4

b 1
c 2

a 4

Figure 6.4: Eviction - Write Phase

writes their contents to server storage. Figure 6.3 and 6.4 show the evict path procedure applied to

path 4. In the read phase, evict path reads the unread object a from the root node and dummies from

other buckets on the path. In the write phase (Fig. 6.4), a is flushed to leaf 4, as its path intersects

completely with the target path. Finally, we note that randomness may cause a bucket to contain only

invalid slots before its path is evicted, rendering it effectively unaccessible. When this happens, Ring

ORAM restores access to the bucket by performing an early reshuffle operation that executes the

read phase and write phase of evict path only for the target bucket.

Eviction Security. The read phase leaks no information about the contents of a given bucket. It

systematically reads exactly Z valid objects from the bucket, selecting the valid real objects from the

z real objects in the bucket, padding the remaining Z − z required reads with a random subset of the

S dummy blocks. The random permutation and randomized encryption ensure that the server learns

no information about how many real objects exist, and how many have been accessed. Similarly,

the write phase hides the values and locations of objects written. At every bucket, the storage server

observes only a newly encrypted and permuted set of objects, eliminating any correlation between

past and future accesses to that bucket. Together, the read and write phases ensure that no slot is

accessed more than once between reshuffles, guaranteeing the bucket invariant.

118

Similarly, the eviction process leaks no information about the paths of the newly evicted objects:

since all paths intersect at the root and the server cannot infer the contents of any individual bucket,

any object in the stash may be flushed during any evict path. Moreover, since all paths intersect at the

root, any object in the stash may be flushed during any evict path.

6.4 System Architecture

Obladi, like most privacy-preserving systems [167, 180, 199] consists of a centralized trusted

component, the proxy, that communicates with a fault-tolerant but untrusted entity, cloud storage

(Figure 6.5). The proxy handles concurrency control, while the untrusted cloud storage stores the

private data. Obladi ensures that requests made by the proxy to the cloud storage over the untrusted

network do not leak information. We assume that the proxy can crash and that when it does so, its

state is lost. This two-tier design allows applications to run a lightweight proxy locally and delegate

the complexity of fault-tolerance to cloud storage.

The proxy has two components: (i) a concurrency control unit and (ii) a data manager comprised of a

batch manager and an ORAM executor. The batch manager periodically schedules fixed-size batches

of client operations that the ORAM executor then executes on a parallel version of Ring ORAM’s

algorithm. The executor accesses one of two units located on server storage: the ORAM tree, which

stores the actual data blocks of the ORAM; and the recovery unit, which logs all non-deterministic

accesses to the ORAM to a write-ahead log [137] to enable secure failure recovery (§6.7).

6.5 Proxy Design

The proxy in Obladi has three goals: guarantee good performance, preserve correctness, and guarantee

security. To meet these goals, Obladi designs the proxy around the concept of epochs. The proxy

partitions time into a set of fixed-length, non-overlapping epochs. Epochs are the granularity at

which Obladi guarantees durability and consistency. Each transaction, upon arriving at the proxy, is

assigned to an epoch and clients are notified of whether a transaction has committed only when the

epoch ends. Until then, Obladi buffers all updates at the proxy.

This flexibility boosts performance in two ways. First, it allows Obladi to implement a multiversioned

119

Cloud Storage

Oram Tree
Oram

Executor

Clients

Clients

Bucket 1

Recovery Unit

Execute t1

UntrustedTrusted

Position
Map

Data Handler

Stash

Proxy

Execute t2

Concurrency
Control Unit

Batch Manager

Batch 1

Batch n

Bucket 2 Bucket 3

WAL

...

Timestamp
Ordering

Logic

V
er

si
on

 C
ac

he

Timestamp
Ordering
Metadata

Batch 2

Figure 6.5: System Architecture

concurrency control (MVCC) algorithm on top of a single versioned Ring ORAM. MVCC algorithms

can significantly improve throughput by allowing read operations to proceed with limited blocking.

These performance gains are especially significant in the presence of long-running transactions or

high storage access latency, as is often the case for cloud storage systems. Second, it reduces traffic to

the ORAM, as only the database state at the end of the epoch needs to be written out to cloud storage.

Importantly, Obladi’s choice to enforce consistency and durability only at epoch boundaries does

not affect correctness; transactions continue to observe a serializable and recoverable schedule (i.e.,

committed transactions do not see writes from aborted transactions).

For transactions executing concurrently within the same epoch, serializability is guaranteed by

concurrency control; transactions from different epochs are naturally serialized by the order in which

the proxy executes their epochs. No transaction can span multiple epochs; unfinished transactions at

epoch boundaries are aborted, so that no transaction is ongoing during epoch changes.

Durability is instead achieved by enforcing epoch fate-sharing [191] during proxy or client crashes:

Obladi guarantees that either all completed transactions (i.e., transactions for which a commit request

has been received) in the epoch are made durable or all transactions abort. This way, no committed

transaction can ever observe non-durable writes.

Finally, the deterministic pattern of execution that epochs impose drastistically simplifies the task

120

of guaranteeing workload independence: as we describe further below, the frequency and timing at

which requests are sent to untrusted storage are fixed and consequently independent of the workload.

The proxy processes epochs with two modules: the concurrency control unit (CCU) ensures that

execution remains serializable, while the data handler (DH) accesses the actual data objects. We

describe each in turn.

6.5.1 Concurrency Control

Obladi, like many existing commercial databases [146, 158], uses multiversioned concurrency

control [32]. Obladi specifically chooses multiversioned timestamp ordering (MVTSO) [32, 162]

because it allows uncommitted writes to be immediately visible to concurrently executing transactions.

To ensure serializability, transactions log the set of transactions whose uncommitted values they have

observed (their write-read dependencies) and abort if any of their dependencies fail to commit. This

optimistic approach is critical to Obladi’s performance: it allows transactions within the same epoch to

see each other’s effects even as Obladi delays commits until the epoch ends. In contrast, a pessimistic

protocol like two-phase locking [71], which precludes transactions from observing uncommitted

writes, would artificially increase contention by holding exclusive write-locks for the duration of

an epoch. When a transaction starts, MVTSO assigns it a unique timestamp that determines its

serialization order. A write operation creates a new object version marked with its transaction’s

timestamp and inserts it in the version chain associated with that object. A read operation returns the

object’s latest version with a timestamp smaller than its transaction’s timestamp. Read operations

further update a read marker on the object’s version chain with their transaction’s timestamp. Any

write operation with a smaller timestamp that subsequently tries to write to this object is aborted,

ensuring that no read operation ever fails to observe a write from a transaction that should have

preceded it in the serialization order.

Consider for example the set of transactions executing in Figure 6.6. Transaction t1’s update to object

a (w(a1)) is immediately observed by transaction t3 (r3(a1)). t3 becomes dependent on t1 and can

only commit once t1 also commits. In contrast, t2’s write to object d causes t2 to abort: a transaction

with a higher timestamp (t3) had already read version d0, setting the version’s read marker to 3.

121

Client

Execute t1 Execute t2

r1(b0)

r1(a0)

w(c1)

r2(b0)

w(d2)

w(a1)

c

Execute t3

r3(d0)

w(c3)

r3(a1)

c

Ti
m

e

s
s s

Execute t4

w(d4)

s

w(c4)

Client Client Client

Batch Manager

TSO
Abort

Epoch
Finished
Abort a0

r1(a0) r2(b0) r3(d0)

b0

a1 d0

r1(b0) PAD
r2(d0)

PAD

d4

c4

w(a1) w(c3) PAD

Version
Cache

Read
Batch

Read
Batch
Write
Batch

Epoch i+1 starts ...

Δ

Epoch i

Figure 6.6: Batching Logic - rx(ay) denotes that transaction tx reads the version of object a written by
transaction ty

6.5.2 Data Handler

Once a version is selected for reading or writing, the DH becomes responsible for accessing or

modifying the actual object. Whereas it suffices to guarantee durability and consistency only at

epoch boundaries, security must hold at all times, posing two key challenges. First, the number

of requests executed in parallel can leak information, e.g., data dependencies within the same

transaction [37, 167]. Second, transactions may abort (§6.5.1), requiring their effects to be rolled

back without revealing the existence of contended objects [17, 173]. To decouple the demands of

these workloads from the timing and set of requests that it forwards to cloud storage, Obladi leverages

the following observation: transactions can always be re-organized so that all reads from cloud storage

execute before all writes [56, 107, 129, 204]. Indeed, while operations within a transaction may

depend on the data returned by a read from cloud storage, no operation depends on the execution of a

write. Accordingly, Obladi organizes the DH into a read phase and a write phase: it first reads all

necessary objects from cloud storage, before applying all writes.

Read Phase. Obladi splits each epoch’s read phase into a fixed set ofR fixed-sized read batches (bread)

that are forwarded to the ORAM executor at fixed intervals (∆epoch). This deterministic structure

allows Obladi to execute dependent read operations without revealing the internal control flow of

122

the epoch’s transactions. Read operations are assigned to the epoch’s next unfilled read batch. If no

such batch exists, the transaction is aborted. Conversely, before a batch is forwarded to the ORAM

executor, all remaining empty slots are padded with dummy requests. Obladi further deduplicates

read operations that access the same key. As we describe in §6.6, this step is necessary for security

since parallelized batches may leak information unless requests all access distinct keys [38, 199].

Deduplicating requests also benefits performance by increasing the number of operations that can be

served within a fixed-size batch.

Write Phase. While transactions execute, Obladi buffers their write operations into a version cache

that maintains all object versions created by transactions in the epoch. At the end of an epoch,

transactions that have yet to finish executing (recall that epochs terminate at fixed intervals) are

aborted and their operations are removed. The latest versions of each object in the version cache

according to the version chain are then aggregated in a fixed-size write batch (bwrite) that is forwarded

to the ORAM executor, with additional padding if necessary.

This entire process, including write buffering and deduplication, must not violate serializability.

The DH guarantees that write buffering respects serializability by directly serving reads from the

version cache for objects modified in the current epoch. It guarantees serializability in the presence of

duplicate requests by only including the last write of the version chain in a write batch. Since Obladi’s

epoch-based design guarantees that transactions from a later epoch are serialized after all transactions

from an earlier epoch, intermediate object versions can be safely discarded. In this context, MVTSO’s

requirement that transactions observe the latest committed write in the serialization order reduces to

transactions reading the tail of the previous epoch’s version chain.

In the presence of failures, Obladi guarantees serializability and recoverability by enforcing epoch

fate sharing: either all transactions in an epoch are made durable or none are. If a failure arises during

epoch ei, the system simply recovers to epoch ei−1, aborting all transactions in epoch ei. Once again,

this flexibility arises from Obladi delaying commit notifications until epoch boundaries.

Example Execution. We illustrate the batching logic once again with the help of Figure 6.6. Transac-

tions t1, t2, t3 first execute read operations. These operations are aggregated into the first read batch

of epoch i. The values returned by these reads are then cached into the version cache. t2 then executes

123

a write operation, which Obladi also buffers into the version cache. When executing r2(d0)), t3 reads

object d directly from the version cache (we discuss the security of this step in the next section).

Similarly, r1(a1) reads the buffered uncommitted version of a. In contrast, Obladi schedules r1(b0)

to execute as part of the next read batch as b0 is not present in the version cache. The read batch is

then padded to its fixed bread size and executed. t4 contains no read operations: its write operations

are simply executed and buffered at the version cache. Obladi then finalizes the epoch by aborting all

transactions (and their dependencies) that have not yet finished executing: t4 is consequently aborted.

Finally, Obladi aggregates the last version of every update into the write batch (skipping version c1

of object c for instance, instead only writing c2), before notifying clients of the commit decision.

6.5.3 Reducing Work

Obladi reduces work in two additional ways: it caches reads within an epoch and allows Ring ORAM

to execute write operations without also executing dummy queries. While these optimizations may

appear straightforward, ensuring that they maintain workload independence requires care.

Caching Reads. Ring ORAM maintains a client-side stash (§6.3) that stores ORAM blocks until

their eviction to cloud storage. Importantly, a request for a block present in the stash still triggers a

dummy request: a dummy object is still retrieved from each bucket along its path. While this access

may appear redundant at first, it is in fact necessary to preserve workload independence: removing

it removes the guarantee that the set of paths that Obladi requests from cloud storage is uniformly

distributed. In particular, blocks present in the stash are more likely to be mapped to paths farther

away from the one visited by the last evict path, as they correspond to paths that could not be flushed:

buckets have limited space for real blocks and blocks mapped to paths that only intersect near the

top of the tree are less likely to find a free slot to which they can be flushed. The degree to which

this effect skews the distribution leaks information about the stash size, and, consequently, about the

workload. To illustrate, consider the execution in Figure 6.7. Objects mapped to paths 1 and 2 (a, b,

and f) were not flushed from the stash in the previous eviction of path 4. When these objects are

subsequently accessed, naively reading them from the stash without performing dummy reads skews

the set of paths accessed toward the right subtree (paths 3 and 4)

Obladi securely mitigates some of this work by drawing a novel distinction between objects that are

124

2

1 2 3 4

a 1
b 2

c 3
d

e
4

4
f 2

a b c
d e f

e

d

c Evicting Path 4 Following Evict Path,
Requests for a,b,c,d,e,f

With dummy requests
a b c d e f
1 2 3 4 4 2

Without dummy requests
a b c d e f

3 4 4

Storage observes uniform distribution of paths

2

2

Dummy
request

Real
request

Storage observes distribution of paths that
skews towards right subtree

Figure 6.7: Skew introduced by caching arbitrary objects

in the stash as a result of a logical access and those present because they could not be evicted. The

former can be safely accessed without performing a dummy read, while the latter cannot. Objects

present in the stash following a logical access are mapped to independently uniformly distributed

paths. Ring ORAM’s path invariant ensures that, without caching, the set of accessed paths is

uniformly distributed. Removing an independent uniform subset of those paths (namely, the dummy

requests) will consequently not change the distribution. Thus, caching these objects, and filling

out a read batch with other real or dummy requests, preserves the uniform distribution of paths

and leaks no information. Obladi consequently allows all read objects to be placed in the version

cache for the duration of the epoch. Objects a, b, d are, for instance, placed in the version cache in

Figure 6.6, allowing read r2(d0) to read d directly from the cache. In contrast, objects present in the

stash because they could not be evicted are mapped to paths that skew away from the latest evict

path. Caching these objects would consequently skew the distribution of requests sent to the storage

away from a uniform distribution, as illustrated in Figure 6.7.

Dummiless Writes. Ring ORAM must hide whether requests correspond to read or write operations,

as the specific pattern in which these operations are interleaved can leak information [206]; that

is why Ring ORAM executes a read operation on the ORAM for every access. In contrast, since

transactions can always perform all reads before all writes, no information is leaked by informing the

storage server that each epoch consists of a fixed-size sequence of potentially dummy reads followed

125

N Number of real objects
Z Number of real slots
S Number of dummy slots
A Frequency of evict path
L Number of levels in the ORAM tree
R Number of read batches
bread Size of a read batch
bwrite Size of a write batch

∆ Batch frequency

Table 6.2: Obladi’s configuration parameters

by a fixed-size sequence of potentially dummy writes. Obladi thus modifies Ring ORAM’s algorithm

to directly place the new version of an object in the stash, without executing the corresponding read.

Note, though, that Obladi continues to increment the evict path count on write operations, a necessary

step to preserve the bounds on the stash size, which is important for durability (§6.7).

6.5.4 Configuring Obladi

Obladi’s good performance hinges on appropriately configuring the size/frequency of batches and

ORAM tree for a target application. Table 6.2 summarizes the parameter space.

Ring ORAM. Configuring Ring ORAM first requires choosing an appropriate Z parameter. Larger

values of Z reduce the total size of the ORAM on cloud-storage by decreasing the required height

of the ORAM tree and decrease eviction frequency (reducing network/CPU overhead). In contrast,

this increase the maximum stash size. Traditional ORAMs thus choose the largest value of Z for

which the stash size fits on the proxy. Obladi adds an additional consideration: for durability (as we

describe in §6.7), the stash must be synchronously written out every epoch. One must thus take into

account the throughput loss associated with the stash writeback time. Given an appropriate value of

Z, Obladi then chooses L, S, and A according to the analytical model proposed in [164].

Epochs and batching. Identifiying the appropriate size and number of batches hinges on several

considerations. First, Obladi must provision sufficiently many read batches (R) to handle control

flow dependencies within transactions. A transaction that executes in sequence five dependent read

operations, will for instance require five read batches to execute (it will otherwise repeatedly abort).

126

Second, the ratio of reads (R ∗ bread) to writes (wwrite) must closely approximate the application’s

read/write ratio. An overly large write batch will waste resources as it will be padded with many

dummy requests. A write batch that is too small will lead to frequent aborts caused by the batch

filling up. Third, the size of a read or write batch (respectively bread and bwrite) defines the degree

of parallelism that can be extracted. The desired batch size is thus a function of the concurrent

load of the system, but also of hardware considerations, as increasing parallelism beyond an I/O

or CPU bottleneck serves no purpose. Finally, the number and frequency of read batches within an

epoch increases overall latency, but reduces amortized resource costs through caching and operation

pipelining (introduced in §6.6). Latency-sensitive applications may favor smaller batch sizes, while

others may prefer longer epochs, but lower overheads.

Security Considerations. Obladi does not attempt to hide the size and frequency of batches from

the storage server (we formalize this leakage in §6.8). Carefully tuning the size and frequency of

batches to best match a given application may thus leak information about the application itself. An

OLTP application, for instance, will likely have larger batch sizes (bread), but fewer read batches (R),

as OLTP applications sustain a high concurrent load of fairly short transactions. OLAP applications

will prefer small or non-existent write batches (bwrite), as they are predominantly read-only, but

require many read batches to support the complex joins/aggregates that they implement. Obladi

does not attempt to hide the type of application that is being run. It does, however, continue to hide

what data is being accessed and what transactions are currently being run at any given point in time.

While Obladi’s configuration parameters may, for instance, suggest that a medical application like

FreeHealth is being run, they do not in any way leak information about how, when, or which patient

records are being accessed.

6.6 Parallelizing the ORAM

Existing ORAM constructions make limited use of parallelism. Some allow requests to execute

concurrently between eviction or shuffle phases [38, 167, 199], while others target intra-request

parallelism to speed up execution of a single request [120]. Obladi explicitly targets both forms of

parallelism. Parallelizing Ring ORAM presents three challenges: (i) preserving the correct abstraction

of a sequential datastore, (ii) enforcing security by concealing the position of real blocks in the

127

ORAM (thereby maintaining workload independence), and (iii) preserving existing bounds on the

stash size. While these issues also arise in prior work [167], the idiosyncrasies of Ring ORAM add

new dimensions to these challenges.

Correctness. Obladi makes two observations. First, while all operations conflict at the Ring ORAM

tree’s root, they can be split into suboperations that access mostly disjoint buckets (§6.3). Second,

conflicting bucket operations can be further parallelized by distinguishing accesses to the bucket’s

metadata from those to its physical data blocks.

Obladi draws from the theory of multilevel serializability [196], which guarantees that an execution

is serializable if the system enforces level-by-level serializability: if operation o is ordered before

o′ at level i, all suboperations of o must precede conflicting suboperations of o′. Thus, if Obladi

orders conflicting operations at a level i, it enforces the same order at level i + 1 for all their

conflicting suboperations; conversely, if two operations do not conflict at level i, Obladi executes

their suboperations in parallel. To this end, Obladi simply tracks dependencies across operations

and orders conflicting suboperations accordingly. Obladi extracts further parallelism in two ways.

First, since in Ring ORAM reads to the same bucket between consecutive eviction or reshuffling

operations always target different physical data blocks (even when bucket operations conflict on

metadata access), Obladi executes them in parallel. Second, Obladi’s own batching logic ensures

that requests within a batch touch different objects, preventing read and write methods from ever

conflicting. Together, these techniques allow Obladi to execute most requests and evictions in parallel.

We illustrate the dependency tracking logic in Figure 6.8. The read operation to path 1 conflicts with

the evict path for path 2, but only at the root (bucket 1). Thus, reads to buckets 2 and 3 can proceed

concurrently, even though accesses to the root’s metadata must be serialized, as both operations

update the bucket access counter and valid/invalid map (§6.3).

Security. For security, Obladi’s parallel evict path operation must flush the same blocks flushed by a

sequential implementation. Reproducing this behavior without sacrificing parallelism is challenging.

It requires that all real objects brought in during the last A accesses be present in the stash when

data is flushed, which may introduce data dependencies. Unlike dependencies that arise between

operations that access the same physical location in cloud storage, these dependencies are not a

128

Read Path 1
Read Bucket 2

Real Block b

 Metadata

Read Bucket 1

Dummy

 Metadata

Remap Real
Block b to

 Path 3

Evict Path 2

Read Bucket 3

All Unread

 Metadata

Read Bucket 1

All Unread

 Metadata

Bucket 1

Bucket 2 Bucket 3

Path 1 Path 2

Write Bucket 1

Write All

 Metadata

Write Bucket 3

Write All

 Metadata

Figure 6.8: Multilevel Pipelining for a read of path 1 and an evict path of path 2 executing in parallel. Solid
green lines represent physical dependencies and dashed red lines represent data dependencies. Inner blocks
represent nested operations

deterministic function of an epoch’s operations already known to the adversary.

Consider, for instance, block b in Figure 6.8. In a sequential implementation, b would enter the stash

as a result of reading path 1 and be flushed to bucket 3 by the following evict path. Thus, evict path

would have to wait until b is placed in the stash. Honoring these dependencies opens a timing channel:

delay in flushing certain blocks can reveal object placement. As blocks holding real objects can exist

anywhere in the tree and be remapped to any path, it follows that it is never secure to execute an

eviction operation until all previous access operations have terminated.

Obladi mitigates this restriction by again leveraging delayed visibility and the idea to separate read

and write operations within an epoch—but with an important difference. In §6.5.2 the proxy created

separate batches for logical read and write operations; to improve parallelism, Obladi, expanding on

an idea used by Shroud [120], assigns to separate phases within an epoch the physical read and write

operations that underlie each of those logical operations. The read phase computes all necessary

metadata and executes the set of physical read operations for all logical read path, early reshuffle,

and evict path operations. This set is workload independent, so its operations need not be delayed.

Physical writes, however, are only flushed at the end of an epoch. The proxy can again apply write

129

deduplication: if a bucket is repeatedly modified during an epoch, only the last version must be

written back. Reads that should have read an intermediate write are served locally from the buffered

buckets.

The adversary thus always observes a set of reads to random paths followed by a deterministic

set of writes independent of the contents of the ORAM and, consequently, of the workload. Data

dependencies between read and evict operations no longer create a timing channel. Meanwhile

parallelism remains high, as the physical blocks accessed in each phase are guaranteed to be distinct—

Ring ORAM directly guarantees this for reads, while bucket deduplication does it for writes.

6.7 Durability

Obladi guarantees durability at the granularity of epochs: after a crash, it recovers to the state of

the last failure-free epoch. Obladi adds two demands to the need of recovering to a consistent state:

recovery should leak no information about past or future transactions, and it should be efficient,

accessing minimal data from cloud storage. Obladi guarantees the former by ensuring that recovery

logic and data logged for recovery maintain workload independence (§6.1). It strives towards the

latter by leveraging the determinism of Ring ORAM.

Consistency. Obladi recovery logic relies on two well-known techniques: write-ahead logging [137]

and shadow paging [87]. Obladi mandates that transactions be durable only at the end of an epoch;

thus, on a proxy failure, all ongoing transactions can be aborted, and the system reverted to the

previous epoch. To make this possible, Obladi must (i) recover the proxy metadata lost during the

proxy crash, and (ii) ensure that the ORAM does not contain any of the aborted transactions’ updates.

To recover the metadata, Obladi logs three data structures before declaring the epoch committed: the

position map, the permutation map, and the stash. The position map and the permutation map identify

the position of real objects in the ORAM tree (respectively, in a path and in a bucket); logging them

prevents the recovery logic from having to scan the full ORAM to recover the position of buckets.

Logging the stash is necessary for correctness. As eviction may be unable to flush the entire stash,

some newly written buckets may be present only in the stash, even at epoch boundaries. Failing to

log the stash could thus lead to data loss.

130

To undo partially executed transactions, Obladi adapts the traditional copy-on-write technique of

shadow paging [87]: rather than updating buckets in place, it creates new versions of each bucket

on every write. Obladi then leverages the inherent determinism of Ring ORAM to reconstruct a

consistent snapshot of the ORAM at a given epoch. In Ring ORAM, the current version of a bucket

(i.e. the number of times a bucket has been written) is a deterministic function of the number of

prior evict paths. The number of evict paths per epoch is similarly fixed (evict paths happen every

A accesses, and epochs are of fixed size). Obladi can then trivially revert the ORAM on failures

by setting the evict path counter to its value at the end of the last committed epoch. This counter

determines the number of evict paths that have occurred, and consequently the object versions of the

corresponding epoch.

Security. Obladi ensures that (i) the information logged for durability remains independent of data

accesses, and (ii) that the interactions between the failed epoch, the recovery logic, and the next

epoch preserve workload independence.

Obladi addresses the first issue by encrypting the position map and the contents of the permutations

table. It similarly encrypts the stash, but also pads it to its maximum size, as determined in canonical

Ring ORAM [164], to prevent it from indicating skew (if a small number of objects are accessed

frequently, the stash will tend to be smaller).

The second concern requires more care: workload independence must hold before, during, and after

failures. Ring ORAM guarantees workload independence through two invariants: the bucket invariant

and the path invariant (§6.3). Preserving bucket slots from being read twice between evictions is

straightforward. Obladi simply logs the invalid/valid map to track which slots have already been

read and recovers it during recovery; there is no need for encryption, as the set of slots read is public

information. Ensuring that the ORAM continues to observe a uniformly distributed set of paths

is instead more challenging. Specifically, read requests from partially executed transactions can

potentially leak information, even when recovering to the previous epoch. Traditionally, databases

simply undo partially executed transactions, mark them as aborted, and proceed as if they had never

existed. From a security standpoint, however, these transactions were still observed by the adversary,

and thus may leak information. Consider a transaction accessing object a (mapped to path 1) that

131

aborts because of a proxy failure. Upon recovery, it is likely that a client will attempt to access a

again. As the recovery logic restores the position map of the previous epoch, that new operation on a

will result in another access to path 1, revealing that the initial access to path 1 was likely real (rather

than padded), as the probability of collisions between two uniformly chosen paths is low. To mitigate

this concern while allowing clients to request the same objects after failure, Obladi durably logs

the list of paths and slot indices that it accesses, before executing the actual requests, and replays

those paths during recovery (remapping any real blocks). While this process is similar to traditional

database redo logging [137], the goal is different. Obladi does not try to reapply transactions (they

have all aborted), but instead forces the recovery logic to be deterministic: the adversary always sees

the paths from the aborted epoch repeated after a failure.

Optimizations. To minimize the overhead of checkpointing, Obladi checkpoints deltas of the position,

permutation, and valid/invalid map, and only periodically checkpoints the full data structures. While

the number of changes to the permutation and valid/invalid maps directly follows from the set of

physical requests made to cloud storage, the size of the delta for the position map reveals how many

real requests were included in an epoch—padded requests do not lead to position map updates.

Obladi thus pads the map delta to the maximum number of entries that could have changed in an

epoch (i.e., the read batch size times the number of read batches, plus the size of the single write

batch).

6.8 System Security

We now outline Obladi’s security guarantees, deferring a formal treatment to Appendix H. To the

best of our knowledge, we are the first to formalize the notion of crashes in the context of oblivious

RAM.

Model We express our security proof within the Universal Composability (UC) framework [43], as it

aligns well with the needs of modern distributed systems: a UC-secure system remains UC-secure

under concurrency or if composed with other UC-secure systems. Intuitively, proving security in the

UC model proceeds as follows. First, we specify an ideal functionality F that defines the expected

functionality of the protocol for both correctness and security. For instance, Obladi requires that

132

Idealised
Functionality

F
Simulator

SA

Client

Crash

Proxy

Adversary
A

(Storage
Server)

Client

Crash

Ideal World

Real World

OK/KO

Batch of
ORAM

requests
every delta

time

New Batch

Environment

Environment
≣

Figure 6.9: UC Framework

the execution be serializable, and that only the frequency of read and write batches be learned. We

must ensure that the real protocol provides the same functionality to honest parties while leaking no

more information than F would. To establish this, we consider two different worlds: one where the

real protocol interacts with an adversary A, and one where F interacts with SA, our best attempt at

simulating A. A’s transcript—including its inputs, outputs, and randomness—and SA’s output are

given to an environment E , which can also observe all communications within each world. E’s goal

is to determine which world contains the real protocol. To prompt the worlds to diverge, E can delay

and reorder messages, and even control external inputs (potentially causing failures). Intuitively, E

represents anything external to the protocol, such as concurrently executing systems. We say that the

real protocol is secure if, for any adversary A, we can construct SA such that E can never distinguish

between the worlds. We represent the situation pictorally in Figure 6.9.

Assumptions The security of Obladi relies on three assumptions. (i) Canonical Ring ORAM is

linearizable (ii) MVTSO generates serializable executions. (iii) The network will retransmit dropped

packets. The adversary learns of the retransmissions, but nothing more.

Ideal Functionality To define the ideal functionality FOb , recall that the proxy is considered

trusted while interactions with the cloud storage are not. This allows FOb to replace the proxy and

intermediate between clients and the storage server, performing the same functions as the proxy (we

do not try to hide the concurrency/batching logic). We must, however, define FOb to obliviously

hide data values and access patterns. To this end, when the proxy logic finalizes a batch, FOb simply

133

informs the storage server that it is executing a read or write batch. Since FOb is a theoretical ideal,

we allow it to manage all storage internally, so it then updates its local storage and furnishes the

appropriate response to each client.

In this setup, modeling proxy crashes is straightforward. Crashes can occur at any time and cause the

proxy to lose all state. So, on an external input to crash, FOb simply clears its state. Since we accept

that A may learn of proxy crashes, FOb also sends a message to the storage server that it has crashed.

Proof Sketch The correctness of the system is straightforward, as FOb behaves much the same as

the proxy.

To prove security, we must demonstrate that, for any algorithmA defining the behavior of the storage

server, we can accurately simulate A’s behavior using only the information provided by FOb . Note

that the simulator SA can run A internally, as A is simply an algorithm. Thus we can define SA to

operate as follows. When SA receives notification of a batch, it constructs a parallel ORAM batch

from uniformly random accesses of the correct type. It provides these accesses to A and produces

A’s response.

The security of this simulation hinges on two key properties: (i) the caching and deduplication

logic do not affect the distribution of physical accesses, and (ii) the physical access pattern of a

parallelized batch is entirely determined by the physical accesses proscribed by sequential Ring

ORAM for the same batch. The first follows from Ring ORAM’s guarantee that each access will

be an independent uniformly random path—removing an independently-sampled element does not

change the distribution of the remaining set. The second follows from the parallelization procedure

simply aggregating all accesses and performing all reads followed by all writes.

These properties ensure that the random access pattern produced by SA is identical to the access

pattern produced by the proxy when operating on real data. Thus the simulated A must behave

exactly as it would when provided with real data, and produce indistinguishable output.

134

6.9 Ensuring Data Integrity in Obladi

As we described in §6.1, we assume the untrusted storage server is honest-but-curious. In many cases

this is a very strong assumption that system operators may not be happy to make. We can remove this

requirement and add integrity to Obladi with the use of Message Authentication Codes (MACs) and

a trusted counter—used to ensure freshness—that persists across crashes. We describe this technique

here.

When we assumed the server was honest-but-curious, we assumed it could deny service, but would

otherwise correctly respond to all queries. In order to remove this assumption while maintaining

security, we must detect whether the storage server returns incorrect data. This reduces such attacks

to DoS attacks. To detect misbehaviour, the proxy must verify that the returned value is the value (i)

most recently written (ii) by the proxy (iii) to the specified location.

We can guarantee (ii) using MACs. At initialization, the proxy generates a secret MAC key (in

addition to its secret encryption key) and attaches a MAC to every piece of data it stores on the cloud

server. This allows the proxy to verify that the cloud server did not modify the data or manufacture

its own.

The use of MACs alone is insufficient to guarantee (i) and (iii), as the cloud server can provide an

old copy of the data or valid data from a different location, both of which will have valid MACs. We

additionally need to include a unique identifier that the proxy can easily recompute. For data that is

written at most once per epoch, this unique identifier can be the pair of epoch, ORAM location. Due

to Ring ORAM’s deterministic eviction algorithm, the proxy can compute the epoch during which

any given block was most recently written knowing only the current epoch counter and the early

reshuffle table.

There is exactly one value which is written multiple times per epoch: each read batch, of which there

may be many per epoch, logs the accessed locations. This means the counter associated with those

writes must uniquely identify the read batch, not just the epoch. In fact, since every epoch has the

same number of read batches, a read batch counter is sufficient for all values.

Handling Crashes The above modifications are sufficient to guarantee integrity if the proxy never

135

crashes. When the proxy crashes, however, it needs information from the cloud storage to recover.

To guarantee integrity—in particular freshness—of the recovery data, the epoch/read batch counter

we describe above must persist in a trustworthy fashion across failures. Perhaps the easiest way to

implement this requirement is to store the counter on a small amount of nonvolatile storage locally

on the proxy, but any trustworthy and persistent storage mechanism is sufficient.

This, of course, raises the question of when to update this trustworthy persistent counter. Once the

update occurs, a recovering proxy will expect the cloud storage to provide data associated with that

counter value. This means that the counter must be updated after writing to cloud storage. Because

a recovering proxy will be unaware of the newly-written data until the counter is updated, we do

not consider the write complete until the counter is properly updated. As usual, if the proxy crashes

while a write is in-progress, the write is simply rolled back.

As long as the storage server cannot learn anything from incomplete writes, this new strategy is

entirely secure. Because the timing of Obladi’s writes is completely deterministic and their locations

are determined entirely by the locations of prior reads, the fact that a write has aborted does not

inherently leak any information. The contents of the write, however, can still leak information. Most

data in the system is already encrypted, but one value is not: the read logs written during read batches.

The proxy can crash after sending data to the cloud server but before updating its trusted counter.

The storage server could withhold that data on recovery without detection and learn whether the

proxy accessed the same locations after recovery is complete. To fix this leak, we encrypt the read

batch logs in the cloud and update the counter after writing the log but before reading any values. In

this way, the cloud storage gains no information about what data will be read until after the write is

complete, at which point the proxy will always replay the read if a crash occurs. This removes the

leakage.

As we will see in Appendix H, these modifications are sufficient to guarantee both confidentiality and

integrity (though naturally not availability) even against an arbitrarily malicious cloud storage server.

136

Patients
PatientID

CreatorID

IsActive

[Metadata]

Users
UserID

Role

Login

[Metadata]

Episodes
EpisodeID

PatientID

CreatorID

[Metadata]

Episode
Contents

ContentID

EpisodeID

ContentType

XMLContent

Prescriptions
PrescriptionID

PatientID

DrugID

[Metadata]

Drugs
DrugID

Name

Interactions

[Metadata]

PMH
PMHID

PatientID

Type

[Metadata]

Figure 6.10: FreeHealth Database Architecture

6.10 Implementation

Our prototype consists of 41,000 lines of Java code. We use the Netty library for network communi-

cation (v4.1.20), Google protobuffers for serialization (v3.5.1), the Bouncy Castle library (v1.59)

for encryption, and the Java MapDB library (v3) for persistence. We additionally implement a

non-private baseline (NoPriv). NoPriv shares the same concurrency control logic (TSO), but replaces

the proxy data handler with non-private remote storage. NoPriv neither batches nor delays operations;

it buffers writes at the local proxy until commit, and serves writes locally when possible.

6.11 Evaluation

Obladi leverages the flexibility of transactional commits to mitigate the overheads of ORAM. To

quantify the benefits and limitations of this approach, we ask:

1. How much does Obladi pay for privacy? (§6.11.1)

2. How do epochs affect these overheads? (§6.11.2)

3. Can Obladi recover efficiently from failures? (§6.11.3)

Experimental Setup The proxy runs on a c5.xlarge Amazon EC2 instance (16 vCPUs, 32GB RAM),

and the storage on an m5.4xlarge instance (16 vCPUs, 64GB RAM). The ORAM tree is configured

with Z = 100 and optimal values of S and A (respectively, 196 and 168) [164]. We report the

average of three 90 seconds runs (30 seconds ramp-up/down).

137

TPC-C FreeHealth Smallbank

103

104

T
h

ro
u

gh
p

u
t

(T
rx

/s
)

Obladi

NoPriv

MySQL

ObladiW

NoPrivW

Figure 6.11: Application Throughput

Benchmarks We evaluate the performance of our system using three applications: TPC-C [63, 189],

SmallBank [63], and FreeHealth [77, 116]. Our microbenchmarks use the YCSB [55] workload

generator. TPC-C, the defacto standard for OLTP workloads, simulates the business logic of e-

commerce suppliers. We configure TPC-C to run with 10 warehouses [201]. In line with prior

transactional key-value stores [183], we use a separate table as a secondary index on the order

table to locate a customer’s latest order in the order status transaction, and on the customer

table to look up customers by their last names (order status and payment). Smallbank [63]

models a simple banking application supporting money transfers, withdrawals, and deposits. We

configure it to run with one million accounts. Finally, we port FreeHealth [77, 116], an actively-used

cloud EHR system (Figure 6.10). FreeHealth supports the business logic of medical practices and

hospitals. It consists of 21 transaction types that doctors use to create patients and look up medical

history, prescriptions, and drug interactions.

6.11.1 End-to-end Performance

Figures 6.14 and 6.12 summarize the results from running the three end-to-end applications in

two setups: a local setup in which the latency between proxy and server is low (0.3ms) (Obladi,

NoPriv), and a more realistic WAN setup with 10ms latency (ObladiW, NoPrivW). We additionally

compare those results with a local MySQL setup. MySQL, unlike NoPriv, cannot buffer writes. We

consequently do not evaluate MySQL in the WAN setting.

138

TPC-C FreeHealth Smallbank

101

102

L
at

en
cy

(m
s)

Obladi

NoPriv

MySQL

ObladiW

NoPrivW

Figure 6.12: Application Latency

TPC-C Obladi comes within 8× of NoPriv’s throughput, as NoPriv is contention-bottlenecked on

the high rate of conflicts between the new-order and payment transactions on the district

table. NoPriv’s performance is itself slightly higher than MySQL as the use of MVTSO allows for

the new-order and payment transactions to be pipelined. In contrast, MySQL acquires exclusive

locks for the duration of the transactions. Latency, however, spikes to 70× over NoPriv because of

the inflexible execution pattern Obladi needs for security. Transactions in TPC-C vary heavily in

size. Epochs must be large enough to accommodate all transactions, and hence artificially increase

the latency of short instances. Moreover, write operations must be applied atomically during epoch

changes. For a write batch size of 2,000, this process takes on average 340ms, further increasing

latency for individual transactions. The write-back process also limits throughput, even preventing

non-conflicting operations from making progress (in contrast, NoPriv can benefit from writes never

blocking reads in MVTSO). Epoch changes also introduce additional aborts for transactions that

straddle epochs. The additional 10ms latency of the WAN setting has comparatively little effect,

as the large write batch size of TPC-C is the primary bottleneck: throughput remains within 9x of

NoPrivW. Also NoPrivW’s performance does not degrade: since MVTSO exposes uncommitted

writes immediately, increasing commit latency does not increase contention.

Smallbank Transactions in Smallbank are more homogeneous (between three and six operations);

thus, the length of an epoch can be set to more closely approximate most transactions, reducing

139

latency overheads (17× NoPriv). NoPriv is CPU bottlenecked for Smallbank; the relative throughput

drop for Obladi is higher (12×) because of the overhead of changing epochs and the blocking

that it introduces. Transaction dependency tracking becomes a bottleneck in NoPriv, resulting in

a 15% throughput loss over MySQL. Increasing latency between proxy and storage causes both

systems’ throughput to drop. ObladiW’s 35% drop is due to the increased duration of epoch changes

(during which no other transactions can execute) while NoPrivW’s 30% drop stems from the larger

dependency chains that arise from the relatively long commit phase.

FreeHealth Like SmallBank, FreeHealth consists of fairly short transactions and can thus choose a

fairly small epoch (five read batches), reducing the impact on latency (20× NoPriv). Unlike Smallbank,

however, FreeHealth consists primarily of read operations, and so it can choose a much smaller write

batch (200), minimizing the cost of epoch changes and maximizing throughput (only a 4× drop over

NoPriv and a 5.5× over NoPrivW for ObladiW). Both NoPriv and Obladi are contention-bottlenecked

on the creation of episodes, the core units of EHR systems that encapsulate prescriptions, medical

history, and patient interaction.

6.11.2 Impact of Epochs

Though epochs create blocking and cause aborts, they are key to reducing the cost of accessing

ORAM, as they allow to (i) securely parallelize the ORAM and (ii) delay and buffer bucket writes.

To quantify epochs’ impact on performance as a function of their size and the underlying storage

properties, we instantiate an ORAM with 100K objects and choose three different storage backends:

a local dummy (storing no real data) that responds to all reads with a static value and ignores writes

(dummy); a remote server backend with an in-memory hashmap (server, ping time 0.3ms) and a

remote WAN server backend with an in-memory hashmap (server WAN, ping time 10ms); and

DynamoDB (dynamo, provisioned for 80K req/s, read ping 1ms, write 3ms).

Parallelization We first focus on the performance impact of parallelizing Ring ORAM (ignoring

other optimizations). Graph 6.13 shows that, unsurprisingly, the benefits of parallelism increase

with the latency of individual requests. Parallelizing the ORAM for dummy, for instance, yields no

performance gain; in fact, it results in a 3× slowdown (from 72K req/s to 24K req/s). Sequential Ring

ORAM on dummy is CPU-bound on metadata computation (remapping paths, shuffling buckets,

140

Dummy Server Server WAN Dynamo

101

102

103

104

105

T
h

ro
u

g
h

p
u

t
(o

p
s/

s)

Sequential

Parallel

ParallelCrypto

Figure 6.13: Parallelism (Batch Size 500)

1 10 100 500 1000 2000 5000 10000
0

2000

4000

6000

8000

10000

12000

14000

T
h

ro
u

gh
p

u
t

(o
p

s/
s)

Dummy

Server

Server WAN

Dynamo

Figure 6.14: Batch Size Throughput

etc.), so adding coordination mechanisms to guarantee multi-level serializability only increases the

cost of accessing a bucket. As storage access latency increases and the ORAM becomes I/O-bound,

the benefits of parallelism become more salient. For a batch size of 500, throughput increases by 12×

for server, as much as 51× for dynamo, and 510× for WAN server. The available parallelism

is a function of both the size/fan-out of the tree and the underlying resource bottlenecks of the proxy.

Graph 6.14 captures the parallelization speedup for both intra- and inter-request parallelism, while

Graph 6.14 quantifies the latency impact of batching. The parallelization speedup achieved for a

batch size of one captures intra-request parallelism: the eleven levels of the ORAM can be accessed

141

1 10 100 500 1000 2000 5000 10000
0

1000

2000

3000

4000

5000

L
at

en
cy

(m
s)

Dummy

Server

Server WAN

Dynamo

Figure 6.15: Batch Size Latency

Dummy Server Server WAN Dynamo
0

2000

4000

6000

8000

10000

T
h

ro
u

gh
p

u
t

(o
p

s/
s)

Normal

Write Back

Figure 6.16: Delayed Visibility

concurrently, yielding an 11× speedup. As batch sizes increase, Obladi can leverage inter-request

parallelism to process non-conflicting physical operations in parallel, with little to no impact on

latency. Dynamo peaks early (at 1750 req/s) because its client API uses blocking HTTP calls, and

dummy’s storage eventually bottlenecks on encryption, but server and WAN server are more

interesting. Their throughput is limited by the physical and data dependencies on the upper levels of

the tree (recall that paths always conflict at the root (§6.6)).

Work Reduction To amortize ORAM overheads across a large number of operations, Obladi relies

on delayed visibility to buffer bucket writes until the end of an epoch, when they can be executed in

parallel, discarding intermediate writes. Reads to those buckets are directly served from the proxy,

142

2
1

2
3

2
5

2
7

Batch Size

0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e
In

cr
ea

se

Dummy

Server

Server WAN

Dynamo

Figure 6.17: Epoch Size Impact - ORAM

reducing network communication and CPU work (as encryption is not needed). Graph 6.16 shows

that enabling this optimization for an epoch of eight batches (a setup suitable for FreeHealth and

TPC-C) yields a 1.5× speedup on both dynamo and the server, a 1.6× speedup on the WAN server,

but only minimal gains for dummy (1.1×). When using a small number of batches, throughput gains

come primarily from combining duplicate operations in buckets near the top of the tree. For example,

the root bucket is written 27 times in an epoch of size eight (once per eviction, every 168 requests).

As these operations conflict, they must be executed sequentially and quickly become the bottleneck

(other buckets have fewer operations to execute). Our optimization lets Obladi write the root bucket

only once, significantly reducing latency and thus increasing throughput. As epochs grow in size,

increasingly many buckets are buffered locally until the end of the epoch (§6.6), allowing reads to be

served locally and further reducing I/O with the storage. Consider Graph 6.17: throughput increases

almost logarithmically; metadata computation eventually becomes a bottleneck for dummy, while

server and server WAN eventually run out of memory from storing most of the tree (our AWS

account did not allow us to provision dynamo adequately for larger batches). Larger epochs reduce

the raw amount of work per operation: with one batch, Obladi requires 41 physical requests per

logical operation, but only requires 24 operations with eight batches. For real transactional workloads,

however, epochs are not a silver bullet. Graph 6.18 suggests that applications are very sensitive to

identifying the right epoch duration: too short and transactions cannot make progress, repeatedly

143

0 25 50 75 10
0

12
5

15
0

Epoch Size (ms)

0

500

1000

1500

2000

T
h

ro
u

gh
p

u
t

(t
rx

/s
)

SmallBank

FreeHealth

TPC-C

Figure 6.18: Epoch Size Impact - Proxy

aborting; too long and the system will remain unnecessarily idle.

6.11.3 Durability

Table 6.20 quantifies the efficiency of failure recovery and the cost it imposes on normal execution

for ORAMS of different sizes (we show space results for only the WAN server as Dynamo follows a

similar trend). During normal execution, durability imposes a moderate throughput drop (from 0.83×

for 10K to 0.89× for 1M). This slowdown is due to the need to checkpoint client metadata and to

synchronously log read paths to durable storage before reading. As seen in Graph 6.19, computing

diffs mitigates the impact of checkpointing. Recovery time similarly increases as the ORAM grows,

from 1.5s to 6.1s (Table 6.20, RecTime). The costs of decrypting the position and permutation maps

(Pos and Perm) are low for small datasets, but grow linearly with the number of keys. Read path

logging (Paths) instead starts much larger, but grows only with the depth of the tree.

6.12 Related Work

Batching Obladi amortizes ORAM costs by grouping operations into epochs and committing at

epoch boundaries. Batching can mitigate expensive security primitives, e.g., it reduces server-

side computation in private information retrieval (PIR) schemes [30, 90, 95, 121], amortizes the

cost of shuffling networks in Atom [110] and the cost of verifying integrity in Concerto [18].

144

1 4 16 64 256
0

1000

2000

3000

4000

5000

6000

7000

8000

T
h

ro
u

gh
p

u
t

(o
p

s/
s)

Server

Server WAN

Dynamo

Figure 6.19: Checkpoint Frequency (100K)

10K 100K 1M
Levels 7 11 14

Slowdown 0.83 0.88 0.89
RecTime 1452 2604 6080
Network 182 681 848

Pos 8 74 1610
Perm 15 218 1424
Paths 864 1104 1341

Figure 6.20: Server Wan Recovery Time (ms)

Changing when operations output commit is a popular performance-boosting technique: it yields

significant gains for state-machine replication [98, 104, 157], file systems [142], and transactional

databases [58, 129, 191].

ORAM parallelism Obladi extends recent work on parallel ORAM constructions [37, 120, 199] to

extract parallelism both within and across requests. Shroud [120] targets intra-request parallelism by

concurrently accessing different levels of tree-based ORAMs. Chung et al [38] and PrivateFS [199]

instead target inter-request parallelism, respectively in tree-based [175] and hierarchical [198]

ORAMs. Both works execute requests to distinct logical keys concurrently between reshuffles or

evictions and deduplicate concurrent requests for the same key to increase parallelism. Obladi

leverages delayed visibility to separate batches into read and write phases, extracting concurrency

both within requests and across evictions. Furthermore, Obladi parallelizes across requests by

145

deduplicating requests at the trusted proxy.

ObliviStore [181] and Taostore [167] instead approach parallelization by focusing on asynchrony.

ObliviStore [181] formalizes the security challenges of scheduling requests asynchronously; the

oblivious scheduling mechanism that it presents for that model however is computationally expensive

and requires a large stash, making ObliviStore unsuitable for implementing ACID transactions.

Like ObliviStore, Taostore leverages asynchrony to parallelize Path ORAM [182], a tree-based

construction from which Ring ORAM descends. Taostore, however, targets a different threat model:

it assumes both that requests must be processed immediately, and that the timing of responses is

visible to the adversary. Request latencies thus necessarily increase linearly with the number of

clients [199].

Hiding access patterns for non-transactional systems Many systems seek to provide access pattern

protections for analytical queries: Opaque [206] and Cipherbase [17] support oblivious operators for

queries that scan or shuffle full tables. Both rely on hardware enclaves for efficiency: Opaque runs a

query optimizer in SGX [94], while Cipherbase leverages secure co-processors to evaluate predicates

more efficiently. Others seek to hide the parameters of the query rather than the query itself: Olumofin

et al. [145] do it via multiple rounds of keyword-based PIR operations [51]; Splinter [194] reduces

the number of round-trips necessary by mapping these database queries to function secret sharing

primitives. Finally, ObliDB [70] adds support for point queries and efficient updates by designing

an oblivious B-tree for indexing. The concurrency control and recovery mechanisms of all these

approaches introduce timing channels and structure writes in ways that leak access patterns [17].

Encryption Many commercial systems offer the possibility to store encrypted data [67, 169]. Effi-

ciently executing data-dependent queries like joins, filters, or aggregations without knowledge of

the plaintext is challenging: systems like CryptDB [156], Monomi [190], and Seabed [152] tailor

encryption schemes to allow executing certain queries directly on encrypted data. Others leverage

trusted hardware [27]. In contrast, executing transactions on encrypted data is straightforward:

neither concurrency control nor recovery requires knowledge of the plaintext data.

146

6.13 Limitations

Obladi also has several limitations. First, like most ORAMs that regulate the interactions of multiple

clients, it relies on a local centralized proxy, which introduces issues of fault-tolerance and scalability.

Second, Obladi does not currently support range or complex SQL queries. Addressing the consistency

challenge of maintaining oblivious indices [17, 70, 206] in the presence of transactions is a promising

avenue for future work.

6.14 Conclusion

This chapter presents Obladi, a system that, for the first time, considers the security challenges

of providing ACID transactions without revealing access patterns. Obladi guarantees security and

durability at moderate cost through two simple observations: transactional guarantees are only

required to hold for transactions that clients observe as committed, and commit notifications can be

delayed. By delaying commits until the end of epochs, Obladi inches closer to providing practical

oblivious ACID transactions.

147

Chapter 7

Conclusion

This dissertation argued that accessing cloud storage as a black-box requires revisiting how correct-

ness guarantees are expressed and proposes taking a client-centric approach to system development.

Such an approach has both semantic and practical benefits. From a semantic standpoint, we showed

that it makes it easier to understand, compare and relate database isolation guarantees [58]. Second,

we demonstrated that it can simplify the handling of write-write conflicts in causal consistency [59].

The performance benefits are also salient: taking a client-centric approach to enforcing serializability

allowed us to design transactional cloud storage systems that provably hide accesses to user data [57].

7.1 Other Work

This section briefly summarises work to which I made significant contributions to but will not be

included in the PhD dissertation.

Occult Occult [129] In existing causal systems, such as COPS [118] or Eiger [119], a datacenter

performs a write operation only after applying all writes that causally precede it. This approach

guarantees that reads never block, as all replicas are always in a causally consistent state, but, in the

presence of slow or failed shards, may cause writes to be buffered for arbitrarily long periods of time,

delaying the visibility of updates across all shards. These slowdown cascades thus violate a basic

commandment for scalability: do not let your performance be determined by the slowest component

148

in your system. To resolve this issue, we propose to revisit what implementing causal consistency

actually requires: for clients’s reads to reflect a causal snapshot of the system. The underlying system

itself need never store a causally consistent state, as long as it appears indistinguishable to clients

from a system that does! We suggest shifting the burden of enforcing causal consistency from the

datastore to those actually perceiving consistency anomalies, the clients. This approach- allows

Occult to make its updates available as soon as it receives them, without having to first apply all

causally preceding writes. Causal consistency is then enforced by clients on reads, but only for

those updates that they are actually interested in observing, removing all prior artificial delays. By

leveraging intelligent timestamp compression techniques to implement this client-centric causal

consistency, Occult becomes impervious to slowdown cascades at a moderate cost of 10% throughput

reduction.

Popcorn [90] Popcorn implements a Netflix-like delivery system that provably hides which movies

users access. Popcorn does this with moderate cost, while respecting the current legal framework

for media dissemination. Popcorn takes as its starting point Private Information Retrieval (PIR) and

makes three observations. First, Popcorn combines the two types of PIR: large media objects are

retrieved using the lighter weight ITPIR [52] for performance, while the smaller decryption keys

are stored at a centralised Netflix-like server and retrieved using the heavier-weight CPIR [109].

Second, Popcorn amortises the high linear cost of PIR by batching requests from large number

of concurrent clients accessing the service. Popcorn further leverages the specificities of media

streaming to create large batches without introducing playback delays. Third, Popcorn side-steps

the fixed size object requirement of PIR with minimal overhead by observing that the size of media

objects can be modulated by changing their bitrate. We find that, while Popcorn has high overheads

(1080x CPU and 14x I/O bandwidth), it can scale to Netflix-sized libraries and successfully stream

movies at a reasonable dollar-cost.

Tebaldi [183] Tebaldi, a transactional key-value store, harnesses the performance opportunities of-

fered by federating optimised concurrency controls. Tebaldi partitions conflicts between transactions

hierarchically and matches them to specialised concurrency controls (CCs). Tebaldi’s secret sauce

lies in reasoning about concurrency control mechanisms in terms of the ordering decisions that

they make. Ordering decisions provide a common language to (i) correctly compose concurrency

149

controls’ guarantees and (ii) efficiently compose their implementation. To achieve this, Tebaldi’s

framework for CC coordination observes that, despite their diversity, the steps taken by most CC

protocols to order a transaction can be decomposed into four phases. In each phase, Tebaldi allows

concurrency controls to constrain, delegate, or follow the ordering decisions of the other concurrency

controls. These well-defined and narrow communication channels allow for the implementation of

each concurrency control to remain independent of other CCs in the system and for new CCs to be

added when necessary. Tebaldi achieves over 3.7× the throughput of other federated systems.

Musketeer [81] Musketeer, a framework for large-scale distributed processing, decouples how data

processing workflows are defined from how they are executed. To do so, it identifies a common

intermediate abstraction that captures the semantics of most data processing computations: a direct

acyclic graph (DAG) of data-flow operators, based on the relational algebra. Musketeer then takes

jobs written in existing workflow specification languages (Hive, Lindi, GraphLinq, etc.), maps them

to this intermediate abstraction, and compiles them dynamically to the best data-processing system(s).

Our prototype speeds up realistic workflows by up to 9x by targeting different execution engines,

without requiring any manual effort. The overheads of federation remain moderate: Musketeer’s

automatically generated back-end code comes within 5%–30% of the performance of hand-optimized

implementations.

7.2 Acknowledgements

I would like to acknowledge the work of my co-authors in this dissertation: Youer Pu was essential

in proving equivalences to existing isolation guarantees in Chapter 3 and to proving the causal

consistency result in Chapter 4. Matthew Burke implemented the parallel version of RingORAM

in Chapter 5 and Ethan Cecchetti helped prove the security of the system. I would also like to

acknowledge Sitar Harel, Rachit Agarwal, Lorenzo Alvisi, Allen Clement, Nancy Estrada and

Trinabh Gupta for their role in various parts of the papers from which this thesis derives.

I am grateful for the support I received from Google through the Google Doctoral Fellowship, from

the University of Texas at Austin through the Harrington Fellowship, from Microsoft Research

through the Microsoft Diversity Fellowship, and to the National Science Foundation through grants

150

1762015 (CSR: Small: Client-Centric Consistency) and 1758043 (CSR: Medium: Salt: combining

ACID and BASE in a distributed database).

151

Appendix

152

A Equivalence to Adya et al.

In this section, we prove the following theorems:

Theorem 1 ∃e : ∀T ∈ T : CTSER(T, e) ≡ ¬G1 ∧ ¬G2 (§A.2).

Theorem 2 ∃e : ∀T ∈ T : CTSI(T, e) ≡ ¬G1 ∧ ¬G-SI (§A.3).

Theorem 3 ∃e : ∀t ∈ T : CTRC(T, e) ≡ ¬G1 (§A.4).

Theorem 4 ∃e : ∀T ∈ T : CTRU (T, e) ≡ ¬G0 (§A.5).

A.1 Adya et al. model [4] summary

Adya et al. [4] introduces a cycle-based framework for specifying weak isolation levels. We summa-

rize its main definitions and theorems here.

To capture a given system run, Adya uses the notion of history.

Definition 3 A history H over a set of transactions consists of two parts: i) a partial order of events

E that reflects the operations (e.g., read, write, abort, commit) of those transactions, and ii) a version

order, <<, that is a total order on committed object versions.

We note that the version-order associated with a history is implementation specific. As stated in

Bernstein et al [32]: as long as there exists a version order such that the corresponding direct

serialization graph satisfies a given isolation level, the history satisfies that isolation level. The model

introduces several types of direct read/write conflicts, used to specify the direct serialization graph.

Definition 4 Direct conflicts:

Directly write-depends Ti writes a version of x, and Tj writes the next version of x, denoted as

Ti
ww−−→ Tj

Directly read-depends Ti writes a version of x, and Tj reads the version of x Ti writes, denoted as

Ti
wr−→ Tj

Directly anti-depends Ti reads a version of x, and Tj writes the next version of x, denoted as

Ti
rw−→ Tj

153

Definition 5 Time-Precedes Order. The time-precedes order, ≺t , is a partial order specified for

history H such that:

1. bi ≺t ci, i.e., the start point of a transaction precedes its commit point.

2. for all i and j, if the scheduler chooses Tj’s start point after Ti ’s commit point, we have ci ≺t bj;

otherwise, we have bj ≺t ci.

Definition 6Direct Serialization Graph. We define the direct serialization graph arising from a history

H, denoted DSG(H), as follows. Each node in DSG(H) corresponds to a committed transaction in

H and directed edges correspond to different types of direct conflicts. There is a read/write/anti-

dependency edge from transaction Ti to transaction Tj if Tj directly read/write/antidepends on

Ti.

The model is augmented with a logical notion of time, used to define the start-ordered serialization

graph.

Definition 7 Start-Depends. Tj start-depends on Ti if ci ≺t bj i.e., if it starts after Ti commits. We

write Ti
sd−→ Tj

Definition 8 Start-ordered Serialization Graph or SSG. For a history H, SSG(H) contains the same

nodes and edges as DSG(H) along with start-dependency edges.

The model introduces several phenomema, of which isolation levels proscribe a subset.

Definition 9 Phenomena:

G0: Write Cycles A history H exhibits phenomenon G0 if DSG(H) contains a directed cycle

consisting entirely of write-dependency edges.

G1a: Dirty Reads A history H exhibits phenomenon G1a if it contains an aborted transaction Ti

and a committed transaction Tj such that Tj has read an object (maybe via a predicate) modified

by Ti.

G1b: Intermediate Reads A history H exhibits phenomenon G1b if it contains a committed trans-

action Tj that has read a version of object x written by transaction Ti that was not Ti’s final

modification of x.

154

G1c: Circular Information Flow A history H exhibits phenomenon G1c if DSG(H) contains a

directed cycle consisting entirely of dependency edges.

G2: Anti-dependency Cycles A history H exhibits phenomenon G2 if DSG(H) contains a directed

cycle having one or more anti-dependency edges.

G-Single: Single Anti-dependency Cycles DSG(H) contains a directed cycle with exactly one

anti-dependency edge.

G-SIa: Interference A history H exhibits phenomenon G-SIa if SSG(H) contains a read/write-

dependency edge from Ti to Tj without there also being a start-dependency edge from Ti to

Tj .

G-SIb: Missed Effects A history H exhibits phenomenon G-SIb if SSG(H) contains a directed

cycle with exactly one anti-dependency edge.

Definition 10 Each isolation level is defined as proscribing one or more of these phenomena

Serializability (PL-3) ¬G1 ∧ ¬G2

Read Committed (PL-2) ¬G1

Read Uncommitted (PL-1) ¬G0

Snapshot Isolation ¬G1 ∧ ¬G-SI

A.2 Serializability

Theorem 1. ∃e : ∀T ∈ T .CTSER(T, e) ≡ ¬G1 ∧ ¬G2.

Proof. (⇒) We first prove ¬G1 ∧ ¬G2⇒ ∃e : ∀T ∈ T : CTSER(T, e).

Let H define a history over T = {T1, T2, ..., Tn} and let DSG(H) be the corresponding direct seri-

alization graph. Together ¬G1c and ¬G2 state that the DSG(H) must not contain anti-dependency

or dependency cycles:DSG(H) must therefore be acyclic. Let i1, ...in be a permutation of 1, 2, ..., n

such that Ti1 , ..., Tin is a topological sort of DSG(H) (DSG(H) is acyclic and can thus be topo-

logically sorted). We construct an execution e according to the topological order defined above:

155

e : s0 → sTi1
→ sTi2

→ ...→ sTin
and show that ∀t ∈ T .CTSER(T, e). Specifically, we show that

for all T = Tij , COMPLETEe,Tij
(sTij−1

) where sTij−1
is the parent state of Tij .

Consider the three possible types of operations in Tij :

1. External Reads: an operation reads an object version that was created by another transaction.

2. Internal Reads: an operation reads an object version that it itself created.

3. Writes: an operation creates a new object version.

We show that the parent state of Tij is included in the read set of each of those operation types:

1. External Reads. Let rij (xik) read the version for x created by Tik , where k 6= j.

We first show that sTik

∗−→ sTij−1
. As Tij directly read-depends on Tik , there must exist an edge

Tik
wr−→ Tij in DSG(H), and Tik must therefore be ordered before Tij in the topological sort of

DSG(H) (k < j). Given e was constructed by applying every transaction in T in topological

order, it follows that sTik

∗−→ sTij−1
.

Next, we argue that the state sTij−1
contains the object-value pair (x, xik). Specifically, we show

that there does not exists a sTil
, where k < l < j, such that Til writes a different version of x.

We prove this by contradiction. Consider the smallest such l: Tij reads the version of x written

by Tik and Til writes a different version of x. Til , in fact, writes the next version of x as e is

constructed according to ww dependencies: if there existed an intermediate version of x, then

either Til was not the smallest transaction, or e does not respect ww dependencies. Note that

Tij thus directly anti-depends on Til , i.e. Tij
rw−→ Til . As the topological sort of DSG(H) from

which we constructed e respects anti-dependencies, we finally have sij
∗−→ sTil

, i.e. j ≤ l, a

contradiction. We conclude: (x, xik) ∈ sTij−1
, and therefore sTij−1

∈ RSe(rij (xik)).

2. Internal Reads. Let rij (xij) read xij such that w(xij)
to−→ r(xij). By definition, the read state set

of such an operation consists of ∀s ∈ Se : s
∗−→ sp. Since sTij−1

is Tij ’s parent state, it trivially

follows that sTij−1
∈ RSe(rij (xij)).

3. Writes. Let wij (xij) be a write operation. By definition, its read state set consists of all the states

before sTij
in the execution. Hence it also trivially follows that sTij−1

∈ RSe(wij (xij)).

156

Thus sTij−1
∈

⋂
o∈ΣTij

RSe(o). We have COMPLETEe,Tij
(sTij−1

) for any Tij : ∀T ∈ T : CTSER(T, e).

(⇐) We next prove ∃e : ∀T ∈ T : CTSER(T, e)⇒ ¬G1 ∧ ¬G2.

To do so, we prove the contrapositive G1 ∨ G2⇒ ∀e ∃T ∈ T : ¬CTSER(T, e). Let H be a history

that displays phenomena G1 or G2. We generate a contradiction. Consider any execution e such that

∀T ∈ T : CTSER(T, e). We first instantiate the version order for H , denoted as <<, as follows:

given an execution e and an object x, xi << xj if and only if x ∈ WTi ∩WTj ∧ sTi

∗−→ sTj . First,

we show that:

Claim 1 Ti → Tj in DSG(H)⇒ sTi

∗−→ sTj in the execution e (i 6= j).

Proof. Consider the three edge types in DSG(H):

Ti
ww−−→ Tj There exists an object x s.t. xi << xj (version order). By construction, we have

sTi

∗−→ sTj .

Ti
wr−→ Tj There exists an object x s.t. Tj reads version xi written by Ti. Let sTk

be the parent state

of sTj , i.e. sTk
→ sTj . By assumption CTSER(e, T) (T = Tj), i.e. COMPLETEe,Tj (sTk

), hence we

have (x, xi) ∈ sTk
. For the effects of Ti to be visible in sTk

, Ti must have been applied at an earlier

point in the execution. Hence we have: sTi

∗−→ sTk
→ sTj .

Ti
rw−→ Tj There exist an object x s.t. Ti reads version xm written by Tm, Tj writes xj and

xm << xj . By construction, xm << xj implies sTm

∗−→ sTj . Let sTk
be the parent state of sTj , i.e.

sTk
→ sTi . As CTSER(e, T), where t = Tj , holds by assumption, i.e. COMPLETEe,Ti(sTk

), the key-

value pair (x, xm) ∈ sTk
, hence sTm

∗−→ sTk
as before. In contrast, sTi

∗−→ sTj : indeed,(x, xm) ∈ sTk

and xm << xj . Hence, Tj has not yet been applied. We thus have sTk
−→ sTi

∗−→ sTj .

We now derive a contradiction in all cases of the disjunction G1 ∨ G2:

• Let us assume that H exhibits phenomenon G1a (aborted reads). There must exists events

wi(xi), rj(xi) in H such that Ti subsequently aborted. T and any corresponding execution e,

however, consists only of committed transactions. Hence ∀e :6 ∃s ∈ Se, s.t. s ∈ RSe(rj(xi)): no

157

complete state can exists for Tj . There thus exists a transaction for which the commit test cannot

be satisfied, for any e. We have a contradiction.

• Let us assume that H exhibits phenomenon G1b (intermediate reads). In an execution e, only the

final writes of a transaction are applied. Hence, 6 ∃s ∈ Se, s.t. s ∈ RSe(r(xintermediate)). There

thus exists a transaction, which for all e, will not satisfy the commit test. We once again have a

contradiction.

• Finally, let us assume that the history H displays one or both phenomena G1c or G2. Any history

that displays G1c or G2 will contain a cycle in the DSG. Hence, there must exist a chain of

transactions Ti → Ti+1 → ... → Tj such that i = j in DSG(H). By Claim 1, we thus have

sTi

∗−→ sTi+1

∗−→ . . .
∗−→ sTj for any e. By definition however, a valid execution must be totally

ordered. We have our final contradiction.

All cases generate a contradiction. We have G1 ∨ G2 ⇒ ∀e : ∃T ∈ T : ¬CTSER(e, T). This

completes the proof.

A.3 Snapshot Isolation

Theorem 2. ∃e : ∀T ∈ T .CTSI(T, e) ≡ ¬G1 ∧ ¬G-SI

Proof. (⇒) We first prove ¬G1 ∧ ¬G-SI⇒ ∃e : ∀T ∈ T : CTSI(T, e).

Commit Test We can construct an execution e such that every committed transaction satisfies

the commit test CTSI(e, T). Let i0, ...in be a permutation of 1, 2, ..., n such that Ti1 , ..., Tin are

sorted according to their commit point. We construct an execution e according to the topological

order defined above: e : s0 → sTi1
→ sTi2

→ ... → sTin
and show that ∀T ∈ T .CTSI(T, e).

Specifically, we prove the following: consider the largest k such that Tik
sd−→ Tij , i.e. cTik

≺t bTij

then COMPLETEe,Tij
(sTik

) ∧ (∆(sTik
, sTij−1

) ∩WsTij
= ∅).

Complete State We first prove that COMPLETEe,Tij
(sTik

). Consider the three possible types of opera-

tions in Tij :

1. External Reads: an operation reads an object version that was created by another transaction.

158

2. Internal Reads: an operation reads an object version that itself created.

3. Writes: an operation creates a new object version.

We show that the sTik
is included in the read set of each of those operation types:

1. External Reads. Let rij (xiq) read the version for x created by Tiq , where q 6= j.

We first show that sTiq

∗−→ sTik
. As Tij directly read-depends on Tiq , there must exist an edge

Tiq
wr−→ Tij in SSG(H). Given that H disallows phenomenon G-SIa by assumption, there must

therefore exist a start-dependency edge Tiq
sd−→ Tij in SSG(H). Therefore we have cTiq

≺t bTij
.

By definition of time-precedes order, bTij
≺t cTij

. By transitivity of the partial order cTiq
≺t cTij

.

Given e was constructed by applying every transaction T in topological order of c, and that we

select the largest k such that Tik
sd−→ Tij , it follows that q ≤ k < j and sTiq

∗−→ sTik

+−→ sTij
.

Next, we argue that the state sTik
contains the object value pair (x, xiq). Specifically, we argue that

there does not exist a sTim
, where q < m ≤ k, such that Tim writes a new version of x. We prove

this by contradiction. Consider the smallest such m: Tik reads the version of x written by Tiq and

Tim writes the next version of x. Tij thus directly anti-depends on Tim— i.e., Tij
rw−→ Tim . Given

that in time-precedes order, for any two transactions, the start point of one is always comparable

to the commit point of the other, we necessarily have bTij
≺t cTim

. Otherwise we would have

cTij
≺t bTim

≺t cTim
, i.e. cTij

≺t cTim
, which is inconsistent with the order defined by the

execution. In addition, it holds by assumption that Tik
sd−→ Tij . We can conclude that cTik

≺t bTij
.

Combined with bTij
≺t cTim

, we will have cTik
≺t cTim

. However, we constructed the execution

respecting the time-precedes order of commit point. We have a contradiction. Hence we conclude:

(x, xiq) ∈ sTik
and therefore sTik

∈ RSe(rij (xiq)).

2. Internal Reads. Let rij (xij) read xij such that wij (xij)
to−→ rij (xij). By definition, the read state

set of such an operation consists of ∀s ∈ Se : s
∗−→ sp. Since sTik

precedes sTij
in the topological

order (Tik
sd−→ Tij , therefore cTik

≺t bTij
. Combined with bTij

≺t cTij
, we have cTik

≺t cTij
.

and e respects time-precedes order) , it trivially follows that sTik
∈ RSe(rij (xij)).

3. Writes. Let wij (xij) be a write operation. By definition, its read state set consists of all the states

before sTij
in the execution. Hence it also trivially follows that sTik

∈ RSe(wij (xij)).

159

Thus sTik
∈

⋂
o∈ΣTij

RSe(o).

Distinct Write Sets We now prove the second half of the commit test: (∆(sTik
, sTij−1

)∩WsTij
= ∅)

We prove this by contradiction. Consider the largest m, where k < m < j such that WsTim
∩

WsTij
6= ∅. Tim thus directly write-depends on Tij , i.e. Tim

ww−−→ Tij . By assumption, H proscribes

phenomenon G-SIa. Hence, there must exist an edge Tim
sd−→ Tij in SSG(H). Similarly, we have

cTik
≺t bTij

≺t cTij
, i.e. cTik

≺t cTij
As e respects time-precedes order of commit points, it

follows that sim
+−→ sij (m < j). By assumption however, Tik is the latest transaction in e such

that Tik
sd−→ Tij , so m ≤ k. Since we had assumed that k < m < j, we have a contradiction. Thus,

∀m, k < m < j,WsTim
∩ WsTij

= ∅. We conclude that ∆(sTik
, sTij−1

) ∩ WsTij
= ∅ We have

COMPLETEe,Tij
(sTik

) ∧ (∆(sTik
, sTij−1

) ∩WsTij
= ∅) for any Tij : ∀T ∈ T : CTSI(T, e).

(⇐) We next prove ∃e : ∀T ∈ T : CTSI(T, e)⇒ ¬G1 ∧ ¬G-SI.

Let e be an execution such that ∀T ∈ T : CTSI(T, e), and H be a history for committed transactions

T . We first instantiate the version order for H , denoted as <<, as follows: given an execution e and

an object x, xi << xj if and only if x ∈ WTi ∩WTj ∧ sTi

∗−→ sTj . It follows that, for any two states

such that (x, xi) ∈ Tim ∧ (x, xj) ∈ Tin ⇒ sTm

+−→ sTn . We next assign the start and commit points

of each transaction. We assume the existence of a monotonically increasing timestamp counter: if a

transaction Ti requests a timestamp ts, and a transaction Tj subsequently requests a timestamp ts′,

then ts < ts′. Writing e as s0 → sT1 → sT2 → · · · → sTn , our timestamp assignment logic is then

the following:

1. Let i = 0.

2. Set s = sTi ; if i = 0, s = s0.

3. Assign a commit timestamp to Tsi if i 6= 0.

4. Assign a start timestamp to all transactions Tk such that Tk satisfies

COMPLETEe,Tk
(s) ∧ (∆(s, sp(Tk)) ∩WsTk

= ∅) and Tk does not already have a start timestamp.

5. Let i = i+ 1. Repeat 1-4 until the final state in e is reached.

We can relate the history’s start-dependency order and execution order as follows:

160

Claim 2 ∀Ti, Tj ∈ T : sTj

∗−→ sTi ⇒ ¬Ti
sd−→ Tj

Proof. We have Ti
sd−→ Tj ⇒ ci ≺t bj by definition. Moreover, the start point of a transaction Ti

is always assigned before its commit point. Hence: ci ≺t bj ≺t cj . It follows from our timestamp

assignment logic that sTi

+−→ sTj . We conclude: Ti
sd−→ Tj ⇒ sTi

+−→ sTj . Taking the contrapositive

of this implication completes the proof.

G1 We first prove that: ∀T ∈ T : CTSI(T, e)⇒ ¬G1. We do so by contradiction for each of G1a,

G1b, G1c.

G1a Let us assume that H exhibits phenomenon G1a (aborted reads). There must exist events

wi(xi), rj(xi) inH such that Ti subsequently aborted. T and any corresponding execution e, however,

consists only of committed transactions. Hence ∀e :6 ∃s ∈ Se : s ∈ RSe(rj(xi)): no complete state

can exists for Tj . There thus exists a transaction for which the commit test cannot be satisfied, for

any e. We have a contradiction.

G1b Let us assume that H exhibits phenomenon G1b (intermediate reads). In an execution e, only

the final writes of a transaction are applied. Hence,6 ∃s ∈ Se : s ∈ RSe(r(xintermediate)). There

thus exists a transaction, which for all e, will not satisfy the commit test. We once again have a

contradiction.

G1c Finally, let us assume that H exhibits phenomenon G1c: SSG(H) must contain a cycle of

read/write dependencies. We consider each possible edge in the cycle in turn:

• Ti
ww−−→ Tj There must exist an object x such that xi << xj (version order). By construction,

version in H is consistent with the execution order e: we have sTi

∗−→ sTj .

• Ti
wr−→ Tj There must exist a read rj(xi) ∈ ΣTj such that Tj reads version xi written by Ti.

By assumption, CTSI(e, Tj) holds. There must therefore exists a state sTk
∈ Se such that

COMPLETEe,Tj (sTk
). If sTk

is a complete state for Tj , sTk
∈ RSe(rj(xi)) and (x, xi) ∈ sTk

.

For the effects of Ti to be visible in sTk
, Ti must have been applied at an earlier point in the

execution. Hence we have: sTi

∗−→ sTk
. Moreover, by definition of the candidate read states,

sTk

∗−→ sp(Tj) −→ sTj (Definition 2). It follows that sTi

∗−→ sTj .

161

If a history H displays phenomenon G1c, there must exist a chain of transactions Ti → Ti+1 →

...→ Tj such that i = j. A corresponding cycle must thus exist in the execution e sTi

∗−→ sTi+1

∗−→

. . .
∗−→ sTj . By definition however, a valid execution must be totally ordered. We once again have a

contradiction.

We generate a contradiction in all cases of the disjunction: we conclude that the history H cannot

display phenomenon G1.

G-SI We now prove that ∀T ∈ T : CTSI(T, e)⇒ ¬G-SI.

G-SIa We first show that G-SIa cannot happen for both write-write dependencies and write-read

dependencies:

• Ti
wr−→ Tj There must exist an object x such that Tj reads version xi written by Ti. Let sTk

be

the first state in e such that COMPLETEe,Tj (sTk
) ∧ (∆(sTk

, sp(Tj)) ∩WsTj
= ∅). Such a state must

exist since CTSI(e, Tj) holds by assumption. As sTk
is complete, we have (x, xi) ∈ sTk

. For the

effects of Ti to be visible in sTk
, Ti must have been applied at an earlier point in the execution.

Hence we have: sTi

∗−→ sTk

∗−→ sTj . It follows from our timestamp assignment logic that ci �t ck.

Similarly, the start point of Tj must have been assigned after Tk’s commit point (as sTk
is Tj’s

earliest complete state), hence ck ≺t sj . Combining the two inequalities results in ci ≺t sj : there

will exist a start-dependency edge Ti
sd−→ Tj . H will not display G-SIa for write-read dependencies.

• Ti
ww−−→ Tj There must exist an object x such that Tj writes the version xj that follows xi. By

construction, it follows that sTi

∗−→ sTj . Let sTk
be the first state in the execution such that

COMPLETEe,Tj (sTk
) ∧ (∆(sTk

, sp(Tj)) ∩ WTj = ∅). We first show that: sTi

∗−→ sTk
. Assume by

way of contradiction that sTk

+−→ sTi . The existence of a write-write dependency between Ti and

Tj implies thatWTi ∩WTj 6= ∅, and consequently, that ∆(sTk
, sp(Tj)) ∩WTj 6= ∅, contradicting

our assumption that CTSI(e, Tj). We conclude that: sTi

∗−→ sTk
. It follows from our timestamp

assignment logic that ci �t ck. Similarly, the start point of Tj must have been assigned after

Tk’s commit point (as sTk
is Tj’s earliest complete state), hence ck ≺t sj . Combining the two

inequalities results in ci ≺t sj : there will exist a start-dependency edge Ti
sd−→ Tj . H will not

display G-SIa for write-write dependencies.

162

The history H will thus not display phenomenon G-SIa.

G-SIb We next prove that H will not display phenomenon G-SIb. Our previous result states that H

proscribes G-SIa: all read-write dependency edges between two transactions implies the existence

of a start dependency edge between those same transactions. We prove by contradiction that H

proscribes G-SIb. Assume that SSG(H) consists of a directed cycle cyc1 with exactly one anti-

dependency edge (it displays G-SIb) but proscribes G-SIa. All other dependencies will therefore

be write/write dependencies, write/read dependencies, or start-depend edges. By G-SIa, there must

exist an equivalent cycle cyc2 consisting of a directed cycle with exactly one anti-dependency edge

and start-depend edges only. Start-edges are transitive (consider three transactions T1, T2 and T3: if

c1 ≺t b2 and c2 ≺t b3 then c1 ≺t b3 as b2 ≺t c2 by definition), hence there must exist a cycle cyc3

with exactly one anti-dependency edge and one start-depend edge. We write Ti
rw−→ Tj

sd−→ Ti. Given

Ti
rw−→ Tj , there must exist an object x and transaction Tm such that Tm writes xm, Ti reads xm and

Tj writes the next version of x, xj (xm << xj). Let sTk
be the earliest complete state of Ti. Such

a state must exist as CTSI(e, Ti) by assumption. Hence, by definition of read state (x, xm) ∈ sTk
.

Similarly, (x, xj) ∈ sTj by the definition of state transition (Definition 1). By construction, we have

sTk

+−→ sTj . Our timestamp assignment logic maintains the following invariant: given a state sT ,

∀Tk : COMPLETEe,Tk
(sT) : ∀sTn : sT

+−→ sTn ⇒ bk ≺t cn. Intuitively, the start timestamp of all

transactions associated with a particular complete state sT is smaller than the commit timestamp of

any transaction that follows sT in the execution. We previously showed that sTk

+−→ sTj . Given sTk
is

a complete state for Ti, we conclude bi ≺t cj . However, the edge Tj
sd−→ Ti implies that cj ≺t bi. We

have a contradiction: no such cycle can exist and H will not display phenomenon G-SI. We generate

a contradiction in all cases of the conjunction, hence ∀T ∈ T : CTSI(T, e) ⇒ ¬G-SI holds. We

conclude ∀T ∈ T : CTSI(T, e)⇒ ¬G-SI ∧ ¬G1. This completes the proof.

A.4 Read Committed

Theorem 3. ∃e : ∀T ∈ T .CTRC(T, e) ≡ ¬G1.

Proof. We first prove ¬G1⇒ ∃e : ∀T ∈ T : CTRC(T, e).

Let H define a history over T = {T1, T2, ..., Tn} and let DSG(H) be the corresponding direct

163

serialization graph. ¬G1c states that the DSG(H) must not contain dependency cycles: the subgraph

of DSG(H), SDSG(H) containing the same nodes but including only dependency edges, must

be acyclic. Let i1, ...in be a permutation of 1, 2, ..., n such that Ti1 , ..., Tin is a topological sort of

SDSG(H) (SDSG(H) is acyclic and can thus be topologically sorted). We construct an execution

e according to the topological order defined above: e : s0 → sTi1
→ sTi2

→ ...→ sTin
and show

that ∀T ∈ T .CTRC(T, e). Specifically, we show that for all T = Tij , PREREADe(T). Consider the

three possible types of operations in Tij :

1. External Reads: an operation reads an object version that was created by another transaction.

2. Internal Reads: an operation reads an object version that itself created.

3. Writes: an operation creates a new object version.

We show that the read set for each of operation type is not empty:

1. External Reads. Let rij (xik) read the version for x created by Tik , where k 6= j. We first show

that sTik

∗−→ sTij
. As Tij directly read-depends on Tik , there must exist an edge Tik

wr−→ Tij in

SDSG(H), and Tik must therefore be ordered before Tij in the topological sort of SDSG(H)

(k < j), it follows that sTik

+−→ sTij
. As (x, xik) ∈ sTik

, we have sTik
∈ RSe(rij (xik)), and

consequentlyRSe(rij (xik)) 6= ∅.

2. Internal Reads. Let rij (xij) read xij such that w(xij)
to−→ r(xij). By definition, the read state

set of such an operation consists of ∀s ∈ Se : s
∗−→ sp. s0

∗−→ s trivially holds. We conclude

s0 ∈ RSe(rij (xij)), i.e.RSe(rij (xij)) 6= ∅.

3. Writes. Let wij (xij) be a write operation. By definition, its read state set consists of all the states

before sTij
in the execution. Hence s0 ∈ RSe(rij (xij)), i.e.RSe(rij (xij)) 6= ∅.

Thus ∀o ∈ ΣT : RSe(o) 6= ∅. We have PREREADe(Tij) for any Tij : ∀T ∈ T : CTRC(T, e).

(⇐) We next prove ∃e : ∀T ∈ T : CTRC(T, e)⇒ ¬G1.

To do so, we prove the contrapositive G1 ⇒ ∀e ∃T ∈ T : ¬CTRC(T, e). Let H be a history that

displays phenomena G1. We generate a contradiction. Assume that there exists an execution e such

that ∀T ∈ T : CTRC(T, e). We first instantiate the version order for H , denoted as <<, as follows:

164

given an execution e and an object x, xi << xj if and only if x ∈ WTi ∩WTj ∧ sTi

+−→ sTj . First,

we show that:

Claim 3 Ti → Tj in SDSG(H)⇒ sTi

+−→ sTj in the execution e (i 6= j).

Proof. Consider the two edge types in SDSG(H):

Ti
ww−−→ Tj There exists an object x s.t. xi << xj (version order). By construction, we have

sTi

+−→ sTj .

Ti
wr−→ Tj There exists an object x s.t. Tj reads version xi written by Ti, i.e. rj(x, xi) ∈ ΣTj . By

assumption CTRC(e, T) (T = Tj), i.e. PREREADe(Tj),RSe(o) 6= ∅. Let s ∈ RSe(o), by definition

ofRSe(o), we have (x, xi) ∈ s∧ s
+−→ sTj , therefore Ti must be applied before or on state s, hence

we have sTi

∗−→ s
+−→ sTj , i.e. sTi

+−→ sTj .

We now derive a contradiction in all cases of G1:

• Let us assume that H exhibits phenomenon G1a (aborted reads). There must exists events

wi(xi), rj(xi) in H such that Ti subsequently aborted. T and any corresponding execution e,

however, consists only of committed transactions. Hence ∀e :6 ∃s ∈ Se, s.t. s ∈ RSe(rj(xi)):

no complete state can exists for Tj . There thus exists a transaction for which the commit test

cannot be satisfied, for any e. We have a contradiction.

• Let us assume that H exhibits phenomenon G1b (intermediate reads). In an execution e, only

the final writes of a transaction are applied. Hence,6 ∃s ∈ Se, s.t. s ∈ RSe(r(xintermediate)).

There thus exists a transaction, which for all e, will not satisfy the commit test. We once again

have a contradiction.

• Finally, let us assume that the history H displays G1c. Any history that displays G1c will

contain a cycle in the SDSG(H). Hence, there must exist a chain of transactions Ti → Tk →

... → Tj such that i = j. By Claim 3, we thus have sTi

+−→ sTk

+−→ . . .
+−→ sTj , i = j for

any e. By definition however, a valid execution must be totally ordered. We have our final

contradiction.

165

All cases generate a contradiction. We have G1⇒ ∀e : ∃T ∈ T : ¬CTRC(e, T). This completes the

proof.

A.5 Read Uncommitted

Theorem 4.∃e : ∀t ∈ T .CTRU (t, e) ≡ ¬G0.

Proof. We first prove ¬G0⇒ ∃e : ∀T ∈ T : CTRU (T, e).

Let H define a history over T = {T1, T2, ..., Tn} and let DSG(H) be the corresponding direct

serialization graph. ¬G0 implies that the DSG(H) must not contain write-write dependency cycles.

Let i1, ...in be a permutation of 1, 2, ..., n such that Ti1 , ..., Tin is a topological sort of the DSG(H)

according to the write-write edges (the projection of DSG(H) that considers write-write edges only is

acyclic and can thus be topologically sorted). We construct an execution e according to the topological

order defined above: e : s0 → sTi1
→ sTi2

→ ...→ sTin
. As CTRU (t, e) = True, every transaction

T in e trivially satisfies the commit test. This completes the proof.

(⇐) We next prove ∃e : ∀T ∈ T : CTRU (T, e) ⇒ ¬G0 To do so, we prove the contrapositive

G0 ⇒ ∀e ∃T ∈ T : ¬CTRU (T, e). Let H be a history that displays phenomena G0. We generate

a contradiction. Consider any execution e such that ∀T ∈ T : CTRU (T, e). We first instantiate the

version order for H , denoted as <<, as follows: given an execution e and an object x, xi << xj if

and only if x ∈ WTi∩WTj∧sTi

∗−→ sTj . First, we show that Ti
ww−−→ Tj inDSG(H)⇒ sTi

∗−→ sTj in

the execution e (i 6= j). The presence of a ww edge implies the existence of an object x s.t. xi << xj

(version order). It follows by construction that sTi

∗−→ sTj . Any history that displays G0 will contain

a cycle consisting of ww edges in the DSG(H). Hence, there must exist a chain of transactions

Ti
ww−−→ Ti+1

ww−−→ ...
ww−−→ Tj such that i = j in DSG(H). As shown above, this sequence of ww

edges implies that sTi

∗−→ sTi+1

∗−→ . . .
∗−→ sTj for any e. By definition however, a valid execution

must be totally ordered. We have a contradiction. We have G0⇒ ∀e : ∃T ∈ T : ¬CTRU (e, T). This

completes the proof.

166

B Equivalence to read-atomic

Read atomic [25], like PSI, was introduced a scalable alternative to snapshot isolation. Read atomic

preserves atomic visibility (transactions observe either all or none of a committed transaction’s effects)

but does not preclude write-write conflicts nor guarantee that transactions will read from a causally

consistent prefix of the execution. These weaker guarantees allow for efficient implementations in

which one client’s transactions cannot cause another client’s transactions to fail (synchronization

independence). We can express read atomic in our state-based model as follows:

Definition 11 CTRA(T, e) ≡ PREREADe(T)∧∀r1(k1, v1), r2(k2, v2) ∈ ΣT ∧k2 ∈ WTsfr1
⇒ sfr1

∗−→

sfr2

Intuitively, this definition states that, if an operation o1 observes a transaction Ti’s writes, all

subsequent operations that read a key included in Ti’s write-set must read from a state that includes

Ti’s effects. In this section, we prove the following theorem:

Theorem 2. ∃e : ∀T ∈ T : CTRA(T, e) ≡ Read Atomic (§B.2).

B.1 Bailis et al. [25] model summary

We summarize the key definitions of the model here (an alternative formalization was given by

Cerone et al. [46]).

A history H consists of a set of reads/writes where each write creates a version of an item x, xi,

where i is a unique timestamp taken from a totally ordered set such that timestamps induce a total

order on versions of each item (and a partial order across versions of different items). We write

xi <<H xj if i < j.

A history is read-atomic iff it prevents the following anomalies:

• uncommitted, aborted, or intermediate reads (G0, G1 anomalies)

• fractured reads. A transaction Tj exhibits fractured reads if transaction Ti writes versions xm

and yn (where x and y can be equal), Tj reads version xm and version yk and k < n.

167

B.2 Read Atomic

We now prove the following theorem: ∃e : ∀T ∈ T : CTRA(T, e) ≡ Read Atomic.

(⇐) First, we prove: ∃e : ∀T ∈ T : CTRA(T, e) ⇐ Read Atomic. We show that a history H

consisting of the set of transactions T exhibiting no fractured reads and intermediate/aborted/uncom-

mitted reads, implies the existence of an execution e that contains T such that every T ∈ T satisfies

the commit test: CTRA(T, e) ≡ PREREADe(T) ∧ ∀r1(k1, v1), r2(k2, v2) ∈ ΣT ∧ k2 ∈ WTsfr1
⇒

sfr1
∗−→ sfr2

The set of transactions T defines a partial order <T such that: if rj(xi) ∈ ΣTj then Ti <T Tj (read

dependency edges) and if xi <<H xj then Ti <T Tj , where Ti writes xi and Tj writes xj (write

dependency edges).. Such a partial order must exist as read atomic proscribes cycles consisting

exclusively of read dependency edges and write dependency edges (it precludes G1). We construct

this execution e to be a linearization of this partial order. Consider an arbitrary transaction T in e and

consider two operations r1(x, xi) and r2(y, yj) such that y ∈ WTsfr1
For simplicity, let us refer to

Ti for Tsfr1 , to Tj for Tsfr2 . These are the transactions that created the versions xi and yj . Finally, let

us refer to Ti’s write of y as yi.

Considering an arbitrary transaction T , we prove that PREREADe(T) holds. Let us assume by contra-

diction that there exists an operation o executed by an operation T for which RSe(o) = ∅. There

are two possibilities: either o = r(k, v) read from a state that succeeds T in the execution (let that

state be sTv), or 6 ∃s ∈ Se : (k, v) ∈ s. In the first case, we have that o reads from Tv and hence that

Tv precedes T in the partial order. But our execution e is a linearization of that partial order, hence

we cannot have s +−→ sTv . We have a contradiction. In the second case, 6 ∃s ∈ Se : (k, v) ∈ s. There

are two sub-scenarios: either the transaction that wrote v does not exist in the execution, in which

case Tv aborted (a contradiction as read atomic disallows aborted reads), or the state that Tv created

has (k, v′) ∈ sTv where v 6= v′, in which case v was not the final write of Tv (a contradiction as read

atomic disallows intermediate reads). In all cases, we have a contradiction, henceRSe(o) 6= ∅ and

PREREADe(T) holds for all T . Moreover, as PREREADe(T) holds, ∀o ∈ ΣT .RSo 6= ∅ so sfr1 and sfr2

exist.

168

Assume by contradiction that sTj

+−→ sTi . Tj and Ti both write to object y and are therefore ordered

according to <T (Tj <T Ti and therefore yj <<H yi). By assumption, H does not exhibit fractured

reads: if Ti writes xi and yi and T reads version xi and version yj , then yi <<H yj or yi = yj . But

we just argued that yj <<H yi. We have a contradiction: sTi

∗−→ sTj .

(⇒) Next, we prove: (∃e : ∀T ∈ T : CTRA(T, e)) We show that, given an execution e and

associated set of transactions T such that every T ∈ T satisfies the commit test, the history H does

not exhibit fractured reads, and intermediate/aborted/uncommitted reads.

By PREREADe(T), the object versions observed by all transactions stem from a state that existed in

the execution: that is, were generated by the final write of a committed transaction. It follows that the

corresponding history does not exhibit uncommitted, aborted or intermediate reads anomaly.

Next, we show that the history H does not exhibit fractured reads. We assign a monotonically

increasing timestamp to each transaction in e (we write Ti for a transaction with timestamp i)

such that sTi

+−→ sTj ≡ i ≤ j and the version order on each object is consistent with timestamps

and execution order. Let us assume by way of contradiction that H exhibits fractured reads: there

exists a transaction Ti that writes versions xi and yi of objects x and y such that a transaction Tj

reads version xi and version yk and yk << yi. Tj satisfies the commit test by definition. That is,

∀r1(k1, v1), r2(k2, v2) ∈ ΣT ∧ k2 ∈ Wtsfr1
⇒ sfr1

∗−→ sfr2 Letting r1 be Tj’s read of x and r2 Tj’s

read of y, we have that sfr1
∗−→ sfr2 or equivalently that si

∗−→ sk. By construction, it follows that

yi << yk. However, we have just argued that yk << yi or i = k. We have a contradiction, so H does

not exhibit fractured reads.

169

C Equivalence to ANSI, Strong and Session SI

In this section, we prove the following theorems:

Theorem 8 (a) ∃e : ∀t ∈ T : CTANSI SI(T, e) ≡ ANSI SI (§C.2).

Theorem 9 (b) ∃e : ∀T ∈ T : CTSession SI(T, e) ≡ SSessSI (§C.3).

Theorem 7 ∃e : ∀T ∈ T : CTStrong SI(T, e) ≡ Strong SI (§C.4).

C.1 Berenson/Daudjee et al. [31, 61] model summary

Every transaction T in this model has a logical start timestamp, written start(T) and a logical commit

timestamp, written commit(T). We write δ to be the smallest unit by which two timestamps differ.

Definition 12 ANSI SI A history H , consisting of the set of transactions T , satisfies ANSI Snapshot

Isolation (or weak snapshot isolation) iff, for every T :

• T ’s start timestamp is less than or equal to the actual start time of T : ∀T, T ′ : start(T) ≤

T.start (R1).

• T ’s commit timestamp is more recent than any start or commit timestamp previously as-

signed: ∀T, T ′ : T ′.commit < T.commit ≡ commit(T ′) < commit(T) (R2a), ∀T, T ′ :

T.commit > T ′.start⇒ commit(T) > start(T ′) (R2b) and start(T) < commit(T) (R2c)

• T observes the effects of all transactions T ′ with commit(T ′) ≤ start(T) and does not observe

the writes of transactions T ′ with commit(T) ≥ start(T) (R3).

• T commits only if no other committed transaction T ′ with lifespan [start(T ′), commit(T ′)]

that overlaps with T ’s lifespan of [start(T), commit(T)] (R4) has an intersecting writeset.

Definition 13 Strong Session SI (R5) A transaction execution history H is strong session SI under

labeling LH iff it is ANSI SI, and if, for every pair of committed transactions Ti and Tj in H such that

LH(Ti) = LH(Tj) and Ti’s commit precedes the first operation of Tj , Ti <s Tj ⇒ commit(Ti) ≤

start(Tj).

Definition 14 Strong SI (R6) A transaction execute history H is strong SI iff it is weak SI and if, for

every pair of committed transaction Ti and Tj in H such that Ti’s commit precedes the first operation

170

of Tj , Ti <s Tj ⇒ commit(Ti) ≤ start(Tj)

C.2 ANSI SI

We now prove the following theorem:

Theorem 8 (a) ∃e : ∀T ∈ T : CTANSI SI(T, e) ≡ ANSI SI .

Proof. (⇐) First, we prove: ∃e : ∀T ∈ T : CTANSI SI(T, e) ⇐ ANSI SI . We show that a

history H consisting of the set of transactions T implies the existence of an execution e that contains

T such that every T ∈ T satisfies the commit test: CTANSI SI(T, e) = C-ORD(Tsp , T) ∧ ∃s ∈ Se :

COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ Ts <s T

To do so, we consider the execution resulting from applying every transaction in T in the order of

their commit timestamps. More precisely, we have that ∀T, T ′ ∈ T : commit(T) < commit(T ′) ≡

sT
+−→ sT ′ .

C-ORD(Tsp , T) First, we show that C-ORD(Tsp , T) holds. As any parent state sp must precede T in

the execution, we have that sp −→ sT , ie: commit(Tsp) < commit(T) By (R2a), ∀T, T ′ ∈ T :

T.commit < T ′.commit ≡ commit(T) < commit(T ′). It follows that Tsp .commit < T.commit

or C-ORD(Tsp , T) holds.

Complete State Second, we show that there exists a complete state s, where s is the the state

resulting from applying the transaction Ts with the highest commit timestamp that is smaller than

start(T). There exists a single such transactions as commit timestamps are unique (R2). We show

that s is a candidate read state for every operation o ∈ ΣT . If o is a write, then s ∈ RSe(o)

trivially. If o is a read and returns a value v for object k (written by a transaction Tv), we show by

contradiction that (k, v) ∈ s. Assume that (k, v′) ∈ s with v 6= v′, consider the last transaction

Tv′ 6= Tv that writes v′, where either sTv

+−→ sTv′
∗−→ s (1) or sTv′

∗−→ s
+−→ sTv in e (2). In the first

case, commit(Tv) ≤ commit(Tv′) by construction and commit(T ′v) ≤ commit(Ts) ≤ start(T) by

definition of Ts. By (R3), T should therefore observe the effects of Tv′ , but it does not as it reads

v, a contradiction so (k, v) ∈ s. In the second case, commit(Tv′) ≤ commit(Ts) ≤ commit(Tv).

By (R3), commit(Tv) ≤ start(T) as T observes the effect of Tv. Tv’s commit timetamp is greater

than Ts’s but smaller than T ’s start timestamp. Yet, we defined Ts to be the transaction with the

171

highest commit timestamp that is smaller than the start timestamp of T . We have a contradiction, so

(k, v) ∈ s. It follows that s is a candidate read state for every o ∈ ΣT : it is a complete state.

Time Order Third, we show that Ts <s T holds. By construction commit(Ts) ≤ start(T). By

(R2b) we have that Ts.commit > T.start ⇒ commit(Ts) > start(T). Taking the contraposi-

tive, commit(Ts) ≤ start(T) ⇒ Ts.commit ≤ T.start. By assumption, real-time values of start

and commit are distinct, so we can strengthen the inequality to Ts.commit ≤ T.start, and there-

fore: Ts <s T . NO-CONFT (s) Finally, we show that NO-CONFT (s). First, we show that any transac-

tion corresponding to states between s and sp (included) must overlap with T . Let that set be Tc.

By construction of e, s and Ts, every transaction Tc ∈ Tc has a commit timestamp greater than

commit(Ts) and smaller than commit(T) so commit(Ts) ≤ commit(Tc) ≤ commit(T). By con-

struction of Ts, we know that it is the transaction with the highest commit timestamp that is smaller

or equal to start(T). Any higher commit timestamp must be greater than start(T). It follows that

start(T) ≤ commit(Tc) ≤ commit(T) and that Tc necessarily overlaps with T . By R4, its write-set

cannot intersect T ’s. As such, no transaction in Tc has a write-set that overlaps with T ’s. Hence

NO-CONFT (s).

This concludes the proof.

(⇒) Next, we prove: (∃e : ∀T ∈ T : CTANSI SI(T, e) ⇒ ANSI SI) We show that, given an

execution e and associated set of transactions T such that every T ∈ T satisfies the commit test, we

can assign to every transaction a start and commit timestamp such that (R1),(R2),(R3) and (R4) hold.

First, we denote the latest complete state that satisfies NO-CONFT (s)∧Ts <s T for transaction T as the

selected read state (formally ∃s : (COMPLETEe,T (s) ∧ s ∗−→ sT) ∧ (∀s′.COMPLETEe,T (s′)⇒ s′
∗−→ s)).

That state must exist as every T ∈ T satisfies the commit test (by assumption).

We then assign commit timestamps using the following algorithm: let slatest the last state in e (such

that 6 ∃s : slatest −→ s) , let COMMIT_MAX be the maximum assignable value of any commit(T),

let selected(T) be T ’s selected read state, and finally, let ts be an array indexed by transaction id that

stores the maximum candidate commit timestamp for every transaction. An entry in ts[T] represent

an upper bound on the final timestamp commit(T) of a transaction T .

172

1. ts[] = {COMMIT_MAX, ... , COMMIT_MAX}

2. scurr = slatest

3. Tcurr = Tlatest (where Tlatest) the transaction that created slatest

4. max-commit = COMMIT_MAX

5. do{

(a) commit(Tcurr) = min(max-commit, ts[Tcurr])

(b) max− commit = commit(Tcurr)− δ

(c) sc = selected(Tcurr)

(d) ts[Tc] = min(Tcurr.start, ts[Tc])

(e) scurr = s for s −→ scurr

(f) }

6. while (scurr exists)

Intuitively, this algorithm assigns a logical commit timestamp commit(T) to every transaction T

that is 1) smaller than the real-time start timestamp of every transaction that has sT (the state that T

creates) as selected read state 2) smaller than all the commit timestamps of states that succede sT in

the execution.

We can then assign the start timestamp of every transaction T ∈ T to be the commit timestamp of

the transaction Tc associated with T ’s selected complete state sc = selected(T) + ε where ε is a

small constant that is smaller than a timestamp time unit.

We first prove the following lemma:

Lemma 1. ∀T, T ′.commit(T) ≤ commit(T ′) ≡ sT
+−→ sT ′

Assuming first that sT
+−→ sT ′ : by construction, we assign the commit timestamp of a transaction

Ti to be min(max-commit, ts[Ti]), where max-commit = commit(Tj) − δ where sTj −→ sTi and

hence commit(Ti) ≤ commit(Tj). By transitivity, ∀T, T ′ ∈ T .sT
+−→ sT ′ ⇒ commit(T) ≤

173

commit(T ′). Assuming instead that commit(T) ≤ commit(T ′) and, assuming by contradiction that

sT ′
∗−→ sT . If T = T ′, it directly follows that T and T ′ must have the same commit timestamp,

which gives us a contradiction. Otherwise, we have by construction that, given two transactions

Ti and Tj we assign the commit timestamp of a transaction Ti to be min(max-commit, ts[Ti]),

where max-commit = commit(Tj)− δ where sTj −→ sTi and hence commit(Ti) ≤ commit(Tj). By

transitivity, sT
+−→ sT ′ ⇒ commit(T) ≤ commit(T ′), which again gives us a contradiction.

R1 First, we prove that (R1) holds. Consider an arbitratry transaction T in e and let sc be its selected

read state. By construction, start(T) = commit(Tc) where commit(Tc) is defined to be the minimum

T ′.start of all transactions T ′ that have it as selected read state, including T . It follows trivially that

start(T) ≤ T.start (for T ′ = T)

R2 Second, we prove that R2 holds. To prove R2a, consider an arbitrary transaction T in e and let sc be

its selected complete state. By assumption, we have that C-ORD(Tsp , T). By induction, one can easily

prove that ∀T, T ′ ∈ T : T.commit < T ′.commit⇔ sT
+−→ sT ′ (1). Combined with Lemma 1, we

have ∀T, T ′ ∈ T : T.commit < T ′.commit⇒ sT
+−→ sT ′ ⇒ commit(T) < commit(T ′) so (R2a)

holds. Moreover, as start(T) = commit(Tc) and the selected read state of T necessarily precedes

T in e, it also follows that start(T) < commit(T). Hence R2c also holds. Finally, we show that

R2b holds by contradiction. Assume that commit(T ′) ≤ start(T) and that T.start < T ′.commit.

As start(T) is equal (modulo ε) to the timestamp of the selected commit state of T , sc we have

commit(T ′) ≤ commit(Tc) By Lemma 1 and the aforementioned property (1), it follows that

T ′.commit ≤ Tc.commit. By assumption, we have Tc <s T , ak Tc.commit < T.start, and

consequently T ′.commit ≤ Tc.commit ≤ T.start. But we had T.start < T ′.commit. We have a

contradiction and thus R2b holds.

R3 Third, we prove that R3 holds. We first show that a transaction T observes the effects of

all transactions with commit(T ′) < start(T) by contradiction. Consider this transaction T which

generates state s when committing. Let sc and Tc be the selected read state for T . Assume that there

exists a transaction T ′ with timestamp commit(T ′) < start(T) whose effects T does not observe:

there exists a key k that is written by two transactions T ′ (WRITE(k,v’)) and Tv (WRITE(k,v)) such

that sTv

+−→ sT ′
∗−→ s in e and T reads value v. By construction, we know that start(T) = commit(Tc)

174

so commit(T ′) ≤ commit(Tc). It follows that sT ′
∗−→ sc by Lemma 1 and sT ′

∗−→ sc
+−→ s (as the

selected read state necessarily precedes s). As T misses the effect of T ′ by reading v, we can extend

this to sTv

+−→ sT ′
∗−→ sc

+−→ s We know, however, that (k, v) ∈ sc as sc is a complete read state for

T so k /∈ ∆(sTv , sc). Yet, we had T ′ write k. We have a contradiction: T observes the effects of all

transactions T ′ with commit(T ′) < start(T).

Next, we show that T does not observe the writes of transactions T ′ with commit(T ′) > start(T).

Assume that T observes the effect of transaction T ′ with commit(T ′) > start(T). As before, let

sc and Tc be the selected read state for T . By construction, start(T) = commit(Tc) + ε, hence

commit(Tc) ≤ commit(T ′) and consequently sTc

+−→ sT ′ by Lemma 1. We know by assumption that

sTc is the latest complete state such that NO-CONFT (s) ∧ Ts <s T . Let o =WRITE(k,v) be the write

from T ′ that T observes. As T ′ created version v and sTc

+−→ sT ′ holds, (k, v) /∈ sc, so sc cannot be

a read state for o, and as such cannot be a complete state for T . We have a contradiction. R3 holds.

R4 Fourth, we prove that R4 holds. Consider an arbitratry transaction T in e and let sc be its

selected complete state. A transaction T overlaps with committed T ′ if start(T) ≤ commit(T ′) and

commit(T ′) ≤ commit(T). By construction, start(T) = commit(Tc), so we have commit(Tc) ≤

commit(T ′). By Lemma 1, commit(Tc) ≤ commit(T ′) ≤ commit(T) ⇒ sTc

∗−→ sT ′
∗−→ sT . By

NO-CONFT (s) it follows that the writeset of T ′ does not intersect the writeset of T , so R4 holds.

C.3 Strong Session SI

We now prove the following theorem: Theorem 9 (a): ∃e : ∀T ∈ T : CTSession SI(T, e) ≡

SSessSI .

Proof. (⇐) First, we prove: ∃e : ∀T ∈ T : CTSession SI(T, e) ⇐ Session SI. We show that a

history H consisting of the set of transactions T implies the existence of an execution e that contains

T such that every T ∈ T satisfies the commit test: CTSession SI(T, e) = C-ORD(Tsp , T) ∧ ∃s ∈ Se :

COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ (Ts <s T) ∧ (∀T ′ se−→ T : sT ′
∗−→ s)

C-ORD(Tsp , T) ∧ ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) holds by an identical proof to that of

175

Theorem 8(a)(⇐). We do not repeat the proof here and simply show that (∀T ′ se−→ T : sT ′
∗−→ s)

To do so, we consider, as in C.2, the execution resulting from applying every transaction in T in

the order of their commit timestamps. More precisely, we have that ∀T, T ′ ∈ T : commit(T) <

commit(T ′) ≡ sT
+−→ sT ′ . Let us consider a transaction T and let s be the state resulting from

applying the transaction Ts with the highest commit timestamp that is smaller or equal to start(T).

This state is a complete state (as shown in C.2).

Assume by contradiction that there exists a transaction T ′ such that T ′ se−→ T and s
+−→ sT ′ .

By construction, we have that commit(Ts) ≤ commit(T ′). As s is the state associated with the

transaction with highest commit timestamp that is smaller or equal to start(T), it follows that

commit(T ′) > start(T). But, by assumption (R5) T ′ se−→ T ⇒ commit(T ′) ≤ start(T). We have a

contradiction, hence (∀T ′ se−→ T : sT ′
∗−→ s) holds. This completes the proof.

(⇒) Next, we prove: (∃e : ∀T ∈ T : CTSession SI(T, e) ⇒ Session SI). (R1), (R2), (R3), (R4)

hold by an identical proof to that of Theorem 8(a)(⇒). We consider the same execution e for which

the start/commit timestamps are assigned according to the algorithm described in the proof. We do

not repeat the proof here and simply show that (R5) holds. To do so, we consider two transactions

T and T ′ such that T ′ se−→ T and show that commit(T ′) ≤ start(T). As T and T ′ both satisfy

the commit test, we have that ∀T ′ se−→ T : sT ′
∗−→ sc where sc is the selected read state for T .

By Lemma 1, sT ′
∗−→ sc ⇒ commit(T ′) ≤ commit(Tc). Moreover, we have by construction that

start(T) = commit(Tc) + ε. Hence commit(T ′) ≤ start(T). This completes the proof.

C.4 Strong SI

Proof. We now prove the following theorem: Theorem 7 : ∃e : ∀T ∈ T : CTStrong SI(T, e) ≡

Strong SI .

(⇐) First, we prove: ∃e : ∀T ∈ T : CTStrong SI(T, e) ⇐ Strong SI . We show that a history

H consisting of the set of transactions T implies the existence of an execution e that contains T

such that every T ∈ T satisfies the commit test: CTStrong SI(T, e) = C-ORD(Tsp , T) ∧ ∃s ∈ Se :

COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ (Ts <s T) ∧ (∀T ′ <s T : sT ′
∗−→ s).

176

C-ORD(Tsp , T) ∧ ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) holds by an identical proof to that of

Theorem 8(a)(⇐). We do not repeat the proof here and simply show that (∀T ′ <s T : sT ′
∗−→ s)

To do so, we consider, as in § C.2, the execution resulting from applying every transaction in T in

the order of their commit timestamps. More precisely, we have that ∀T, T ′ ∈ T : commit(T) <

commit(T ′) ≡ sT
∗−→ sT ′ . Let us consider a transaction T and let s the state resulting from applying

the transaction Ts with the highest commit timestamp that is smaller or equal to start(T). This state

is a complete state (as shown in § C.2).

Assume by contradiction that there exists a transaction T ′ such that T ′ <s T and s
∗−→ sT ′ .

By construction, we have that commit(Ts) ≤ commit(T ′). As s is the state associated with the

transaction with highest commit timestamp that is smaller or equal to start(T), it follows that

commit(T ′) > start(T). But, by assumption (R6) T ′ <s T ⇒ commit(T ′) ≤ start(T). We have a

contradiction, hence (∀T ′ <s T : sT ′
∗−→ s) holds. This completes the proof.

(⇒) Next, we prove: (∃e : ∀T ∈ T : CTStrong SI(T, e) ⇒ Strong SI). (R1), (R2), (R3), (R4)

hold by an identical proof to that of Theorem 8(a)(⇒). We consider the same execution e for which

the start/commit timestamps are assigned according to the algorithm described in the proof. We do

not repeat the proof here and simply show that R6 holds. To do so, we consider two transactions

T and T ′ such that T ′ <s T and show that commit(T ′) ≤ start(T). As T and T ′ both satisfy

the commit test, we have that ∀T ′ <s T : sT ′
∗−→ sc where sc is the selected read state for T .

By Lemma 1, sT ′
∗−→ sc ⇒ commit(T ′) ≤ commit(Tc). Moreover, we have by construction that

start(T) = commit(Tc) + ε. Hence commit(T ′) ≤ start(T). This completes the proof.

177

D Equivalence to PC-SI and GSI

In this section, we prove the following theorems:

Theorem 8 (b) ∃e : ∀T ∈ T : CTANSI SI(T, e) ≡ GSI (§D.2)

Theorem 9 (b) ∃e : ∀T ∈ T : CTSession SI(T, e) ≡ PC-SI (§D.3)

D.1 Elnikety et al. [154] model summary

Every transaction T in this model has a real-time start timestamp, written start(T) and a real-time

commit timestamp, written commit(T). All the timestamps are distinct.

• snapshot(Ti): the time at which Ti’s snapshot is taken.

• start(Ti): the time of the first operation of Ti.

• commit(Ti): the time of Ci, if Ti commits.

• abort(Ti): the time of Ai, if Ti aborts.

• end(Ti): the time of either Ci or Ai.

• Tj impacts Ti: writeset(Ti) ∧ writeset(Tj) 6= ∅ and snapshot(Ti) ≤ commit(Tj) <

commit(Ti)

Note that start(Ti) and commit(Ti) have the same definition as Ti.start and Ti.commit, they will

be used interchangeably in the proof.

Definition 15 Generalized Snapshot Isolation (GSI) For any history H created by GSI, the following

two properties hold (where i, j, and k are distinct)

D1. (GSI Read Rule) ∀Ti, Xj such that Ri(Xj) ∈ h :

1- Wj(Xj) ∈ h and Cj ∈ h;

2- commit(Tj) < snapshot(Ti);

3- ∀Tk such that Wk(Xk), Ck ∈ h : [commit(Tk) < commit(Tj) or snapshot(Ti) <

commit(Tk)]

178

D2. (GSI Commit Rule) ∀Ti, Tj such that Ci, Cj ∈ h :

4- ¬(Tj impacts Ti).

Definition 16 Prefix-consistent Snapshot Isolation (PC-SI) For any history H created by PC-SI, the

following two properties hold (where i,j,k are distinct)

P1. (PC-SI Read Rule) ∀Ti, Xj such that Ri(Xj) ∈ h :

1- Wj(Xj) ∈ h and Cj ∈ h;

2- commit(Tj) < snapshot(Ti);

3- ∀Tk such that Wk(Xk), Ck ∈ h : [commit(Tk) < commit(Tj) or snapshot(Ti) <

commit(Tk)]

4- Ti ∼ Tj and commit(Tj) < start(Ti): commit(Tj) < snapshot(Ti)

P2. (PC-SI Commit Rule) ∀Ti, Tj such that Ci, Cj ∈ h :

5- ¬(Tj impacts Ti).

D.2 Generalized Snapshot Isolation

We now prove Theorem 8 ∃e : ∀T ∈ T : CTANSISI(T, e) ≡ GSI i.e. C-ORD(Tsp , T) ∧ ∃s ∈ Se :

COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ (Ts <s T) ≡ D1 ∧D2.

Proof. (⇐) We first prove D1 ∧D2⇒ ∃e : ∀T ∈ T : CTANSI SI(e, T).

Commit Test We can construct an execution e such that every committed transaction satisfies the

commit test CTANSI SI(e, T). By definition, all operations are assigned distinct timestamps (includ-

ing start and commit operations). Let i1, ...in be a permutation of 1, 2, ..., n such that committed

transactions Ti1 , ..., Tin are totally ordered by their commit time. We construct an execution e ac-

cording to the topological order defined above: e : s0 → sTi1
→ sTi2

→ ... → sTin
and show

that ∀Tij ∈ T : CTANSI SI(e , Tij). Specifically, we prove the following: consider the largest k

such that commit(Tik) < snapshot(Tij), D1∧D2⇒ C-ORD(Tsp(Tj), Tj)∧ COMPLETEe,Tij
(sTik

)∧

NO-CONFTij
(sTik

) ∧ (Tik <s Tij) .

Commit Order We first prove that C-ORD(Tsp(Tj), Tj) is true. In the execution, we ordered the

transactions by their commit time, it therefore directly follows that Tsp(Tj).commit < Tj .commit.

179

Complete State Next, we prove that COMPLETEe,Tij
(sTik

). Consider the three possible types of

operations in Tij :

1. External Reads: an operation reads an object version that was created by another transaction.

2. Internal Reads: an operation reads an object version that itself created.

3. Writes: an operation creates a new object version.

We show that the sTik
is included in the read set of each of those operation types:

1. External Reads. Let rij (xiq) read the version for x created by Tiq where q 6= j, i.e. Rij (Xiq) ∈ h

in the definition of GSI.

We first show that sTiq

∗−→ sTik
. By rule D1-2, we have commit(Tiq) < snapshot(Tij). Since k

is the largest number such that commit(Tik) < snapshot(Tij), we have q ≤ k, and consequently

sTiq

∗−→ sTik
. Next, we argue that the state sTik

contains the object value pair (x, xiq). Specifically,

we argue that there does not exist a sTim
, where q < m ≤ k, such that Tim writes a new version

of x. We prove this by contradiction. Consider any such m (and note that the execution contains

only committed transactions), we have Wim(Xim) and Cim ∈ h. By D1-3, we have either (i)

commit(Tim) < commit(Tiq) or (ii) snapshot(Tij) < commit(Tim). By assumption, we have

q ≤ m ≤ k. By construction, it follows that commit(Tim) > commit(Tiq), a contradiction with

(i). Therefore (ii) should hold. However, since m ≤ k, we have commit(Tim) ≤ commit(Tik).

Given that commit(Tik) < snapshot(Tij), we have commit(Tim) < commit(Tij), a contra-

diction with snapshot(Tij) < commit(Tim). Neither (i) nor (ii) holds, we conclude that such m

does not exist. Hence we conclude: (x, xiq) ∈ sTik
and therefore sTik

∈ RSe(rij (xiq)).

2. Internal Reads. Let rij (xij) read xij such that wij (xij)
to−→ rij (xij). By definition, the read state

set of such an operation consists of ∀s ∈ Se : s
+−→ sTij

. Since commit(Tik) < snapshot(Tij) <

commit(Tij), sTik

+−→ sTij
by construction. It trivially follows that sTik

∈ RSe(rij (xij)).

3. Writes. Let wij (xij) be a write operation. By definition, its read state set consists of all the states

before sTij
in the execution. Hence it also trivially follows that sTik

∈ RSe(wij (xij)).

Thus sTik
∈

⋂
o∈ΣTij

RSe(o), i.e. COMPLETEe,Tij
(sTik

).

180

Distinct Write Sets We now prove the third part of the commit test: NO-CONFTij
(sTik

), i.e.

(∆(sTik
, sTij−1

) ∩WTij
= ∅). We prove this by contradiction. Consider any m, where k < m < j

such thatWTim
∩WTij

6= ∅. Since k is the largest index such that commit(Tik) < snapshot(Tij),

we have commit(Tim) ≥ snapshot(Tij). Furthermore, we have commit(Tim) < commit(Tij)

by construction. Combining the two inequalities, we have snapshot(Tij) ≤ commit(Tim) <

commit(Tij) and consequently writeset(Tim) ∩ writeset(Tij) = ∅ by D2(4). Yet, we assumed

WTim
∩WTij

6= ∅. We have a contradiction. Thus, ∀m, k < m < j,WTim
∩WTij

= ∅. We conclude

that ∆(sTik
, sTij−1

) ∩WTij
= ∅.

Time Order Finally, we prove that Tik <s Tij . Since commit(Tik) < snapshot(Tij) and

snapshot(Tij) ≤ start(Tij) by definition, we have commit(Tik) < start(Tij), i.e. Tik <s Tij .

We have consequently proved that C-ORD(Tsp(Tij
), Tij) ∧ COMPLETEe,Tij

(sTik
) ∧ NO-CONFTij

(sTik
) ∧

(Tik <s Tij), and consequently that D1 ∧D2⇒ ∃e : ∀T ∈ T : CTANSI SI(e, T).

(⇒) We next prove ∃e : ∀T ∈ T : CTANSI SI(e, T) ⇒ D1 ∧ D2. Let e be an execution such

that ∀T ∈ T : CTANSI SI(T, e), and H be a history for committed transactions T . Note that

since e satisfies C-ORD(Tsp(T), T), the order of transactions in e is the same as ordering by time,

i.e. sT
∗−→ sT ′ ≡ T.commit < T ′.commit. Now we assign a snapshot time to each transaction.

For any Ti, let sTk
be the state such that COMPLETEe,Ti(sTk

) ∧ NO-CONFTi(sTk
) ∧ (Tk <s Ti) (by

CTANSI SI(T, e)) and set snapshot(Ti) = commit(Tk) + ε, where ε is a small constant that is

smaller than a time unit. The assigned snapshot time satisfies snapshot(t) ≤ start(t): since Tk <s

Ti, we have commit(Tk) < start(Ti), therefore snapshot(Ti) = commit(Tk) + ε < start(Ti) as

ε is smaller than a time unit.

D1 First, we prove that D1 is satisfied. Consider xj such that Ri(xj) ∈ h. Since COMPLETEe,Ti(sTk
),

we have (x, xj) ∈ sTk
, therefore the transaction executing Wj(xj) has been applied in the execution,

i.e. sTj

∗−→ sTk
. Moreover e contains only committed transactions. Hence Wj(xj) ∈ h and Cj ∈ h

and consequently that D1-1 holds. Moreover, since sTj

∗−→ sTk
, by C-ORD(Tsp(T), T), we have

commit(Tj) ≤ commit(Tk) < snapshot(Ti), hence D1-2 is also satisfied. We now consider D1-3.

For any Tq such that Wq(xq), Cq ∈ h, there can be only two cases: (i) commit(Tq) < commit(Tj),

for which D1-3 is directly satisfied ; (ii) commit(Tq) ≥ commit(Tj): since (x, xj) ∈ sTk
, Tq must

181

be applied after Tk, it follows that commit(Tq) > commit(Tk) + ε = snapshot(Ti). In either case,

D1-3 is satisfied. Combining all previous results, we conclude that D1 is satisfied.

D2 Now, we prove that D2 is satisfied. Consider any Tj , there can only be two cases: writeset(Ti)∩

writeset(Tj) = ∅ (1) and writeset(Ti) ∩ writeset(Tj) 6= ∅ (2). The first case trivially satisfies

¬(Tj impacts Ti). In the second case, as NO-CONFTi(sTk
) holds, we have either sTj

∗−→ sTk
or sTi

∗−→

sTj . If sTj

∗−→ sTk
, commit(Tj) ≤ commit(Tk) < snapshot(Ti), and hence that ¬(Tj impacts Ti)

holds. If sTi

∗−→ sTj , we have commit(Ti) ≤ commit(Tj), therefore ¬(Tj impacts Ti) is true. In

both cases, D2 holds.

We conclude ∀T ∈ T : CTANSI SI(T, e)⇒ D1 ∧D2. This completes the proof.

D.3 Prefix-consistent Snapshot Isolation

We now prove Theorem 9 ∃e : ∀T ∈ T : CTSession SI(T, e) ≡ PC-SI i.e. C-ORD(Tsp , T) ∧ ∃s ∈

Se : COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ (∀T ′ se−→ T : sT ′
∗−→ s) ≡ P1 ∧ P2.

Proof. (⇐)We first prove P1 ∧ P2⇒ ∃e : ∀T ∈ T : CTSession SI(e, T).

Commit Test We can construct an execution e such that every committed transaction satisfies

the commit test CTSession SI(e, T). By definition, we assign distinct timestamps to all operations

(including start, commit operations). Let i1, ...in be a permutation of 1, 2, ..., n such that committed

transactions Ti1 , ..., Tin are totally ordered by their commit time. We construct an execution e

according to the topological order defined above: e : s0 → sTi1
→ sTi2

→ ... → sTin
and show

that ∀Tij ∈ T : CTSession SI(e , Tij). Specifically, we prove the following: consider the largest k

such that commit(Tik) < snapshot(Tij), P1 ∧ P2⇒ C-ORD(Tsp(Tj), Tj) ∧ COMPLETEe,Tij
(sTik

) ∧

NO-CONFTij
(sTik

) ∧ (∀T ′ se−→ t : sT ′
∗−→ sTik

).

Note that since PC-SI rules are strictly stronger than GSI rules and we construct the execution the

same as the proof in §D.2, the proof of C-ORD(Tsp(Tj), Tj) ∧ COMPLETEe,Tij
(sTik

) ∧ NO-CONFTij
(sTik

)

is identical to the proof in §D.2. We therefore simply prove that ∀t′ se−→ t : st′
∗−→ sTik

. Consider any

Tim
se−→ Tij , i.e. Tim ∼ Tij and Tim .commit < Tij .start. By D4, we have that commit(Tim) <

snapshot(Tij). Since Tik is the largest transaction whose commit(Tik) < snapshot(Tij), we have

182

commit(Tim) ≤ commit(Tik). By the execution construction, we have sTim

∗−→ sTik
.

(⇒)We next prove ∃e : ∀T ∈ T : CTSession SI(e, T) ⇒ P1 ∧ P2. Let e be an execution such

that ∀T ∈ T : CTGSI(T, e), and H be a history for committed transactions T . Since e satisfies

C-ORD(Tsp(T), T), the order of transactions in e is the same as ordering by time, i.e. sT
∗−→ sT ′ ≡

T.commit < T ′.commit. Now we assign a snapshot time to transactions. For any Ti, let sTk

be the state such that COMPLETEe,Ti(sTk
) ∧ NO-CONFTi(sTk

) ∧ (Tk <s Ti) (by CTGSI(T, e)), then

snapshot(Ti) = commit(Tk) + ε, where ε is a small constant that is smaller than a time unit;

otherwise, snapshot(Ti) = 0. The snapshot time assigned satisfies snapshot(T) ≤ start(T):

since Tk <s Ti, we have commit(Tk) < start(Ti), therefore snapshot(Ti) = commit(Tk) +

ε < start(Ti). P1-1, P1-2, P1-3 holds by an identical proof to proving D1-1, D1-2, D1-3 of

Theorem 8(b)(⇒). Now we prove P1-4. If Ti ∼ Tj and commit(Tj) < start(Ti), we have Tj
se−→ Ti,

therefore by (∀t′ se−→ t : st′
∗−→ sTik

), we have sTj

∗−→ sTk
. By st

∗−→ st′ ≡ t.commit < t′.commit,

we have commit(Tj) < commit(Tk) < snapshot(Ti). Combining all previous results, we conclude

that P1 is satisfied

P2 Now, we prove that P2 is satisfied. Consider any Tj , there can only be two cases: writeset(Ti) ∩

writeset(Tj) = ∅ (1) and writeset(Ti) ∩ writeset(Tj) 6= ∅ (2). The first case trivially satisfies

¬(Tj impacts Ti). In the second case, as NO-CONFTi(sTk
) holds, we have either sTj

∗−→ sTk
or sTi

∗−→

sTj . If sTj

∗−→ sTk
, commit(Tj) ≤ commit(Tk) < snapshot(Ti), and hence that ¬(Tj impacts Ti)

holds. If sTi

∗−→ sTj , we have commit(Ti) ≤ commit(Tj), therefore ¬(Tj impacts Ti) is true. In

both cases, P2 holds.

We conclude ∀T ∈ T : CTSession SI(T, e)⇒ P1 ∧ P2. This completes the proof.

183

E Equivalence to PL-2+ and PSI

In this section, we prove that our state-based definition of PSI is equivalent to the axiomatic formula-

tion of PSI (PSIA) by Cerone et al. [46] and to the cycle-based specification of PL-2+. Specifically,

we prove the following theorems:

Theorem 10 (a) ∃e : ∀T ∈ T : CTPSI(T, e) ≡ ¬G1 ∧ ¬G-single.

Theorem 10 (b) ∃e : ∀T ∈ T : CTPSI(T, e) ≡ PSIA.

Before beginning, we first prove a useful lemma: if an execution e, written s0 → sT1 → sT2 →

· · · → sTn satisfies the predicate PREREADe(T), then any transaction T that depends on a transaction

T ′ (T ∈ PRECe(T
′)) will always commit after T ′ and all its dependents in the execution. We do

so in two steps: we first prove that T will commit after the transactions that it directly reads from

(Lemma 2), and then extend that result to all the transaction’s transitive dependencies (Lemma 3).

Formally

Lemma 2. PREREADe(T)⇒ ∀T̂ ∈ T : ∀T ∈ D-PRECe(T̂), sT
+−→ sT̂

Proof. Consider any T̂ ∈ T and any T ∈ D-PRECe(T̂). T is included in D-PRECe(T̂) if one of two

cases hold: if ∃o ∈ ΣT̂ , T = Tsfo (T̂ reads the value created by T) or sT
+−→ sT̂ ∧WT̂ ∩WT 6= ∅ (t

and T̂ write the same objects and T commits before T̂).

1. T ∈ {T |∃o ∈ ΣT̂ : T = Tsfo} Let oi be the operation such that T = Tsfoi . By assumption,

we have PREREADe(T). It follows that ∀o, sfo
+−→ sT̂ . and consequently that sfoi

+−→ sT̂ and

sT
+−→ sT̂ .

2. T ∈ {T |sT
+−→ sT̂ ∧WT̂ ∩WT 6= ∅}, trivially we have sT

+−→ sT̂ .

We now generalize the result to hold transitively.

Lemma 3. PREREADe(T)⇒ ∀T ′ ∈ PRECe(T) : sT ′
+−→ sT .

Proof. We prove this implication by induction.

184

Base Case Consider the first transaction T1 in the execution. We want to prove that for all transactions

T that precede T1 in the execution sT
∗−→ sT1 : ∀T ′ ∈ PRECe(T) : sT ′

∗−→ sT . As T1 is the first

transaction in the execution, D-PRECe(T1) = ∅ and consequently PRECe(T) = ∅. We see this by

contradiction: assume there exists a transaction

T ∈ D-PRECe(T1), by implication sT
+−→ sT1 (Lemma 2), which violates our assumption that T1 is

the first transaction in the execution. Hence the desired result trivially holds.

Induction Step Consider the i-th transaction in the execution. We assume that ∀T s.t. sT
∗−→ si the

property ∀T ′ ∈ PRECe(T) : sT ′
∗−→ sT holds. In other words, we assume that the property holds for the

first i transactions. We now prove that the property holds for the first i+ 1 transactions, specifically,

we show that ∀T ′ ∈ PRECe(Ti+1) : sT ′
∗−→ sTi+1 . A transaction T ′ belongs to PRECe(Ti+1) if one of

two conditions holds: either T ′ ∈ D-PRECe(Ti+1), or ∃tk ∈ T : t′ ∈ PRECe(Tk) ∧ tk ∈ D-PRECe(Ti+1).

We consider each in turn:

• If T ′ ∈ D-PRECe(Ti+1): by Lemma 2, we have sT ′
+−→ sTi+1 .

• If ∃tk ∈ D-PRECe(Ti+1) : T ′ ∈ PRECe(Tk): As Tk ∈ D-PRECe(Ti+1), by Lemma 2, we have sTk

+−→

sTi+1 , i.e. sTk

∗−→ sTi (sTi directly precedes sTi+1 in e by construction). The induction hypothesis

holds for every transaction that strictly precedes Ti+1 in e, hence ∀tk′ ∈ PRECe(Tk) : sTk′
+−→ sTk

.

As T ′ ∈ PRECe(Tk) by construction, it follows that sT ′
+−→ sTk

. Putting everything together, we

have sT ′
+−→ sTk

+−→ sTi+1 , and consequently sT ′
+−→ sTi+1 . This completes the induction step of

the proof.

Combining the base case, and induction step, we conclude: PREREADe(T) ⇒ ∀T ′ ∈ PRECe(T) :

sT ′
+−→ sT .

E.1 Cerone et al. [46]’s model summary

We note that this axiomatic specification, defined by Cerone et al. [46, 48] is proven to be equivalent

to the operational specification of Sovran et al. [178], modulo an additional assumption: that each

replica executes each transaction sequentially. The authors state that this is for syntactic elegance

only, and does not change the essence of the proof. We provide a brief summary and explanation of

the main terminology introduced in Cerone et al.’s framework. We refer the reader to [46] for the

185

full set of definitions. The authors consider a database storing a set of objects Obj = {x, y, ...}, with

operations Op = {read(x, n), write(x, n)|x ∈ Obj, n ∈ Z}. For simplicity, the authors assume the

value space to be Z.

Definition 17 History events are tuples of the form (ι, op), where ι is an identifier from a countably

infinite set EventId and op ∈ Op. Let WEventx = {(ι, write(x, n))|ι ∈ EventId, n ∈ Z},

REventx = {(ι, read(x))|ι ∈ EventId, n ∈ Z}, and HEventx = REventx ∩WEventx.

Definition 18 A transaction T is a pair (E, po), where E ⊆ HEvent is an non-empty set of events

with distinct identifiers, and the program order po is a total order over E. A history H is a set of

transactions with disjoint sets of event identifiers.

Definition 19 An abstract execution is a triple A = (H, V IS,AR) where visibility V IS ⊆ H×H

is an acyclic relation; and arbitration AR ⊆ H×H is a total order such that AR ⊇ V IS.

For simplicity, we summarize the model’s main notation specificities:

• Denotes a value that is irrelevant and implicitly existentially quantified.

• maxR(A) Given a total order R and a set A, maxR(A) is the element u ∈ A such that

∀v ∈ A.v = u ∨ (v, u) ∈ R.

• R−1(u) For a relation R ⊆ A×A and an element u ∈ A, we let R−1(u) = {v|(v, u) ∈ R}.

• T ` Write x : n T writes to x and the last value written is n: maxpo(E ∩WEventx) =

(_, write(x, n)).

• T ` Read x : n T makes an external read from x, i.e., one before writing to x, and n is the

value returned by the first such read: minpo(E ∩HEventx) = (_, read(x, n)).

A consistency model specification is a set of consistency axioms Φ constraining executions. The

model allow those histories for which there exists an execution that satisfies the axioms.

Definition 20HistΦ = {H|∃V is,AR.(H, AR) � Φ}

The authors define the axioms in Table 1. PSIA is then defined with the following set of consistency

axioms.

Definition 21 PSIA allows histories for which there exists an execution that satisfies INT,

186

INT ∀(E, po) ∈ H.∀event ∈ E.∀x, n.(event = (_, read(x, n)) ∧ (po−1(event) ∩ HEventx 6= ∅))⇒ maxpo(po−1(event) ∩ HEventx) = (_, _(x, n))

EXT ∀T ∈ H.∀x, n.T ` Read x : n⇒ ((V IS−1(T) ∩ {S|S `Write x : _} = ∅ ∧ n = 0) ∨maxAR((V IS−1(T) ∩ {S|S `Write x : _}) `Write x : n)

TRANSVIS VIS is transitive

NOCONFLICT ∀T, S ∈ H.(T 6= S ∧ T `Write x : _ ∧ S `Write x : _)⇒ (T
V IS−−−→ S ∨ S

V IS−−−→ T)

Table 1: PSI Axioms

EXT, TRANSVIS and NOCONFLICT: HistPSI = {H|∃V IS,AR.(H, V IS,AR) |= INT, EXT,

TRANSVIS, NOCONFLICT}.

E.2 PL-2+

Before beginning, we first prove a useful lemma. Let us consider a history H that contains the same

set of transactions T as an execution e. The version order for H , denoted as <<, is instantiated as

follows: given an execution e and an object x, xi << xj if and only if x ∈ WTi ∩WTj ∧ sTi

∗−→ sTj .

We show that, if a transaction T ′ is in the depend set of a transaction T (T ′ ∈ PRECe(T)), then there

exists a path of write-read/write-write dependencies from T ′ to T in the DSG(H). Formally:

Lemma 4. PREREADe(T)⇒ ∀T ′ ∈ PRECe(T) : T ′
ww/wr−−−−→

+

T in DSG(H).

Proof. We improve this implication by induction.

Base Case Consider the first transaction T1 in the execution. We want to prove that for all transactions

T that precede T1 in the execution ∀T ∈ T such that sT
∗−→ sT1 , the following holds: ∀T ′ ∈

PRECe(T) : T ′
ww/wr−−−−→

+

T inDSG(H). As T1 is the first transaction in the execution, D-PRECe(T1) =

∅ and consequently PRECe(T) = ∅. We see this by contradiction: assume there exists a transaction

T ∈ D-PRECe(T1), by implication sT
+−→ sT1 (Lemma 2), violating our assumption that T1 is the first

transaction in the execution. ence the implication trivially holds.

Induction Step Consider the i-th transaction in the execution. We assume that ∀T , s.t. sT
∗−→ sTi ,

∀T ′ ∈ PRECe(T) : T ′
ww/wr−−−−→

+

T . In other words, we assume that the property holds for the first i

transactions. We now prove that the property holds for the first i+1 transactions, specifically, we show

that ∀T ′ ∈ PRECe(Ti+1) : T ′
ww/wr−−−−→

+

Ti+1. A transaction T ′ belongs to PRECe(Ti+1) if one of two

conditions holds: either T ′ ∈ D-PRECe(Ti+1), or ∃Tk ∈ T : T ′ ∈ PRECe(Tk) ∧ Tk ∈ D-PRECe(Ti+1).

We consider each in turn:

187

• If T ′ ∈ D-PRECe(Ti+1): There are two cases: T ′ ∈ {T |∃o ∈ ΣTi+1 : t = Tsfo} or, T ′ ∈ {T |sT
+−→

sTi+1 ∧ WTi+1 ∩ WT 6= ∅}. If T ′ ∈ {T |∃o ∈ ΣTi+1 : t = Tsfo}, Ti+1 reads the version of an

object that T ′ wrote, hence Ti+1 read-depends on T ′, i.e. T ′ wr−→ T .

If T ′ ∈ {T |sT
+−→ sTi+1 ∧ WTi+1 ∩ WT 6= ∅}: trivially, sT ′

+−→ sTi+1 . Let x be the key that is

written by T and Ti+1: x ∈ WTi+1 ∩WT . By construction, the history H’s version order for x is

xT ′ << xTi+1 . By definition of version order, there must therefore a chain of ww edges between

T ′ and Ti+1 in DSG(H), where all of the transactions in the chain write the next version of x.

Thus: T ′ ww−−→
+
Ti+1 holds.

• If ∃Tk : T ′ ∈ PRECe(Tk) ∧ Tk ∈ D-PRECe(Ti+1). As Tk ∈ D-PRECe(Ti+1), we conclude , as above

that Tk
ww/wr−−−−→

+

Ti+1. Moreover, by Lemma 2, we have sTk

+−→ sTi+1 , i.e. sTk

∗−→ sTi (sTi directly

precedes sTi+1 in e by construction). The induction hypothesis holds for every transaction that

precedes Ti+1 in e, hence ∀Tk′ ∈ PRECe(Tk): Tk′
ww/wr−−−−→

+

Tk. Noting T ′ ∈ PRECe(Tk), we see

that T ′
ww/wr−−−−→

+

Tk. Putting everything together, we obtain T ′
ww/wr−−−−→

+

Tk
ww/wr−−−−→

+

Ti+1, i.e.

T ′
ww/wr−−−−→

+

Ti+1 by transitivity.

Combining the base case, and induction step, we conclude: ∀t : ∀T ′ ∈ PRECe(T) : T ′
ww/wr−−−−→

+

T .

Now, we prove Theorem 10 (a) Let I be PSI. Then ∃e : ∀T ∈ T : CTPSI(T, e) ≡ ¬G1 ∧

¬G-Single

Proof. Let us recall the definition of PSI’s commit test: PREREADe(T)∧∀o ∈ ΣT : ∀T ′ ∈ PRECe(T) :

o.k ∈ WT ′ ⇒ sT ′
∗−→ slo

(⇒) First we prove ∃e : ∀T ∈ T : CTPSI(T, e) ⇒ ¬G1 ∧ ¬G-Single. Let e be an execution that

∀T ∈ T : CTPSI(T, e), and H be a history for committed transactions T . We first instantiate the

version order for H, denoted as <<, as follows: given an execution e and an object x, xi << xj

if and only if x ∈ WTi ∩WTj ∧ sTi

∗−→ sTj . It follows that, for any two states such that (x, xi) ∈

Tm ∧ (x, xj) ∈ Tn ⇒ sTm

+−→ sTn .

G1 We next prove that ∀T ∈ T : CTPSI(T, e)⇒ ¬G1:

188

G1a Let us assume that H exhibits phenomenon G1a (aborted reads). There must exist events

wi(xi), rj(xi) in H such that Ti subsequently aborted. T and any corresponding execution e, how-

ever, consists only of committed transactions. Hence ∀e :6 ∃s ∈ Se, s.t. s ∈ RSe(rj(xi)): i.e.

¬PREREADe(Tj), therefore ¬PREREADe(T). There thus exists a transaction for which the commit test

cannot be satisfied, for any e. We have a contradiction.

G1b Let us assume that H exhibits phenomenon G1b (intermediate reads). In an execution e, only

the final writes of a transaction are applied. Hence,∀e :6 ∃s ∈ Se, s.t. s ∈ RSe(r(xintermediate)), i.e.

¬PREREADe(T), therefore ¬PREREADe(T). There thus exists a transaction T , which for all e, will not

satisfy the commit test. We once again have a contradiction.

G1c Finally, let us assume that H exhibits phenomenon G1c: DSG(H) must contain a cycle of

read/write dependencies. We consider each possible edge in the cycle in turn:

• Ti
ww−−→ Tj There must exist an object x such that xi << xj (version order). By construction,

version order in H is consistent with the execution order e: we have sTi

∗−→ sTj .

• Ti
wr−→ Tj There must exist a read o = rj(xi) ∈ ΣTj such that Tj reads version xi written by Ti.

By assumption, CTPSI(e, Tj) holds. By PREREADe(T), we have sfo
+−→ sTj ; and since sfo exists,

sfo = sTi . It follows that sTi

+−→ sTj .

If a history H displays phenomena G1c there must exist a chain of transactions Ti → Ti+1 →

...→ Tj such that i = j. A corresponding cycle must thus exist in the execution e: sTi

∗−→ sTi+1

∗−→

. . .
∗−→ sTj . By definition however, a valid execution must be totally ordered. We once again have a

contradiction.

G-Single We now prove that ∀T ∈ T : CTPSI(T, e)⇒ ¬G-Single

By way of contradiction, let us assume that H exhibits phenomenon G-Single:DSG(H) must contain

a directed cycle with exactly one anti-dependency edge. Let T1
ww/wr−−−−→ T2

ww/wr−−−−→ . . .
ww/wr−−−−→

Tk
rw−→ T1 be the cycle in DSG(H). We first prove by induction that T1 ∈ PRECe(Tk), where Tk

denotes the k− th transaction that succedes T1. We then show that there exist a T ′ ∈ PRECe(Tk) such

that o.k ∈ WT ′ ⇒ sT ′
∗−→ slo does not hold.

Base case We prove that T1 ∈ PRECe(T2). We distinguish between two cases T1
ww−−→ T2, and

189

T1
wr−→ T2.

• If T1
ww−−→ T2, there must exist an object k that T1 and T2 both write: k ∈ WT1 and k ∈ WT2 ,

thereforeWT1 ∩WT2 6= ∅. By construction, Ti
ww−−→ Tj ⇔ sTi

∗−→ sTj . Hence we have sT1

∗−→ sT2 .

By definition of D-PRECe(T), it follows that T1 ∈ D-PRECe(T2).

• If T1
wr−→ T2, there must exist an object k such that T2 reads the version of the object created by

transaction T1: o = r(k1). We previously proved that Ti
wr−→ Tj ⇒ sTi

+−→ sTj . It follows that

sT1

+−→ sT2 and sfo = sT1 , i.e. T1 = Tsfo . By definition, T1 ∈ D-PRECe(T2).

Since D-PRECe(T2) ⊆ PRECe(T2), it follows that T1 ∈ PRECe(T2).

Induction step Assume T1 ∈ PRECe(Ti), we prove that T1 ∈ PRECe(Ti+1). To do so, we first prove

that Ti ∈ D-PRECe(Ti+1). We distinguish between two cases: Ti
ww−−→ Ti+1, and Ti

wr−→ Ti+1.

• If Ti
ww−−→ Ti+1, there must exist an object k that Ti and Ti+1 both write: k ∈ WTi and k ∈ WTi+1 ,

therefore WTi ∩ WTi+1 6= ∅. By construction, Ti
ww−−→ Tj ⇔ sTi

∗−→ sTj . Hence we have

sTi

∗−→ sTi+1 . By definition of D-PRECe(T), it follows that Ti ∈ D-PRECe(Ti+1).

• If Ti
wr−→ Ti+1, there must exist an object k such that Ti+1 reads the version of the object created

by transaction Ti: o = r(ki). We previously proved that Ti
wr−→ Tj ⇒ sTi

+−→ sTj . It follows that

sTi

+−→ sTi+1 and sfo = sTi , i.e. Ti = Tsfo . By definition, Ti ∈ D-PRECe(Ti+1).

Hence, Ti ∈ D-PRECe(Ti+1). The depends set includes the depend set of every transaction that

it directly depends on: consequently PRECe(Ti) ⊆ PRECe(Ti+1). We conclude: T1 ∈ PRECe(Ti+1).

Combining the base step and the induction step, we have proved that T1 ∈ PRECe(Tk).

We now derive a contradiction. Consider the edge Tk
rw−→ T1 in the G-Single cycle: Tk reads the

version of an object x that precedes the version written by T1. Specifically, there exists a version xm

written by transaction Tm such that rk(xm) ∈ ΣTk
, w1(x1) ∈ ΣT1 and xm << x1. By definition of

the PSI commit test for transaction Tk, if T1 ∈ PRECe(Tk) and T1’s write set intersect with Tk’s read

set, then sT1

∗−→ slrk(xm). However, from xm << x1, we have ∀s, s′, s.t.(x, xm) ∈ s ∧ (x, x1) ∈

s′ ⇒ s
+−→ s′. Since (x, xm) ∈ slrk(xm) ∧ (x, x1) ∈ sT1 , we have slrk(xm)

+−→ sT1 . But, we

previously proved that T sT1

∗−→ slrk(xm). We have a contradiction: H does not exhibit phenomenon

G-Single, i.e. ∃e : ∀T ∈ T : CTPSI(T, e)⇒ ¬G1 ∧ ¬G-Single.

190

(⇐) We now prove the other direction ¬G1 ∧ ¬G-Single ⇒ ∃e : ∀T ∈ T : CTPSI(T, e). We

construct e as follows: Consider only dependency edges in the DSG(H), by ¬G1, there exist no

cycle consisting of only dependency edges, therefore the transactions can be topologically sorted

respecting only dependency edges. Let i1, ...in be a permutation of 1, 2, ..., n such that Ti1 , ..., Tin is

a topological sort of DSG(H) with only dependency edges. We construct an execution e according to

the topological order defined above: e : s0 → sTi1
→ sTi2

→ ...→ sTin
.

First we show that PREREADe(T) is true: consider any transaction T , for any operation o ∈ ΣT . If o

is a internal read operation or o is a write operation, by definition s0 ∈ RSe(o) henceRSe(o) 6= ∅

follows trivially. Consider the case now where o is a read operation that reads a value written by

another transaction T ′. Since the topological order includes wr edges and e respects the topological

order, T ′ wr−→ T in DSG(H) implies sT ′
∗−→ sT , then for any o = r(x, xT ′) ∈ ΣT , sT ′ ∈ RSe(o).

It follows thatRSe(o) 6= ∅ and PREREADe(T) is true. In conclusion: PREREADe(T) holds.

Next, we prove that ∀o ∈ ΣT : ∀T ′ ∈ PRECe(T) : o.k ∈ WT ′ ⇒ sT ′
∗−→ slo holds. For any

T ′ ∈ PRECe(T), by Lemma 3, sT ′
+−→ sT . Consider any o ∈ ΣT , let T ′ be a transaction such that

T ′ ∈ PRECe(T) ∧ o.k ∈ WT ′ , we now prove that sT ′
∗−→ slo. Consider the three possible types of

operations in T :

1. External Reads: an operation reads an object version that was created by another transaction.

2. Internal Reads: an operation reads an object version that itself created.

3. Writes: an operation creates a new object version.

We show that sT ′
∗−→ slo for each of those operation types:

1. External Reads. Let o = r(x, xT̂) ∈ ΣT read the version for x created by T̂ , where T̂ 6= T . Since

PREREADe(T) is true, we have RSe(o) 6= ∅, therefore sT̂
+−→ sT and T̂ = Tsfo . From T̂ = Tsfo ,

we have T̂ ∈ D-PRECe(T). Now consider T ′ and T̂ , we have that sT ′
+−→ sT and sT̂

+−→ sT . There

are two cases:

• sT ′
∗−→ sT̂ : Consequently sT ′

∗−→ sT̂ = sfo
∗−→ slo It follows that sT ′

∗−→ slo.

• sT̂
+−→ sT ′ : We prove that this cannot happen by contradiction. Since o.k ∈ WT ′ , T ′ also writes

191

key xT ′ . By construction, , sT̂
+−→ sT ′ in e implies xT̂ << xT ′ . There must consequently exist a

chain ofww edges between T̂ and T ′ inDSG(H), where all the transactions on the chain writes

a new version of key x. Now consider the transaction in the chain directly after to T̂ , denoted

as T̂+1, where T̂ ww−−→ T̂+1
ww−−→
∗
T ′. T̂+1 overwrites the version of x T reads. Consequently,

T directly anti-depends on T̂+1, i.e. T rw−→ T̂+1. Moreover T ′ ∈ PRECe(T), by Lemma 4, we

have T ′
ww/wr−−−−→

+

T . There thus exists a cycle consists of only one anti dependency edges as

T
rw−→ T̂+1

ww−−→
∗
T ′

ww/wr−−−−→
+

T , in contradiction with G-Single. sT ′
∗−→ sT̂ holds.

sT ′
∗−→ sT̂ holds in all cases. Noting that sT̂ = slo, we conclude sT ′

∗−→ slo.

2. Internal Reads. Let o = r(x, xT) read xT such that w(x, xT)
to−→ r(x, xT). By definition of

RSe(o), we have slo = sp. Since we have proved that sT ′
+−→ sT , therefore we have sT ′

∗−→ sp =

slo (as sp → sT).

3. Writes. Let o = w(x, xT) be a write operation. By definition ofRSe(o), we have slo = sp. We

previously proved that sT ′
+−→ sT . Consequently we have sT ′

∗−→ sp = slo (as sp → sT).

We conclude that, in all cases, CTPSI(T, e) ≡ PREREADe(T) ∧ ∀o ∈ ΣT : ∀T ′ ∈ PRECe(T) : o.k ∈

WT ′ ⇒ sT ′
∗−→ slo.

E.3 PSI

We now prove the following theorem:

Theorem 10 (b) ∃e : ∀T ∈ T : CTPSI(T, e) ≡ PSIA.

We first relate Cerone et al.’s notion of transactions to transactions in our model: Cerone defines

transactions as a tuple (E, po) where E is a set of events and po is a program order over E. Our

model similalry defines transactions as a tuple (ΣT ,
to−→), where ΣT is a set of operations, and to−→ is

the total order on ΣT . These definitions are equivalent: events defined in Cerone are extensions of

operations in our model (events include a unique identifier), while the partial order in Cerone maps

to the program order in our model. Finally, we relate our notion of versions to Cerone’s values.

(⇒) We first prove ∃e : ∀T ∈ T : CTPSI(T, e)⇒ PSIA.

Construction Let e be an execution such that ∀T ∈ T : CTPSI(T, e). We construct AR and

192

V IS as follows: AR is defined as Ti
AR−−→ Tj ⇔ sTi −→ sTj while V IS order is defined as

Ti
V IS−−−→ Tj ⇔ Ti ∈ PRECe(Tj). By definition, our execution is a total order, hence our constructed

AR is also a total order. V IS defines an acyclic partial order that is a subset of AR (by PREREADe(T)

and Lemma 3). We now prove that each consistency axiom holds:

INT ∀(E, po) ∈ H.∀event ∈ E.∀x, n.(event = (_, read(x, n)) ∧ (po−1(event) ∩ HEventx 6=

∅)) ⇒ maxpo(po
−1(event) ∩ HEventx) = (_, _(x, n)) Intuitively, the consistency axiom INT

ensures that the read of an object returns the value of the transaction’s last write to that ob-

ject (if it exists). For any (E, po) ∈ H, we consider any event and x such that (event =

(_, read(x, n))∧(po−1(event)∩HEventx 6= ∅)). We prove that maxpo(po
−1(event)∩HEventx) =

(_, _(x, n)). By assumption, (po−1(event) ∩ HEventx 6= ∅)) holds, there must exist an event such

that maxpo(po
−1(event) ∩ HEventx). This event is either a read operation, or a write operation:

1. If op = maxpo(po
−1(event)∩HEventx) is a write operation: given event = (_, read(x, n)) and

op
po−→ event, the equivalent statement in our model is w(x, vop)

to−→ r(x, n). By definition, our

model enforces that w(k, v′)
to−→ r(k, v) ⇒ v = v′. Hence vop = n, i.e. op = (_, write(x, n)),

therefore op = (_, _(x, n)). Hence INT holds.

2. If op = maxpo(po
−1(event) ∩ HEventx) is a read operation, We write op = (_, read(x, vop)).

The equivalent formulation in our model is as follows. For event = (_, read(x, n)), we write

o1 = r(x, n), and for op, we write o2 = r(x, vop) with o2
to−→ o1 where o1, o2 ∈ ΣT . Now we

consider the following two cases.

First, let us assume that there exists an operation w(k, v) such that w(k, v)
to−→ o2

to−→ o1 (all three

operations belong to the same transaction). Given that to−→ is a total order, we have w(k, v)
to−→ o1

and w(k, v)
to−→ o2. It follows by definition of candidate read state that w(k, v′)

to−→ r(k, v) ⇒

v = v′, where v = n ∧ v = vop, i.e. vop = n. Hence op = (_, _(x, n)) and INT holds. Second,

let us next assume that there does not exist an operation w(k, v)
to−→ o2

to−→ o1. We prove by

contradiction that vop = n nonetheless. Assume that vop 6= n, and consider transactions T1 that

writes (x, n), and T2 that writes (x, vop), by PREREADe(T) , we know that sfo1 , sfo2 exist. We have

T1 = Tsfo1 and T2 = Tsfo2 . By definition of PRECe(T), we have T1, T2 ∈ D-PRECe(T) ⊆ PRECe(T),

i.e. T1, T2 ∈ PRECe(T). We note that the sequence of states containing (x, n) is disjoint from states

193

containing (x, vop): in otherwords, the sequence of states bounded by sfo1 and slo1 and sfo2 and

slo2 are disjoint. Hence, we have either sT1

∗−→ slo1
+−→ sT2

∗−→ slo2 , or sT2

∗−→ slo2
+−→ sT1

∗−→ slo1 .

Equivalently either T2 ∈ PRECe(T) ∧ o1.k ∈ WT2 ∧ slo1
+−→ sT2 , or T1 ∈ PRECe(T) ∧ o2.k ∈

WT1 ∧ slo2
+−→ sT1 . In both cases, this violates CTPSI(T, e), a contradiction. We conclude

vop = n, i.e. op = (_, read(x, n)), therefore op = (_, _(x, n)).

We proved that maxpo(po
−1(event) ∩ HEventx) = (_, _(x, n)), hence INT holds.

EXT We now prove that EXT holds for H. Specifically, ∀T ∈ H.∀x, n.T ` Read x : n ⇒

((V IS−1(T) ∩ {S|S ` Write x : _} = ∅ ∧ n = 0) ∨maxAR((V IS−1(T) ∩ {S|S ` Write x :

_}) `Write x : n)

We proceed in two steps, we first show that there exist a transaction T that wrote (x, n), and next

we show that T is the most recent such transaction. Consider any T ∈ H.∀x, n.T ` Read x : n (a

external read). Equivalently, we consider a transaction T in our model such that r(x, n) ∈ ΣT . Let

Tn be the transaction that writes (x, n). By assumption, PREREADe(T) holds hence sfo exists and

sfo = sTn , i.e. Tn = Tsfo , as Tn created the first state from which o could read from. By definition of

PRECe(T), we have Tn ∈ D-PRECe(T) ⊆ PRECe(T), i.e. Tn ∈ PRECe(T). Moreover, we defined V IS

as Ti
V IS−−−→ Tj ⇔ Ti ∈ PRECe(Tj). Hence, we have Tn

V IS−−−→ T , and consequently Tn ∈ V IS−1(T).

Since write(x, n) ∈ ΣTn , Tn `Write x : n.

Next, we show that Tn is larger than any other transaction T ′ in AR: T ′ V IS−−−→ T ∧ T ′ `Write x : _.

Consider the equivalent transaction T ′ in our model, we know that T ′ ∈ PRECe(T) (T ′ V IS−−−→ T) and

x ∈ WT ′ . As o = r(x, n) ∈ ΣT and T ′ ∈ PRECe(T) ∧ o.k ∈ WT ′ , CTPSI(T, e) implies that sT ′
∗−→

slo. We note that the sequence of states containing (x, n) is disjoint from states containing (x, xT ′).

It follows that sT ′
∗−→ sfo = sTn . We can strengthen this to say sT ′

+−→ sfo = sTn as T ′ 6= Tn. By

construction, we have T ′ AR−−→ Tn, i.e. Tn = maxAR((V IS−1(T) ∩ {S|S ` Write x : _}). We

conclude, EXT holds.

TRANSVIS If Ti
V IS−−−→ Tj∧Tj

V IS−−−→ Tk, by construction we have Ti ∈ PRECe(Tj)∧Tj ∈ PRECe(Tk).

From Tj ∈ PRECe(Tk), we know, since precede-set is maintained transitively, that PRECe(Tj) ⊆

PRECe(Tk), and consequently that Ti ∈ PRECe(Tk). By construction, we have Ti
V IS−−−→ Tk., hence we

conclude: V IS is transitive.

194

NOCONFLICT Recall that this axiom is defined as: ∀T, S ∈ H.(T 6= S ∧ T ` Write x :

_ ∧ S ` Write x : _) ⇒ (T
V IS−−−→ S ∨ S V IS−−−→ T) Consider any T, S ∈ H.(T 6= S ∧ T `

Write x : _ ∧ S ` Writex : _) and let Ti, Tj be the equivalent transactions in our model such

that w(x, xi) ∈ ΣTi and w(x, xj) ∈ ΣTj and consequently x ∈ WTi ∩WTj . Since e totally orders

all the committed transactions, we have either sTi

+−→ sTj or sTj

+−→ sTi . If sTi

+−→ sTj , it follows

from sTi

+−→ sTj ∧ WTi ∩ WTj 6= ∅ that Ti ∈ D-PRECe(Tj) ⊆ PRECe(Tj), i.e. Ti ∈ PRECe(Tj), and

consequently T V IS−−−→ S. Similarly, if sTj

+−→ sTi , it follows from sTj

+−→ sTi ∧ WTi ∩ WTj 6= ∅

that Tj ∈ D-PRECe(Ti) ⊆ PRECe(Ti), i.e. Tj ∈ PRECe(Ti), and consequently S V IS−−−→ T . We conclude:

T
V IS−−−→ S ∨ S V IS−−−→ T , NOCONFLICT is true.

(⇐) Now we prove that PSIA ⇒ ∃e : ∀T ∈ T : CTPSI(T, e).

By assumption, AR is a total order over T . We construct an execution e by applying transactions

in the same order as AR, i.e. sTi

+−→ sTj ⇔ Ti
AR−−→ Tj and subsequently prove that e satisfies

∀T ∈ T : CTPSI(T, e).

Preread First we show that PREREADe(T) is true: consider any transaction T , for any operation

o ∈ ΣT . If o is a internal read operation or o is a write operation, by definition sfo = s0 hence

sfo
∗−→ sT follows trivially. On the other hand, consider the case where o is a read operation that

reads a value written by another transaction T ′: let T and T ′ be the corresponding transactions in

Cerone’s model. We have T ` Read x : n and T ′ `Write x : n. Assuming that values are uniquely

identifiable, we have T ′ = maxAR(V IS−1(T) ∩ {S|S `Write x : _}) by EXT, and consequently

T ′ ∈ V IS−1(T). As V IS ⊆ AR, T ′ V IS−−−→ T and consequently T ′ AR−−→ T . Recall that we apply

transactions in the same order as AR, hence we have sT ′
+−→ sT . Since we have (x, n) ∈ sT ′ and

sT ′
+−→ sT , it follows that sT ′ ∈ RSe(o), hence RSe(o) 6= ∅. We conclude: for any transaction

T , for any operation o ∈ ΣT , RSe(o) 6= ∅, hence PREREADe(T) is true. Now consider any T ∈ T ,

we want to prove that ∀o ∈ ΣT : ∀T ′ ∈ PRECe(T) : o.k ∈ WT ′ ⇒ sT ′
∗−→ slo. First we prove that

∀T ′ ∈ PRECe(T)⇒ T ′
V IS−−−→ T . We previously proved that PREREADe(T) is true. Hence, by Lemma 4

we know that there is a chain T ′
wr/ww−−−−→

+

T . Consider any edge on the chain: Ti
ww/wr−−−−→ Tj :

1. Ti
ww−−→ Tj : We have Ti, Tj ∈ H and (Ti 6= Tj ∧Ti `Write x : _∧Tj `Write x : _), therefore

by NOCONFLICT, we have Ti
V IS−−−→ Tj ∨ Tj

V IS−−−→ Ti. Note that sTi

∗−→ sTj , we know that

195

Ti
AR−−→ Tj , and since V IS ⊆ AR, we have Ti

V IS−−−→ Tj .

2. Ti
wr−→ Tj . We map the initial values in Cerone et al from 0 to ⊥. Let n be the value that Ti

writes and Tj reads. A transaction cannot write the empty value, i.e. ⊥, to a key. It follows

that Tj ` Read x : n and n 6= 0. By EXT, maxAR(V IS−1(Tj) ∩ {S|S ` Write x : _}) `

Write x : n. Since Ti `Write x : n, Ti = maxAR(V IS−1(Tj) ∩ {S|S `Write x : _}) hold,

and consequently Ti ∈ V IS−1(Tj), i.e. Ti
V IS−−−→ Tj .

Now we consider the chain T ′
wr/ww−−−−→

+

t, and we have that T ′ V IS−−−→
+
T , by TRANSVIS, we have

T ′
V IS−−−→ T . Now, consider any o ∈ ΣT such that o.k ∈ WT ′ , let o.k = x, therefore T ′ `Write x : _.

We previously proved that T ′ V IS−−−→ T . Hence we have T ′ ∈ V IS−1(T) ∩ {S|S ` Write x : _}.

Now we consider the following two cases. If o is an external read, and reads the value (x, x̂) written by

T̂ . As transactions cannot write an empty value, i.e. ⊥, to a key, we have T ` Read x : x̂ and x̂ 6= 0.

By EXT, maxAR(V IS−1(Tj) ∩ {S|S ` Write x : _}) ` Write x : x̂. Since T̂ ` Write x : n,

we have T̂ = maxAR(V IS−1(Tj) ∩ {S|S `Write x : _}) , therefore T ′ AR−−→ T̂ or T ′ = T̂ . Note

that we apply transactions in the same order as AR, therefore we have sT ′
+−→ sT̂ or sT ′ = sT̂ , i.e.

sT ′
∗−→ sT̂ . Since we proved that PREREADe(T) is true, we have sfo exists and sT̂ = sfo, note that by

definition sfo
∗−→ slo. Now we have sT ′

∗−→ sT̂ = sfo
∗−→ slo, therefore sT ′

∗−→ slo . If o is an internal

read operation or write operation, then slo = sp(T). Since T ′ ∈ PRECe(T), by Lemma 3, we have

sT ′
+−→ sT , therefore sT ′

∗−→ sp(T) = slo, i.e. sT ′
∗−→ slo.

196

F Hierarchy

In this section, we prove the existence of the strict hierarchy described in Figure 1. Specifically, we

prove:

Theorem 3. Adya SI ⊂ PSI.

Theorem 4. ANSI SI ⊂ Adya SI.

Theorem 5. Strong Session SI ⊂ ANSI SI.

Theorem 6. Strong SI ⊂ Strong Session SI.

The equivalence results derived from previous appendices complete the proof.

F.1 Adya SI ⊂ PSI

Theorem 3 Adya SI ⊂ PSI.

Proof. Adya SI ⊆ PSI First we prove that Adya SI ⊆ PSI. Specifically, we prove that, if there

exists an e such that ∀T ∈ T : CTAdyaSI(T, e), that same e also satisfies ∀T ∈ T : CTPSI(T, e)

where CTPSI(T, e) = PREREADe(T) ∧ ∀T ′ . T : ∀o ∈ ΣT : o.k ∈ WT ′ ⇒ sT ′
∗−→ slo Consider

any T that satisfies the commit test CTAdyaSI(T, e) = ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s)

and let sc be the state that satisfies COMPLETEe,T (s) ∧ NO-CONFT (s). Since COMPLETEe,t(sc), we have

sc ∈
⋂

o∈ΣT

RSe(o). It follows that ∀o ∈ ΣT : RSe(o) 6= ∅ and consequently that PREREADe(T) is

satisfied. Now we consider any T ′ such that T ′ I T , or equivalently, T ′ ∈ D-PRECe(T) where

D-PRECe(T̂) = {T |∃o ∈ ΣT̂ : T = Tsfo} ∪ {T |sT
+−→ sT̂ ∧WT̂ ∩WT 6= ∅}. Let us first assume

that T ′ ∈ {T̂ |∃o ∈ ΣT : T̂ = Tsfo} such that ∃o ∈ ΣT : T ′ = sfo. Since T ′ = sfo, we have

that sT ′ ∈ RSe(o) and consequently that sT ′
∗−→ sc

∗−→ slo Assuming instead that T ′ ∈ {T̂ |sT̂
+−→

sT ∧ WT ∩ WT̂ 6= ∅}. As NO-CONFT (sc), i.e. ∆(sc, spT) ∩ WT = ∅ implies that either sT ′
∗−→ s

or sT
∗−→ sT ′ is true, we can conclude that sT ′

∗−→ sc holds, and consequently that sT ′
∗−→ slo.

Combining these two results, we can conclude that if T ′ I T , sT ′
∗−→ sc. Strengthening this result

using the definition of read state, we have T ′ I T ⇒ sT ′
+−→ sT . Taking the transitive closure,

we have that T ′ . T ⇒ sT ′
+−→ sT . Now, considering the definition of .: for any T ′ . T , either

T ′ I T , or ∃T̂ : T ′ . T̂ ∧ T̂ I T . If T ′ I T , we already proved that sT ′
∗−→ sc. Now considering

197

☰
 ⊂

☰
 ⊂

 ⊂
 ⊂

☰
Figure 1: Snapshot-based isolation guarantees hierarchy. Equivalences are new results (ANSI SI [31], Adya
SI [4], Weak SI [61], Strong SI [61], generalized snapshot isolation (GSI) [154], parallel snapshot isolation
(PSI) [178], Strong Session SI [61], PL-2+ (Lazy Consistency) [5], prefix-consistent SI (PC-SI) [61])

198

∃T̂ : T ′ .T̂ ∧ T̂ I T . We previously proved that T ′ .T̂ ⇒ sT ′
+−→ sT̂ and that T̂ I T ⇒ sT̂

∗−→ sc.

Combining these two implications, we have ∃T̂ : T ′ . T̂ ∧ T̂ I T ⇒ sT ′
∗−→ sc, and consequently

that T ′ . T ⇒ sT ′
∗−→ sc. Since sc ∈

⋂
o∈ΣT

RSe(o), we have ∀o ∈ ΣT : sc
∗−→ slo. We have proved

∀T ′ .T : ∀o ∈ Σt : sT ′
∗−→ slo, which trivially implies ∀T ′ .T : ∀o ∈ Σt : o.k ∈ WT ′ ⇒ sT ′

∗−→ slo,

i.e. CAUS-VIS(e, T) is satisfied. Combining all previous results, we have Adya SI ⊆ PSI.

Adya SI 6= PSI Second, we prove Adya SI 6= PSI by describing a set of transactions that

satisfy PSI but not Adya SI Consider the five following transactions T1, T2, T3, T4, T5, where

T1 : w(x, x1)w(y, y1), T2 : r(x, x1)w(x, x2), T3 : r(y, y1)w(y, y2), T4 : r(x, x2)r(y, y1),

T5 : r(x, x1)r(y, y2). This set of transactions satisfies PSI as it admits the following execution

e such that all transactions satisfy the commit test: s0
T1−→ s1

T2−→ s2
T3−→ s3

T4−→ s4
T5−→ s5. In

contrast, the aforementioned transactions do not satisfy Adya SI as there does not exist an execution

such that their commit tests are satisfied. Indeed, to satisfy the commit test of all these transactions,

there should exist complete states s and s′ for T4 and T5 respectively, where s should contain values

(x, x2) and (y, y1) , and s′ values (x, x1) and (y, y2). Generating s requires applying transactions

T1 and T2 before applying transaction T3, while generating s′ requires applying T1 and T3 before

applying T2. As the execution e is totally ordered, satisfying both these constraints is impossible,

hence there cannot exist complete states for both T4 and T5. This set of transactions thus satisfies

PSI but not Adya SI. We conclude: Adya SI ⊂ PSI

F.2 ANSI SI ⊂ Adya SI

Theorem 4 ANSI SI ⊂ Adya SI.

ANSI SI ⊆ Adya SI First we prove that ANSI SI ⊆ Adya SI. The result follows trivially from

the definition of the definitions’ commit tests: ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) =⇒

C-ORD(Tsp , T) ∧ ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ (Ts <s T).

ANSI SI 6= Adya SI Now we prove that ANSI SI 6= Adya SI. Consider the set of transactions:

T1 : w(x, x1), T1 starts at real time 1 and commits at real time 4; T2 : r(x, x1), T2 starts at real time

2 and commits at real time 3. The set of transactions satisfy Adya SI as there exists an execution for

which the commit test of all transactions is satisfied: s0
T1−→ sT1

T2−→ sT2 , with s0 being the selected

199

complete state for T1 and s1 being the selected complete state for T2. However, it does not satisfy

ANSI SI. Given that C-ORD(Tsp , T) must hold, the only possible execution is s0
T2−→ sT2

T1−→ sT1 . But

s0 is not a valid complete state for T2. As this is the only possible execution, the aforementioned set

of transactions does not satisfy ANSI SI, i.e. ANSI SI 6= Adya SI. Therefore, we conclude that ANSI

SI ⊂ Adya SI.

F.3 Strong Session SI ⊂ ANSI SI

Theorem 5 Strong Session SI ⊂ ANSI SI.

First, we prove that Strong Session SI ⊆ ANSI SI. The result follows trivially from the definition of

the definitions’ commit tests: C-ORD(Tsp , T)∧∃s ∈ Se : COMPLETEe,T (s)∧NO-CONFT (s)∧ (Ts <s T)

=⇒ C-ORD(Tsp , T)∧∃s ∈ Se : COMPLETEe,T (s)∧NO-CONFT (s)∧(Ts <s T)∧(∀T ′ se−→ T : sT ′
∗−→ s)

. Next, we prove that Strong Session SI 6= ANSI SI. Consider the set of transactions: T1 : w(x, x1),

T1 starts at real time 1 and commits at real time 2; T2 : r(x, x1)w(x, x2), T2 starts at real time 3 and

commits at real time 4; T3 : r(x, x1), T3 starts at real time 5 and commits at real time 6. T2 and T3

are in the same session. These transactions satisfy ANSI SI as there exists an execution e such that

the commit test of all transactions is satisfied: s0
T1−→ sT1

T2−→ sT2

T3−→ sT3 . The execution satisfies

C-ORD(Tsp , T) with s0 being the satisfying state for T1, s1 being the satisfying state for T2, s1 being

the satisfying state for T3. Due to C-ORD(Tsp , T), this is the only possible execution. This execution,

however, does not satisfy Strong Session SI. In this execution, the only possible complete state for

T3 is sT1 . Since T2
se−→ T3, satisfying Strong Session SI would require that sT2

∗−→ sT1 , contradicting

the order of state transitions in the execution. Since no other execution satisfies the commit test for

all transactions, the aforementioned set of transactions does not satisfy Strong Session SI, i.e. Strong

Session SI 6= ANSI SI. We conclude: Strong Session SI ⊂ ANSI SI.

F.4 Strong SI ⊂ Strong Session SI

Theorem 6 Strong SI ⊂ Strong Session SI.

First we prove that Strong SI ⊆ Strong Session SI. Specifically, we prove that if there exists

an execution e such that C-ORD(Tsp , T) ∧ ∃s ∈ Se : COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ (Ts <s

T)∧ (∀T ′ <s T : sT ′
∗−→ s) , that same e also satisfies C-ORD(Tsp , T)∧ ∃s ∈ Se : COMPLETEe,T (s)∧

200

NO-CONFT (s) ∧ (Ts <s T) ∧ (∀T ′ se−→ T : sT ′
∗−→ s). Let T denote a set of transactions satisfying

Strong SI. Consider an execution e that satisfy CTStrongSI(T, e) (such e must exist by definition).

For each transaction T , consider the state s that satisfies COMPLETEe,T (s) ∧ NO-CONFT (s) ∧ (Ts <s

T) ∧ (∀T ′ <s T : sT ′
∗−→ s), we prove that s also satisfies ∀T ′ se−→ T : sT ′

∗−→ s. We know by

assumption that ∀T ′ <s T : sT ′
∗−→ s for every T in e as it is Strong SI. Moreover, by definition,

T ′
se−→ T ⇒ T ′.commit < T.start, i.e. T ′ <s T . It thus trivially follows that ∀T ′ se−→ T : sT ′

∗−→ s

and consequently that every transaction in e satisfies CTSession SI(T, e), so Strong SI ⊆ Strong

Session SI. Now, we prove that Strong SI 6= Strong Session SI. Consider the set of transactions:

T1 : w(x, x1), T1 starts at real time 1 and commits at real time 2; T2 : r(x, x1)w(x, x2), T2 starts at

real time 3 and commits at real time 4; T3 : r(x, x1), T3 starts at real time 5 and commits at real time

6. No two transactions belong to the same session. These transactions satisfy Strong Session SI as

there exist an execution e such that the commit test of all transactions is satisfied: s0
T1−→ sT1

T2−→

sT2

T3−→ sT3 . The execution satisfies C-ORD(Tsp , T), with s0 being the selected complete state for T1,

s1 the selected complete state for T2 and T3. However, the set of transactions does not satisfy Strong

SI: as C-ORD(Tsp , T) must hold, the only possible execution is s0
T1−→ sT1

T2−→ sT2

T3−→ sT3 . The only

possible complete state for T3 is sT1 . Since T2 <s T3, satisfying Strong SI would require sT2

∗−→ sT1 ,

contradicting the order of state transitions in the execution. Since no other execution satisfies the

commit test for all transactions, the aforementioned set of transactions does not satisfy Strong SI, i.e.

Strong Session SI 6= ANSI SI. We conclude: Strong SI ⊂ Strong Session SI.

201

G Causality and Session Guarantees

We prove the following theorems:

Theorem 1 Let G = {RMW,MR,MW,WFR}, then

∀se ∈ SE : ∃e : ∀T ∈ Tse : SESSIONG(se,T, e) ≡ ∀se ∈ SE : ∃e : ∀T ∈ Tse :

SESSIONCC(se,T, e)

We first state a number of useful lemmas about the PREREADe(T) predicate (Definition 3): if

PREREADe(T) holds, then the candidate read set of all operations in all transactions in T is not

empty. The first lemma states that an operation’s read state must reflect writes that took place before

the transaction committed, while the second lemma simply argues that the predicate is closed under

subset.

Lemma 5. For any T ′ such that T ′ ⊆ T , PREREADe(T ′)⇔ ∀T ∈ T ′ : ∀o ∈ ΣT : sfo
+−→ sT .

Proof. (⇒) We first prove PREREADe(T ′)⇒ ∀T ∈ T ′ : ∀o ∈ ΣT : sfo
+−→ sT .

By the definition of PREREADe(T ′), we have ∀T ∈ T ′,∀o ∈ ΣT ,RSe(o) 6= ∅. We consider the two

types of operations: reads and writes. Reads The set of candidate read states of a read operation

o = r(k, v) is defined asRSe(o) = {s ∈ Se|s
∗−→ sp ∧

(
(k, v) ∈ s ∨ (∃w(k, v) ∈ ΣT : w(k, v)

to−→

r(k, v))
)
}. The disjunction considers two cases:

1. Internal Reads if ∃w(k, v) ∈ ΣT : w(k, v)
to−→ r(k, v), RSe(o) = {s ∈ Se|s

∗−→ sp}. Hence

s0 ∈ RSe(o). It follows that sfo = s0
+−→ sT

2. External Reads By PREREADe(T ′), we have that RSe(o) 6= ∅. There must therefore exist a

state s ∈ Se such that s ∗−→ sp ∧ (k, v) ∈ s. Since sfo is, by definition, the first such s, we have

that sfo
∗−→ sp → sT . We conclude: sfo

+−→ sT .

Writes The candidate read states set for write operations o = w(k, v), is defined as RSe(o) =

{s ∈ Se|s
∗−→ sp}. Hence, s0 ∈ RSe(o). It trivially follows that (sfo = s0)

+−→ sT . We conclude:

PREREADe(T ′)⇒ ∀T ∈ T ′ : ∀o ∈ ΣT : sfo
+−→ sT .

(⇐) Next, we prove that PREREADe(T ′)⇐ ∀T ∈ T ′ : ∀o ∈ ΣT : sfo
+−→ sT .

202

By assumption, ∀T ∈ T ′ : ∀o ∈ ΣT : sfo
+−→ sT . By definition, sfo ∈ RSe(o). It trivially follows

that ∀T ∈ T ′ : ∀o ∈ ΣT : RSe(o) 6= ∅, i.e. PREREADe(T ′) holds.

Lemma 6. For any T ′ that T ′ ⊆ T , PREREADe(T)⇒ PREREADe(T ′).

Proof. Given PREREADe(T), by definition we have ∀T ∈ T , ∀o ∈ ΣT ,RSe(o) 6= ∅. Since T ′ ⊆ T ,

∀T ∈ T ′ ⇒ ∀T ∈ T , it follows that ∀T ∈ T ′,∀o ∈ ΣT ,RSe(o) 6= ∅, i.e. PREREADe(T ′).

We now begin in earnest our proof of Theorem 1.

(⇐) We first prove that ∀se ∈ SE : ∃e : ∀T ∈ Tse : SESSIONCC(se,T, e) ⇒ ∀se ∈ SE : ∃e :

∀T ∈ Tse : SESSIONG(se,T, e).

For any se ∈ SE, consider the execution e, such that ∀T ∈ Tse : SESSIONCC(se,T, e). We show

that this same execution satisfies the session test of all four session guarantees.

• CC⇒ RMW: By assumption, SESSIONCC(se,T, e) for all Tse. Hence: ∀T ∈ Tse : ∀o ∈

ΣT : ∀T ′ se−→ T : sT ′
∗−→ slo. Weakening this statement gives the following implication:

∀o ∈ ΣT : ∀T ′ se−→ T : WT ′ 6= ∅ ⇒ sT ′
∗−→ slo. Additionally, e satisfies PREREADe(T) (by

assumption) and therefore PREREADe(Tse) as Tse ⊆ T (by Lemma 6). Putting it all together: e

satisfies PREREADe(Tse) ∧ ∀o ∈ ΣT : ∀T ′ se−→ T :WT ′ 6= ∅ ⇒ sT ′
∗−→ slo.

We conclude that ∀se ∈ SE : ∃e : ∀T ∈ Tse : SESSIONRMW (se,T, e).

• CC ⇒ MW: By assumption, SESSIONCC(se,T, e) for all t ∈ Tse. Hence, it holds that

∀se′ ∈ SE : ∀Ti
se′−−→ Tj : sTi

+−→ sTj . Weakening this statement gives the following

implication: ∀se′ ∈ SE : ∀T ′i
se′−−→ Tj : (WTi 6= ∅ ∧WTj 6= ∅)⇒ sTi

+−→ sTj . Additionally, e

satisfies PREREADe(T) (by assumption) and therefore PREREADe(Tse) as Tse ⊆ T (by Lemma

6). Putting it all together: PREREADe(Tse) ∧ ∀se′ ∈ SE : ∀T ′i
se′−−→ Tj : (WTi 6= ∅ ∧ WTj 6=

∅)⇒ sTi

+−→ sTj .

We conclude that ∀se ∈ SE : ∃e : ∀T ∈ Tse : SESSIONMW (se,T, e).

• CC⇒MR: By assumption, SESSIONCC(se,T, e), hence e ensures that ∀T ∈ Tse : ∀o ∈

ΣT : ∀T ′ se−→ T : sT ′
∗−→ slo. Moreover, by assumption, we have that PREREADe(T). It follows

that ∀T ′ ∈ T : ∀o′ ∈ ΣT ′ : sfo′
+−→ sT ′ (Lemma 5). Combining the two statements, we have

203

∀o ∈ ΣT : ∀T ′ se−→ T : ∀o′ ∈ ΣT ′ : sfo′
∗−→ sT ′

∗−→ slo, i.e. sfo′
∗−→ slo. Finally, we have that e

satisfies IRCe(T) by assumption, and PREREADe(Tse) by Lemma 6: we have PREREADe(T) and

Tse ⊆ T . Putting it all together, e satisfies PREREADe(Tse) ∧ IRCe(T) ∧ ∀o ∈ ΣT : ∀T ′ se−→ t :

∀o′ ∈ ΣT ′ : sfo′
∗−→ slo.

We conclude that ∀se ∈ SE : ∃e : ∀T ∈ Tse : SESSIONMR(se,T, e).

• CC⇒WFR: By assumption, SESSIONCC(se,T, e). Hence e satisfies ∀se′ ∈ SE : ∀Ti
se′−−→

Tj : sTi

+−→ sTj . By assumption, e respects PREREADe(T). It follows from lemma 5 that

∀Ti ∈ T : ∀oi ∈ ΣTi : sfoi
+−→ sTi . We have, by combining these two statements, that:

∀se′ ∈ SE : ∀Ti
se′−−→ Tj : ∀oi ∈ ΣTi : sfoi

+−→ sTi

+−→ sTj , i.e. sfoi
+−→ sTj . Weakening this

statement results in the following implication: ∀se′ ∈ SE : ∀Ti
se′−−→ Tj : ∀oi ∈ Σti :WTj 6=

∅ ⇒ sfoi
+−→ sTj . Putting it all together, e satisfies PREREADe(T) ∧ ∀se′ ∈ SE : ∀Ti

se′−−→ Tj :

∀oi ∈ Σti :WTj 6= ∅ ⇒ sfoi
+−→ sTj .

We conclude that ∀se ∈ SE : ∃e : ∀T ∈ Tse : SESSIONWFR(se,T, e).

(⇒) We now prove that, given G = {RMW,MR,MW,WFR}, the following implication

holds: ∀se ∈ SE : ∃e : ∀T ∈ Tse : SESSIONG(se,T, e) ⇒ ∀se ∈ SE : ∃e : ∀T ∈ Tse :

SESSIONCC(se,T, e).

To this end, we prove that for any session se, given the execution e such that ∀T ∈ Tse :

SESSIONG(se,T, e), we can construct an alternative execution e′ that contains the same set of

transactions and satisfies all four session guarantees, such that ∀T ∈ Tse : SESSIONCC(se,T, e’).

The need for constructing an alternative execution e′ may be counter-intuitive at first. We motivate

it informally here: session guarantees place no requirements on the commit order of read-only

transactions. In contrast, causal consistency requires all transactions to commit in session order.

As read-only transactions have no effect on the candidate read states of other read-only or update

transactions, it is therefore always possible to generate an alternative execution e′ such that update

transactions commit in the same order as in e, and read-only transactions commit in session order. Our

proof shows that, if e satisfies all four session guarantees, e′ will satisfy all four session guarantees

and causal consistency.

204

Equivalent Execution We now describe more formally how to construct this execution e′: first, we

apply in e′ all transactions t ∈ T such thatWT 6= ∅, respecting their commit order in e. We denote

the states created by applying t in e and e′ as se,t and se′,t respectively. Our construction enforces

the following relationship between e and e′: ∀T ∈ T ∧WT 6= ∅ : (k, v) ∈ se,t ⇔ (k, v) ∈ se′,t. All

update transactions are applied in the same order, and read-only transactions have no effect on the

state. Next, we consider the read-only transactions Ti ∈ T in session order: we select the parent

state for Ti to be max{maxo∈ΣTi
{sfo}, sTi−1}, where Ti−1 denotes the transaction that directly

precedes t in a session. A session defines a total order of transactions: Ti−1 is unique. If Ti is the

first transaction in the session, we simply set sTi−1 to s0. As transactions do not change the value of

states, this process maintains the previously stated invariant: ∀T ∈ T ∧WT 6= ∅ : se,t ≡ se′,t.

We now proceed to prove that e′ satisfies PREREADe′(T) and the session test for all session guarantees.

Preread First, we show that PREREADe′(T) holds. We distinguish between update and read-only

transactions:

• Read-Only Transactions. By construction, the parent state of a read-only transaction Ti is

sp(Ti) = max{maxo∈ΣT
{sfo}, sTi−1}. It follows that ∀o ∈ ΣT , sfo

∗−→ sp(T) and conse-

quently sfo
∗−→ sp(T)→ sT . We have ∀o ∈ ΣT : sfo

+−→ sT in e′.

• Update Transactions. Update transactions t consist of both read and write operations. A write

operation o = w(k, v) ∈ ΣT has for candidate read set the set of all states s ∈ Se′ such that

s
∗−→ sp(T). Hence sfo = s0 and sfo

+−→ sT in e′ trivially holds. The state corresponding to

sfo for read operations o = r(xi) is the state created by the transaction Ti that wrote version

xi of object x: sfo = se′,Ti
. By assumption, e satisfies PREREADe(T), hence by Lemma 5, we

have sTi

+−→ sT in e. By construction (update transactions are applied in e′ in the same order

as e), it follows that sTi

+−→ sT in e′, i.e. sfo
+−→ sT in e′.

By Lemma 5, we conclude that PREREADe′(T) holds.

MW We next show that e′ satisfies SESSIONMW (se,T, e’) for all sessions se ∈ SE and ∀T ∈ Tse.

Consider any session se′ and two transactions Ti, Tj ∈ Tse′ such that Ti
se′−−→ Tj , andWTi 6= ∅ ∧

WTj 6= ∅. As e, by assumption, satisfies ∀T ∈ Tse : SESSIONMW (se,T, e), we have se,Ti

+−→ se,Tj .

205

Since Ti and Tj are update transactions, they are applied in the same order in e′ as in e: hence,

se′,Ti

+−→ se′,Tj
. Further, recall that we previously showed that PREREADe′(T) (and consequently

PREREADe′(Tse) by Lemma 6).

Putting it all together, we conclude that PREREADe′(Tse) ∧ ∀se′ ∈ SE : ∀Ti
se′−−→ Tj : (WTi 6=

∅ ∧WTj 6= ∅)⇒ sTi

+−→ sTj , i.e., ∀T ∈ Tse : SESSIONMW (se,T, e’).

WFR Consider any update transaction Tj such that ∀se′ ∈ SE : ∀Ti
se′−−→ Tj : ∀oi ∈ ΣTi :WTj 6= ∅.

We prove that sfoi
+−→ sTj . Consider the two types of operations that arise in an update transaction:

• Reads. The state corresponding to sfoi for read operations o = ri(x, xk) is the state created

by an update transaction Tk that wrote version xk of object x: sfoi = sTk
. By assumption, e

satisfies ∀T ∈ Tse : SESSIONWFR(se,T, e), we have sfoi
+−→ sTj in e, i.e. sTk

+−→ sTj in e.

Since we apply update transactions in e′ in the same order as in e, it follows that sTk

+−→ sTj in

e′, i.e., sfoi
+−→ sTj in e′.

• Writes. The candidate read states set for write operations o = w(xi), is defined asRSe(o) =

{s ∈ Se|s
∗−→ sp}. It trivially follows that sfo = s0

+−→ sT .

We conclude: ∀se ∈ SE : ∀T ∈ Tse : SESSIONWFR(se,T, e’).

Before proving that the remaining session guarantees hold, we prove an intermediate result:

Claim 4 ∀se′ ∈ SE : ∀Ti
se′−−→ Tj : sTi

+−→ sTj . Intuitively, all transactions commit in session order.

Proof. We first prove this result for update transactions, then generalise it to all transactions.

Update Transactions For a given session se′, let Tu be the set of all update transactions in Tse′ ,

and let Tj be an arbitrary transaction in Tu. It thus holds that Tj ∈ Tse′ ∧WTj 6= ∅. We associate

with each such Tj two further sets: Tpreu and Tprer . Tpreu contains all update transactions Ti such

that Ti
se′−−→ Tj . Similarly, Tprer contains all read-only transactions Ti such that Ti

se′−−→ Tj .Tpre

is the union of those two sets. We prove that ∀Ti ∈ Tpre : sTi

+−→ sTj . If Ti ∈ Tpreu , hence

Wi 6= ∅ ∧ Wj 6= ∅, the result trivially follows from monotonic writes. We previously proved

that ∀T ∈ Tse′ : SESSIONMW (se’,T, e’). As such, the conjunction Wi 6= ∅ ∧ Wj 6= ∅ implies

206

sTi

+−→ sTj in e′.

The proof is more complex if Ti ∈ Tprer (read-only transaction). We proceed by induction:

Base Case Consider the first read-only transaction Ti ∈ Tprer according to the session order se′.

This transaction is unique (sessions totally order transactions). Recall that we choose the parent

state of a read-only transaction as sp(Ti) = max{maxoi∈ΣTi
{sfoi}, sTi−1}, where Ti−1 denotes the

transaction that directly precedes Ti in session se′ (sTi−1 = s0 if Ti is the first transaction in the

session). Hence, Ti’s parent state is either sp(Ti) = maxoi∈ΣTi
{sfoi}, or sp(Ti) = sTi−1

1. If sp(Ti) = maxoi∈ΣTi
{sfoi}: We previously proved that ∀T ∈ Tse :

SESSIONWFR(se,T, e’). It follows that ∀oi ∈ ΣTi : sfoi
+−→ sTj in e′ and consequently,

maxoi∈ΣTi
{sfoi}

+−→ sTj in e′. Given that sp(Ti) = maxoi∈ΣTi
{sfoi}, the following then

holds sp(Ti)
+−→ sTj in e′. Finally, we note that, by definition (Definition 1), the parent state

of a transaction directly precede its commit state. We can thus rephrase the aforementioned

relationship as sp(Ti)→ sTi

∗−→ sTj in e′, concluding the proof for this subcase.

2. If sp(Ti) = sTi−1 : We defined Ti to be the first read-only transaction in the session. Given that,

by construction Ti−1
se′−−→ Ti, Ti−1 is necessarily an update transaction, where WTi−1 6= ∅.

Consider the pair of transactions (Ti−1, Tj). The session order is transitive, hence Ti−1
se′−−→

Tj given that Ti−1
se′−−→ Ti and Ti

se′−−→ Tj both hold. By construction, we have WTi−1 6=

∅ ∧ WTj 6= ∅. We previously proved that ∀T ∈ Tse : SESSIONMW (se,T, e’). Hence, if

WTi−1 6= ∅∧WTj 6= ∅, it follows that sTi−1

+−→ sTj . As above, we conclude that: sp(Ti)
+−→ sTj

in e′, and finally sp(Ti)→ sTi

∗−→ sTj .

To complete the base case, we note that Ti 6= Tj as Ti
se′−−→ Tj . We conclude: sTi

+−→ sTj .

Induction Step Consider the k-th read-only transaction Ti in se′ such that Ti
se′−−→ Tj . We assume

that it satisfies the induction hypothesis sTi

+−→ sTj . Now consider the (k+1)-th read-only transaction

Ti′ in se′, such that Ti′
se′−−→ Tj . By construction, we once again distinguish two cases: Ti′’s parent

state is either sp(Ti′) = maxoi′∈ΣT ′
i
{sfo′i}, or sp(Ti′) = sTi′−1

, where Ti′−1 denotes the transaction

directly preceding Ti′ in a session.

1. If sp(Ti′) = maxoi′∈ΣTi′
{sfo′i}: We previously proved that ∀T ∈ Tse :

207

SESSIONWFR(se,T, e’). It follows that ∀oi′ ∈ ΣTi′ : sfoi′
+−→ sTj in e′ and consequently,

maxoi′ ∈ ΣTi′{sfoi′}
+−→ sTj in e′. Given that sp(Ti′) = maxoi′∈ΣTi′

{sfoi′}, the following

then holds sp(Ti′)
+−→ sTj in e′. Finally, we note that, by definition (Definition 1), the par-

ent state of a transaction must directly precede its commit state. We can thus rephrase the

aforementioned relationship as sp(Ti′) → sTi′
∗−→ sTj in e′, concluding the proof for this

subcase.

2. If sp(Ti′) = sTi′−1
: First, we note that Ti′−1

se′−−→ Tj holds, as the session order is transitive

and we have both Ti′−1
se′−−→ Ti′ and Ti′

se′−−→ Tj . We then distinguish between two cases: Ti′−1

is an update transaction, and Ti′−1 is a read only transaction. If Ti′−1 is an update transaction,

the following conjunction holds:WTi′−1
6= ∅ ∧ WTj 6= ∅. Given that we previously proved

∀T ∈ Tse : SESSIONMW (se,T, e’) , we can infer that sTi′−1

+−→ sTj , i.e. sp(Ti′)
+−→ sTj

in e′. We again note that by definition (Definition 1), the parent state of a transaction must

directly precede its commit state. We can thus rephrase the aforementioned relationship as

sp(Ti′)→ sTi′
∗−→ sTj in e′. We now consider the case where Ti′−1 is a read-only transaction.

If Ti′ is the k+1-th read-only transaction, then, by construction Ti′−1 is the k-th read-only

transaction. Hence Ti = Ti′−1 = sp(Ti′). Our induction hypothesis states that sTi

+−→ sTj . It

thus follows that sp(Ti′)
+−→ sTj in e′. As previously, we conclude that: sp(Ti)→ sTi

∗−→ sTj

in e′.

To complete the induction step, we note that T ′i 6= Tj as T ′i
se′−−→ Tj . We conclude: sT ′i

+−→ sTj .

We proved the desired result for both the base case and induction step. By induction, we conclude that:

given any Tj such thatWTj 6= ∅,and any read-only transactions Ti such that Ti
se′−−→ Tj , sTi

+−→ sTj

holds.

We conclude that given any Tj such that WTj 6= ∅, and any transaction Ti such that Ti
se′−−→ Tj ,

sTi

+−→ sTj holds.

Read-Only Transactions We now generalise the result to both update and read-only transactions.

Specifically, we prove that in e′, ∀Ti
se′−−→ Tj : sTi

+−→ sTj . We first prove this statement for any two

consecutive transactions in a session, and then extend it to all transactions in a session. Consider any

pair of transactions Ti,Ti−1 in Tse′ such that Ti−1 directly precede Ti in se′ (Ti−1
se′−−→ Ti). IfWTi 6=

208

∅, sTi−1

+−→ sTi as proven above. If Ti is a read-only transaction, its parent state, by construction, is

equal to sp(Ti) = max{maxoi∈ΣTi
{sfoi}, sTi−1}. Since max{maxoi∈ΣTi

{sfoi}, sTi−1} ≥ sTi−1 by

definition, it follows that sTi−1

∗−→ sp(Ti). As sp(Ti)→ sTi , it follows that sTi−1

+−→ sTi . Together

each such pair of consecutive transactions Ti−1, Ti defines a sequence: T1
se′−−→ T2

se′−−→ . . .
se′−−→ Tk,

where Tse′ = {T1, . . . , Tk}. From the implication derived above, it follows that sT1

+−→ sT2

+−→

. . .
+−→ sTk

. We conclude: ∀Ti
se′−−→ Tj : sTi

+−→ sTj .

This completes the proof of Claim 4.

RMW We now return to session guarantees and prove that ∀T ∈ Tse : SESSIONRMW (se,T, e’).

Specifically, we show that PREREADe′(Tse) ∧ ∀o ∈ ΣT : ∀T ′ se−→ T :WT ′ 6= ∅ ⇒ sT ′
∗−→ slo.

We proceed to prove that each of the two clauses holds true.

By assumption, e guarantees Read-My-Writes: ∀T ∈ Tse : SESSIONRMW (se,T, e). Consider an

arbitrary transaction t, and all update transactions T ′ that precede t in the session: ∀o ∈ ΣT : ∀T ′ se−→

T :WT ′ 6= ∅. We distinguish between read operations and write operations:

• Let o be a read operation o = r(k, v). Its candidate read set is RSe′(o) = {s ∈ Se|s
∗−→

sp(T) ∧
(
(k, v) ∈ s ∨ (∃w(k, v) ∈ ΣT : w(k, v)

to−→ r(k, v))
)
}. slo, the last state inRSe′(o)

can have one of two values: slo = sp(T), disallowing states created after t’s commit point, or

slo = sp(T̂), where T̂ is the update transaction that writes the next version of k.

– slo = sp(T). We previously proved that ∀se′ ∈ SE : ∀Ti
se′−−→ Tj : sTi

+−→ sTj . By

construction, T ′ se−→ t. It follows that sT ′
+−→ sT and consequently that sT ′

∗−→ sp(T).

Given sp(T) = slo, we conclude: sT ′
∗−→ slo.

– slo = sp(T̂). Consider first the relationships between read states and commit states in

e. By assumption, e satisfies ∀T ∈ Tse : SESSIONRMW (se,T, e), i.e. sT ′
∗−→ slo in e.

Since T̂ wrote the next version of the object that t read, we have that slo
∗−→ sp(T̂)

+−→ sT̂

in e. Combining the guarantee given by Read-My-Writes sT ′
∗−→ slo and slo

+−→ sT̂ , we

obtain sT ′
+−→ sT̂ in e. Returning to the execution e′, since T ′ and T̂ are both update

transactions,WT ′ 6= ∅ ∧WT̂ 6= ∅, if sT ′
+−→ sT̂ in e, then sT ′

+−→ sT̂ in e′. Given e′ is a

total order and sp(T̂)→ sT̂ , we conclude sT ′
∗−→ sp(T̂), and sT ′

∗−→ slo.

209

• Let o = w(k, v) be a write operation. By Claim 4, it holds that ∀se′ ∈ SE : ∀Ti
se′−−→ Tj :

sTi

+−→ sTj . As T ′ se−→ t, it follows that sT ′
+−→ sT and consequently that sT ′

∗−→ sp(T). We

conclude: sT ′
∗−→ slo.

Finally, as PREREADe′(T) and Tse ⊆ T , by Lemma 6, PREREADe′(Tse) holds.

We conclude that PREREADe′(Tse) ∧ ∀o ∈ ΣT : ∀T ′ se−→ T :WT ′ 6= ∅ ⇒ sT ′
∗−→ sfo, i.e. ∀T ∈ Tse :

SESSIONRMW (se,T, e’).

MR Finally, we prove that e′ satisfies the final session guarantee: SESSIONMR(se,T, e’). Specifi-

cally, we show that:

PREREADe′(Tse) ∧ IRCe′(T) ∧ ∀o ∈ ΣT : ∀T ′ se−→ t : ∀o′ ∈ ΣT ′ : sfo′
∗−→ slo. Intuitively, this states

that the read state of o must include any write seen by o′.

We proceed to prove that each of the three clauses holds true.

PREREADe′(Tse) follows directly from Lemma 6 and the fact that Tse ⊆ T . We can then conclude that

sfo, sfo′ , slo, slo′ must exist.

We can now proceed to prove that ∀o ∈ ΣT : ∀T ′ se−→ t : ∀o′ ∈ ΣT ′ : sfo′
∗−→ slo holds. We consider

two cases, depending on whether o′ is a read or a write operation.

Read The read operation o′ = r(k′, v′) entails the existence of an update transaction T̂ ′ ∈ T that

writes version v′ of object k′, i.e sfo′ = sT̂ ′ , k ∈ WT̂ ′ . Now, o can be either a read or a write

operation.

• Let us first assume that o is a read operation o = r(k, v). Its candidate read set isRSe′(o) =

{s ∈ Se′ |s
∗−→ sp(T) ∧

(
(k, v) ∈ s ∨ (∃w(k, v) ∈ ΣT : w(k, v)

to−→ r(k, v))
)
}. slo, the last

state in RSe′(o) can be one of two cases slo = sp(T), disallowing states created after t’s

commit point, or slo = sp(T̂), where T̂ is the update transaction that writes the next version

of k.

– slo = sp(T). We previously proved that ∀se′ ∈ SE : ∀Ti
se′−−→ Tj : sTi

+−→ sTj . By

construction, T ′ se−→ t. It follows that sT ′
+−→ sT and consequently that sT ′

∗−→ sp(T).

Given sp(T) = slo, we conclude: sT ′
∗−→ slo. Moreover, Lemma 5 states that given

210

PREREADe′(Tse), we have sfo′
+−→ sT ′ in e′, hence: sfo′

∗−→ slo in e′.

– slo = sp(T̂). Consider first the relationships between read states and commit states in

e. By assumption, e satisfies ∀T ∈ Tse : SESSIONMR(se,T, e), i.e. sfo′
∗−→ slo in e.

Since T̂ wrote the next version of the object that t read, we have that in slo
+−→ sT̂ in

e. Combining the guarantee given by monotonic reads sfo′
∗−→ slo and slo

+−→ sT̂ , we

obtain sfo′
+−→ sT̂ in e, i.e. sT̂ ′

+−→ sT̂ . Returning to the execution e′, since T̂ ′ and T̂ are

both update transactions,WT̂ ′ 6= ∅ ∧WT̂ 6= ∅; if sT̂ ′
+−→ sT̂ in e, then sT̂ ′

+−→ sT̂ in e′.

By definition sfo′
+−→ sT ′ . Moreover, by assumption, slo = sp(T̂). Putting this together,

we obtain the desired result sfo′
∗−→ slo in e′.

• Let o = w(k, v) be a write operation. The write set of a write operation is defined asRSe′(o) =

{s ∈ Se|s
∗−→ sp}. It follows that: slo = sp(T). We previously proved that in e′, ∀se′ ∈ SE :

∀Ti
se′−−→ Tj : sTi

+−→ sTj : given T ′ se−→ t, it thus follows that sT ′
+−→ sT , and consequently that

sT ′
∗−→ sp(T). Noting that sp(T) = slo , we write sT ′

∗−→ slo. Moreover, as PREREADe′(Tse)

holds for e′, by Lemma 5, we have sfo′
+−→ sT ′ in e′. Combining the relationships, we conclude:

sfo′
+−→ slo in e′.

Write The candidate read state set for a write operation o′ = w(k, v) is defined as the set of all states

before T ′’s commit state. Hence sfo′ = s0. Thus sfo′
∗−→ slo trivially holds.

We can now prove that the second clause, IRCe′(T), holds—namely, that ∀o, o′ ∈ ΣT : o′
to−→ o⇒

sfo′
∗−→ slo. Once again we consider two cases, depending on whether o′ is a read or a write operation.

Read The presumpted read operation o′ = r(k′, v′) entails the existence of an update transaction

T̂ ′ ∈ T that writes version v′ of object k′, i.e sfo′ = sT̂ ′ , k ∈ WT̂ ′ .

• Let us first assume that o is a read operation o = r(k, v), Its candidate read set RSe′(o) =

{s ∈ Se′ |s
∗−→ sp(T) ∧

(
(k, v) ∈ s ∨ (∃w(k, v) ∈ ΣT : w(k, v)

to−→ r(k, v))
)
}. slo, the last

state inRSe′(o) can have one of two values: slo = sp(T), disallowing states created after t’s

commit point, or slo = sp(T̂), where T̂ is the update transaction that writes the next version

of k.

– slo = sp(T). We previously showed that PREREADe′(T). Given that o′, like o is in ΣT , it

211

follows by Lemma 5 that sfo′
+−→ sT in e′, and consequently that sfo′

∗−→ sp(T). Setting

sp(T) to slo, we conclude sfo′
∗−→ slo in e′.

– slo = sp(T̂): Consider first the relationships between read states and commit states in

e. By assumption, e satisfies IRCe(T), i.e. sfo′
∗−→ slo holds in e. Since T̂ wrote the next

version of the object that o read, we have that slo
∗−→ sp(T̂)

+−→ sT̂ in e. Combining the

guarantee given by monotonic reads sfo′
∗−→ slo and slo

+−→ sT̂ , it follows that sfo′
+−→ sT̂

in e i.e. sT̂ ′
+−→ sT̂ . Returning to the execution e′, since T̂ ′ and T̂ are both update

transactions,WT̂ ′ 6= ∅ ∧WT̂ 6= ∅, if sT̂ ′
+−→ sT̂ in e, then sT̂ ′

+−→ sT̂ and consequently

sfo′
+−→ sT̂ . Given e′ is a total order and sp(T̂)→ sT̂ , we conclude sfo′

∗−→ sp(T̂), and

sfo′
∗−→ slo in e′, as desired.

• Let us next assume that o is a write operation. The candidate read set of a write operation

o = w(k, v) is RSe′(o) = {s ∈ Se|s
∗−→ sp}, where, consequently, slo = sp(T). We

previously showed that PREREADe′(T). Given that o′, like o is in ΣT , it follows by Lemma 5

that sfo′
+−→ sT in e′, and consequently that sfo′

∗−→ sp(T). Setting p(T) to slo, we conclude

sfo′
∗−→ slo in e′.

Write The candidate read state set for a write operation o′ = w(k, v) is defined as the set of all states

before T ′’s commit state. Hence sfo′ = s0. Thus sfo′
∗−→ slo trivially holds.

We conclude that IRCe′(T) holds.

This completes the proof that Monotonic Reads holds for execution e′. This was the last outstanding

session guarantees: we have then proved that e′ satisfies all four session guarantees.

We now proceed to prove that e′ satisfies causal consistency: ∀T ∈ Tse : SESSIONcc(se,T, e’).

More specifically, we must prove that: PREREADe′(T) ∧ IRCe′(T) ∧ (∀o ∈ ΣT : ∀T ′ se−→ T : sT ′
∗−→

slo) ∧ (∀se′ ∈ SE : ∀Ti
se′−−→ Tj : sTi

+−→ sTj). We proceed by proving that each of the clauses

holds.

The first two clauses are easy to establish. We previously proved that PREREADe′(T) holds. Likewise,

IRCe′(T) holds as ∀T ∈ Tse : SESSIONMR(se,T, e’). To establish the fourth clause, we note that

212

we previously proved that ∀se′ ∈ SE : ∀Ti
se′−−→ Tj : sTi

+−→ sTj .

We are then left to prove only the third clause; namely we must prove that ∀Tj ∈ Tse : (∀oj ∈ ΣTj :

∀Ti
se−→ Tj : sTi

∗−→ sloj).

We distinguish between two cases: Ti is an update transaction and Ti is a read-only transaction. If

Ti is an update transaction, the desired result holds as e′ guarantees Read-My-Writes: ∀Tj ∈ Tse :

(∀oj ∈ ΣTj : ∀Ti
se−→ Tj :WTi 6= ∅ ⇒ sTi

∗−→ sloj)

If Ti is a read-only transaction, we proceed by induction. We consider an arbitrary Tj , and an arbitrary

oj ∈ ΣTj .

Base Case Consider the first read-only transaction Ti in se′ such that Ti
se′−−→ Tj . Recall that

we choose the parent state of a read-only transaction as sp(Ti) = max{maxoi∈ΣTi
{sfoi}, sTi−1},

where Ti−1 denotes the transaction that directly precedes Ti in session se′ (sTi−1 = s0 if Ti is the

first transaction in the session). Hence, Ti’s parent state is either sp(Ti) = maxoi∈ΣTi
{sfoi}, or

sp(Ti) = sTi−1 .

• If sp(Ti) = maxoi∈ΣTi
{sfoi}: We previously proved that ∀T ∈ Tse : SESSIONMR(se,T, e’),

hence that ∀Ti
se−→ Tj : ∀oi ∈ ΣTi : sfoi

∗−→ sloj , and consequently maxoi∈ΣTi
{sfoi}

∗−→ sloj

in e′. Noting that sp(Ti) = maxoi∈ΣTi
{sfoi}, we obtain the desired result sp(Ti)

∗−→ sloj in e′.

• If sp(Ti) = sTi−1 . We defined Ti to be the first read-only transaction in the session. By

construction Ti−1
se′−−→ Ti, Ti−1 is necessarily an update transaction given Ti is the first

read-only transaction, whereWTi−1 6= ∅. Given that, by transitivity Ti−1
se−→ Tj , and that e′

guarantees Read-My-Writes ∀T ∈ Tse : SESSIONRMW (se,T, e’), we have sT ′i−1

∗−→ sloj in

e′. Noting that sp(Ti) = sTi−1 , we conclude sp(Ti)
∗−→ sloj in e′.

Finally, we argue that sp(Ti) 6= sloj (and therefore that sTi

∗−→ sloj as sp(Ti) → sTi). Read-only

transactions, like Ti do not change the state on which they are applied, hence ∀(k, v) ∈ sp(Ti)⇒

(k, v) ∈ sTi . Moreover, by Claim 4, transactions commit in session order: ∀se′ ∈ SE : ∀Ti
se′−−→ Tj :

sTi

+−→ sTj . We thus have sTi

+−→ sTj and consequently sp(Ti) ∈ RSe′(oj)⇒ sTi ∈ RSe′(oj), i.e.

sp(Ti) 6= sloj : if sp(Ti) is inRSe′(oj), so is sTi . As sTi follows sp(Ti) in the execution, sp(Ti) will

never be sloj . The following thus holds in the base case: sp(Ti)
+−→ sloj , i.e. sp(Ti)→ sTi

∗−→ sloj .

213

Induction Step Consider the k-th read-only transaction Ti in se′ such that Ti
se′−−→ Tj . We assume

that it satisfies the induction hypothesis sTi

∗−→ sloj . Now consider the (k+1)-th read-only transaction

Ti′ in se′, such that Ti
se′−−→ Ti′ . By construction, we once again distinguish two cases: Ti′’s parent

state is either sp(Ti′) = maxoi′∈ΣT ′
i
{sfo′i}, or sp(Ti′) = sTi′−1

, where Ti′−1 denotes the transaction

directly preceding Ti′ in a session.

1. If sp(Ti′) = maxoi′∈ΣTi′
{sfoi′}. We previously proved that ∀T ∈ Tse :

SESSIONMR(se,T, e’), hence that ∀Ti′
se−→ Tj : ∀oi′ ∈ ΣTi′ : sfoi′

∗−→ sloj , and con-

sequently maxoi′∈ΣTi′
{sfoi′}

∗−→ sloj in e′. Noting that sp(Ti′) = maxoi′∈ΣTi′
{sfoi′}, we

obtain the desired result sp(Ti′)
∗−→ sloj in e′.

2. If sp(Ti′) = sTi′−1
: First, we note that Ti′−1

se′−−→ Tj holds, as the session order is transitive

and we have both Ti′−1
se′−−→ Ti′ and Ti′

se′−−→ j. We distinguish between two cases: if Ti′−1

is a read-only transaction, then it must be the k-th such transaction (as, by construction, it

directly precedes Ti′ in the session). Hence Ti′−1 = Ti. Our induction hypothesis states that

sTi

∗−→ sloj , and consequently that sTi′−1

∗−→ sloj . Noting that sp(Ti′) = sTi′−1
, we obtain

sp(Ti′)
∗−→ sloj . If Ti′−1 is an update transaction, we note that e′ guarantee Read-My-Writes:

∀T ∈ Tse : SESSIONRMW (se,T, e’). As Ti′−1
se−→ Tj , we have sTi′−1

∗−→ sloj in e′. Noting

that sp(Ti′) = sTi′−1
, we conclude: sp(Ti′)

∗−→ sloj in e′.

Finally, we argue that sp(Ti′) 6= sloj (and therefore that sTi′
∗−→ sloj as sp(Ti′)→ sTi′). Read-only

transactions, like Ti′ do not change the state on which they are applied, hence ∀(k, v) ∈ sp(Ti′)⇒

(k, v) ∈ sTi′ . Moreover, by Claim 4, transactions commit in session order: ∀se′ ∈ SE : ∀Ti′
se′−−→ Tj :

sTi′
+−→ sTj . We thus have sTi′

+−→ sTj and consequently sp(Ti′) ∈ RSe′(oj) ⇒ sTi′ ∈ RSe′(oj),

i.e. sp(Ti′) 6= sloj : if sp(Ti′) is in RSe′(oj), so is sTi′ . As sTi′ succedes sp(Ti′) in the execution,

sp(Ti′) will never be sloj . The following thus holds in the induction case: sp(Ti′)
+−→ sloj , i.e.

sp(Ti′)→ sTi′
∗−→ sloj . We proved the desired result for both the base case and induction step. By

induction, we conclude that, for read-only transactions: ∀Tj ∈ Tse, ∀oj ∈ ΣTj : ∀Ti
se−→ Tj ,WTi =

∅ ⇒ sTi

∗−→ sloj . Hence, the desired result holds for both read-only and update transactions

∀Tj ∈ Tse : (∀oj ∈ ΣTj : ∀Ti
se−→ Tj : sTi

∗−→ sloj).

Conclusion Putting everything together, if e guarantees all four session guarantees, there exists an

214

alternative execution e′ such that e′ also satisfies the session guarantees and is causally consistent:

PREREADe(T)∧ IRCe(T)∧ (∀o ∈ ΣT : ∀T ′ se−→ T : sT ′
∗−→ slo)∧ (∀se′ ∈ SE : ∀Ti

se′−−→ Tj : sTi

+−→

sTj), i.e. ∀T ∈ Tse : SESSIONCC(se,T, e’). This completes the second part of the proof.

Consequently, ∀se ∈ SE : ∃e : ∀T ∈ Tse : SESSIONG(se,T, e) ≡ ∀se ∈ SE : ∃e : ∀T ∈ Tse :

SESSIONCC(se,T, e) holds.

215

H Formal Security

We now provide formal security definitions and proofs for Obladi. As we discuss in §6.8, we use the

Universal Composability (UC) framework [43]. The UC framework requires us to specify an ideal

functionality FOb that defines what it means for Obladi to be secure. We must then prove that, for

every possible adversarial algorithm A specifying the behavior of the storage server, we can simulate

A’s behavior when interacting only with FOb .

We prove security of the scheme without assuming that the cloud storage provider is trusted for

integrity. As the MACs and counters are only used to verify integrity and freshness of data, they are

unnecessary if the cloud server is being honest. As we will see below, removing them—as we do in

our implementation—does not impact security in this case.

We also noted in Section 6.9 that the proxy requires a trusted epoch counter that persists across

crashes. This could be implemented as an integer in local non-volatile storage that the proxy updates

with each epoch, it could be implemented by trusting the cloud storage for integrity and saving it

there, or other means. We abstract away this detail by providing the Obladi protocol with access to

Fepc , an ideal functionality that provides access to this counter.

H.1 Ideal Functionality

We begin by noting that Obladi’s proxy acts as a trusted central coordinator that performs publicly-

known logic on private data. As this is essentially the role played by any ideal functionality, we

simply subsume the proxy into FOb . Moreover, some of the proxy’s behavior, like the fact that it

deduplicates and caches accesses, pads under-full batches, is public information, meaning FOb can

explicitly perform exactly the same operations.

In §6.4 we describe the proxy as consisting of a concurrency control unit and a data manager,

which itself contains a batch manager and ORAM executor. As the concurrency control and batch

management functionalities do not inherently leak any information, we define FOb in terms of those

operations. In particular, we let F∗Proxy represent this functionality. F∗Proxy is defined as providing

the exact functionality of the concurrency control unit and batch manager as described in §6.4 and

216

§6.5. F∗Proxy has the following ways to interface with FOb :

• FOb can supply F∗Proxy with an input from a client (start, read, write, or commit).

• F∗Proxy can produce a read batch of logical data blocks. The batch need not be full, meaning it

may contain fewer than the maximum number of reads for a batch. FOb can then respond with

the requested blocks.

• F∗Proxy can produce a write batch of logical data blocks. The batch need not be full. FOb can

then respond confirming the writes have completed.

• F∗Proxy can specify an epoch has ended and transactions should commit. FOb can then respond

with confirmation.

• FOb can clear F∗Proxy ’s internal state, representing a crash.

F∗Proxy can additionally send a messages directly to clients.

Modeling Crashes In the real system the proxy can crash at any time. As all state except the

cryptographic keys (and possibly trusted counters) is considered volatile, it does not matter when

during a local operation the proxy crashes, as every piece of that operation is lost regardless. We

can therefore simplify the ideal functionality by allowing for crashes both between requests and

immediately prior to any operation within a request that either leaves the proxy (e.g., writing to cloud

storage) or persists across crashes (e.g., updating the trusted epoch counter).

To model any possible crash, we control the timing of the crashes through a Crash Client. FOb

queries the Crash Client immediately prior to any relevant action and waits for a reply. The Crash

Client then waits for a prompt from the environment, which it forwards to FOb , telling it to proceed

or crash. Additionally, the Crash Client—again at the prompting of the environment—can issue a

“crash” command independently between requests.

We provide the full specification for FOb in Algorithm 1, which references F∗Proxy . For notational

clarity, we do not explicitly specify every call to the Crash Client. Instead any operation prefixed by †

notifies the Crash Client before executing and crashes if instructed. Note that it is possible to crash

while recovering from a crash.

217

Algorithm 1: Ideal functionality FOb using F∗Proxy .

Data: D = DatabaseState
Data: Counters ce = 0 ; cb = 0

Initialize
Initialize F∗Proxy
Begin epoch

end

On receive m from client C
Forward (m, C) to F∗Proxy

end

On receive “read-batch[blks]” from F∗Proxy
†Send “read-batch-init” to A, wait for “OK”
†cb ← cb + 1
†Send “read-batch-read” to A, wait for “OK”
Read blks from D
Respond to F∗Proxy with results

end

On receive “write-epoch[data]” from F∗Proxy
†Send “write-epoch” to A, wait for “OK”
†ce ← ce + 1 ; cb ← 0
Write data to D
Confirm write/epoch completed to F∗Proxy

end

On receive “crash” from Crash Client
Execute crashRecover

end

function crashRecover
Send (“crash”, ce, cb) to A
Clear internal state of F∗Proxy
Rollback writes to D since beginning of epoch ce
†ce ← ce + 1 ; cb ← 0

end
†Before executing operation, notify Crash Client. On response of “crash,” abort operation and invoke crashRecover,
otherwise proceed.

H.2 Security Lemmas

In order to prove the security of Obladi, we rely on two lemmas which we alluded to in §6.8.

Lemma 7 (Caching and Deduplication). Let D be any set of logical reads or writes selected

218

independently from the current ORAM position map. Let D∗ be the set of accesses resulting from

applying the proxy batch manager’s caching and deduplication logic to D. The set of physical

accesses needed to realize D∗ is identically distributed to the set of physical accesses needed to

realize a uniformly random set of logical accesses of the same size.

Proof. Since D is selected independently from the current position map in the ORAM, Ring ORAM

guarantees that the set of physical accesses needed to realize D is identically distributed to that for a

uniformly random set of logical reads or writes. D∗ is simply D with some elements removed, so we

claim that the elements removed form an unbiased sample. Since removing an unbiased sample from

a distribution does not change the distribution, this is sufficient.

We first note that Ring ORAM guarantees that any independently-selected logical access d results in

physical accesses sampled independently from the following distribution. First sample a uniformly

random path in the tree. Then, for each bucket in that path, sample a uniformly random block from

among those not read since the bucket was last written. Finally, read all selected blocks.

In Ring ORAM, whenever a block is read or written, it is immediately remapped to an independent

uniformly random path in the tree that determines what will be read next time it is accessed. The proxy

batch manger’s caching and deduplication logic removes access requests for any block previously

accessed in this epoch. Each of those blocks was mapped to a new independently uniform random

path when accessed. Moreover, when an epoch ends, the cache is completely flushed, meaning there

is no (potentially-biased) caching or deduplication.

Thus the sample of physical accesses removed by pairing D down to D∗ must be unbiased, so D∗

must result in a uniformly random set of physical access paths.

Lemma 8 (Parallel ORAM). The set of parallel physical data operations performed by the proxy

ORAM executor over one epoch (as described in §6.6) is completely determined by the set of

sequential physical accesses required to perform the same logical actions in Ring ORAM (plus a

single write to the durability store).

Proof. We note that, as described in §6.6, the proxy performs all reads within an epoch before any

writes (aside from the durability store). By construction, it ensures that each physical block that

219

would be read at least once within an epoch in a fully sequential access is read exactly once in that

epoch, and no other physical blocks are ever read (excluding crash recovery).

This is enforced by holding a record of every block that has been read this epoch and then performing

the reads of the sequential access, but skipping blocks that have already been read. Additionally,

whenever an evict path operation would happen, the proxy reads every unread block from each bucket

along that path, thus marking them as read. As the timing of evict paths is determined by how many

data accesses have happened and their locations are deterministic, this enforcement mechanism is

dependent only on the physical blocks accessed, not in any way on the data held in those blocks.

Similarly, each block that would be written at least once in a sequentially-processed epoch is written

exactly once at the end of the epoch. This is done by buffering writes in the proxy, allowing one

buffered write of a physical block to overwrite any previous unflushed writes of that block. Then

when the epoch ends, the proxy flushes all buffered writes. Again, the set of blocks being written is

determined entirely by the physical access pattern of the sequential operation.

Finally, a fixed amount of data is written to the durability store before each read batch, and the entire

durability store is written with each write batch. This means that in normal operation, the location

and timing of all reads and writes are determined by only the physical operations needed to perform

the epoch operations sequentially and some extra completely deterministic operations.

On crash recovery, the proxy reads the durability store and rereads all paths in the aborted epoch.

This, again, is based entirely on physical access patterns.

Hence all physical read and write operations within a parallelized epoch are determined entirely by

the physical data operations needed to perform that epoch sequentially.

H.3 Proof of Security

We now prove that the Obladi protocol ΠOb (with access to Fepc) is secure with respect to the ideal

functionality described in Algorithm 1. Let RealA,E(λ) denote the full transcript of A (including its

inputs and randomness) when interacting with ΠOb . Let IdealS,E(λ) denote the transcript produced

by S when run in the ideal world, interacting with FOb .

220

Theorem 7. Assume the encryption scheme used in ΠOb is semantically secure and the MACs are ex-

istentially unforgeable. For all probabilistic polynomial time (PPT) adversaries A and environments

E , there is a simulator SA such that for all PPT distinguishers D there is some negligible function

negl such that

∣∣∣Pr
[
D
(
RealA,E(λ)

)
= 1
]

− Pr
[
D
(
IdealSA,E(λ)

)
= 1
]∣∣∣ ≤ negl(λ).

Proof. This proof follows from a series of hybrid simulators, each of which is indistinguishable from

the previous.

We define hybrids H0, . . . ,H4. H0 operates in the real world with S0 being a “dummy” that passes

all messages through to A unmodified. H1 has two ORAMs that are identical except for the MACs,

one maintained by A and the other maintained by S1. H2 replaces all data in A’s ORAM with

random dummy data, independent from the actual data. H3 replaces the access pattern inA’s ORAM

with random data accesses. Finally H4 uses SA in the ideal world and no longer maintains its own

ORAM.

Hybrid H0 contains a dummy simulator that passes messages between A and the proxy unchanged.

This produces a transcript identical to the real world.

Hybrid H1 passes all messages through to A, but also maintains its own copy of the ORAM,

simultaneously processes requests internally. On initialization S1 generates its own MAC key

according to the same distribution as ΠOb’s MAC key. It then replaces the MACs of all data sent toA

with valid MACs on the same data using this new key. When A responds to a request, S1 checks the

MACs on the data. If they are correct, it forwards the (correct) response from it’s own ORAM with

the original MACs. If they are incorrect, it responds with a failure message. IfA’s response is correct,

so too will S1’s. If A’s MACs to not verify, ΠOb fails, so a failure message produces the same result.

If A’s response is wrong but the MACs verify, A must have forged a MAC since they include the

data, position, and epoch counter, and no two pieces of data are ever given the same position and

epoch counter. Moreover, because ΠOb has access to a trusted epoch counter via Fepc , it can properly

verify that the data has the correct epoch counter, even after crashes. Thus, if S1 accepts an incorrect

221

response with non-negligible probability, we can simulate A to forge a MAC with non-negligible

probability. Hence H1 is computationally indistinguishable from H0.

Note that the MACs are only used to check that A provided correct data. If the storage server is

assumed to be honest, this will always be the case and we can eliminate the MACs entirely (and also

H0 and H1 become identical).

Hybrid H2 replaces all data blocks provided to A with valid encryptions of random data and MACs

on those encryptions. It otherwise passes on requests, including the location and timing of reads

and writes. S2 continues to furnish responses to the proxy’s queries using its internal ORAM with

the original data, checking MACs according to the same scheme as in H1. S2 then output’s A’s

transcript. As all data is encrypted, the only difference between H1 and H2 is the contents of the

ciphertexts, and by assumption the encryption scheme is semantically secure. This means H1 and

H2 must be computationally indistinguishable.

Hybrid H3 replaces all data requests to A with properly-formatted requests for randomly chosen

data.

When S3 receives a location log for a read batch, it logs an encryption of random (unrelated) data

with A. When S3 receives the read instruction for a read batch, it first selects a random set of dummy

paths of the batch size. It then requests A perform the proper parallel read operation for that dummy

data. If A replies with the data and the MACs verify, S3 performs the actual reads on its separate

ORAM with real data and returns the real data to the proxy.

When S3 is notified of the end of an epoch and given the associated write batch, it determines

which physical blocks to write using Ring ORAM’s deterministic write sequence based on the total

number of operations (both reads and writes) in an epoch. It then performs proper parallel writes

of new encryptions of dummy data to each of those locations. If A replied with confirmed writes,

S3 performs the originally-specified operations on its separate ORAM and confirms success to the

proxy.

Finally, if S3 receives a request to handle a proxy crash at epoch ce and batch cb, it queries A as per

the crash recovery protocol for that epoch and batch. When A provides valid (MAC-verifying) read

222

path logs for any batches this epoch, S3 provides the associated logs to the proxy. When the proxy

issues redo read requests, S3 issues the same requests it did the first time to A for the associated

batches. Because S3 did not crash, it is able to retain which paths were read without having to store

them explicitly. In is possible that the last read batch requested during recovery corresponds to a

read that was never executed, in which case S3 generates a new random read batch and executes that

instead. If A responds correctly, S3 responds to the proxy’s requests.

By Lemma 7, the physical operations needed to process all real requests in a given epoch sequentially

form an identical distribution to the sequential accesses needed to process the random requests chosen

by S3. By Lemma 8, applying the parallelization process relies only on the sequential physical access

pattern, meaning it can be applied the same way to S3’s random operations as to the real operations

provided by the proxy. This means that the operations S3 requests of A are identically distributed to

those the proxy requests of S3 when there are no crashes.

When a crash occurs, the recovery procedure is guaranteed to reread all previously-read data, and

any future reads must have independently random paths. This is because S3 does not even generate

random paths to read until the read request is issued, by which point the persistent batch counter

cb is updated. So if a crash does occur, it will redo any previous reads and future operations are

treated as regular read/write batches with the same (independent) distribution. Since these are the

only difference between H2 and H3, the two must produce identical distributions.

HybridH4 now interacts with the ideal functionality and no longer maintains its own internal ORAM

copy, only the data necessary to perform actions on A’s, including the new MAC and encryption

keys. The only data S3 was using to compute requests for A was the timing of batches and crash

recoveries, and the epoch and batch counters during recovery. As FOb explicitly provides all of that

information, S4 is able to provideA with an identical view. Note that on crash recovery, this identical

view requires completing a crash-recover epoch, which S4 can do by creating an appropriate number

of read and write operations as it would in H3. This means that H3 and H4 are identically distributed.

Thus we see that H0 corresponds to the real world, H4 corresponds to the ideal world, and each

sequential pair of (Hi, Hi+1) produce computationally indistinguishable transcripts. Thus it must

be the case that H0 and H4 form computationally indistinguishable transcripts, so ΠOb realizes

223

FOb .

224

Bibliography

[1] Mysql. http://www.mysql.com.

[2] Gossip-based computer networking. ACM SIGOPS Operating Systems Review 41, 5 (2007).

[3] 23, AND ME. 23andme. www.23andme.com.

[4] ADYA, A. Weak Consistency: A Generalized Theory and Optimistic Implementations for

Distributed Transactions. Ph.D., MIT, Cambridge, MA, USA, Mar. 1999. Also as Technical

Report MIT/LCS/TR-786.

[5] ADYA, A., AND LISKOV, B. Lazy consistency using loosely synchronized clocks. In

Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing

(New York, NY, USA, 1997), PODC ’97, ACM, pp. 73–82.

[6] AGUILAR-MELCHOR, C., BARRIER, J., FOUSSE, L., AND KILLIJIAN, M.-O. XPIR: Private

Information Retrieval for Everyone. Cryptology ePrint Archive, Report 2014/1025, 2014.

http://eprint.iacr.org/2014/1025.

[7] AGUILERA, M. K., MERCHANT, A., SHAH, M., VEITCH, A., AND KARAMANOLIS, C.

Sinfonia: A new paradigm for building scalable distributed systems. In Proceedings of the

21st ACM Symposium on Operating Systems Principles, SOSP ’07, pp. 159–174.

[8] AGUILERA, M. K., SPENCE, S., AND VEITCH, A. Olive: Distributed point-in-time branching

storage for real systems. In Proceedings of the 3rd USENIX Symposium on Networked Systems

Design and Implementation - Volume 3, NSDI ’06.

[9] AHAMAD, M., NEIGER, G., BURNS, J. E., KOHLI, P., AND HUTTO, P. Causal memory:

225

http://www.mysql.com
www.23andme.com
http://eprint.iacr.org/2014/1025

Definitions, implementation and programming. Tech. rep., Georgia Institute of Technology,

1994.

[10] AJOUX, P., BRONSON, N., KUMAR, S., LLOYD, W., AND VEERARAGHAVAN, K. Chal-

lenges to adopting stronger consistency at scale. In Proceedings of the 15th USENIX Confer-

ence on Hot Topics in Operating Systems (2015), HOTOS’15.

[11] ALVARO, P., BAILIS, P., CONWAY, N., AND HELLERSTEIN, J. M. Consistency without

borders. In Proceedings of the 4th ACM Symposium on Cloud Computing, SOCC ’13, pp. 23:1–

23:10.

[12] AMAZON. Elastic beanstalk. https://aws.amazon.com/elasticbeanstalk/.

[13] AMAZON. S3: Simple storage service. https://aws.amazon.com/s3/.

[14] AMAZON. Simple db. https://aws.amazon.com/simpledb/.

[15] Amazon elastic compute cloud. http://aws.amazon.com/ec2/, Mar. 2009.

[16] APACHE. Cassandra. http://cassandra.apache.org/.

[17] ARASU, A., BLANAS, S., EGURO, K., KAUSHIK, R., KOSSMANN, D., RAMAMURTHY, R.,

AND VENKATESAN, R. Orthogonal Security With Cipherbase. In Conference on Innovative

Data Systems Research (CIDR) (2013).

[18] ARASU, A., EGURO, K., KAUSHIK, R., KOSSMANN, D., MENG, P., PANDEY, V., AND

RAMAMURTHY, R. Concerto: A High Concurrency Key-Value Store with Integrity. In ACM

SIGMOD International Conference on Management of Data (SIGMOD) (2017).

[19] ARDEKANI, M. S., SUTRA, P., AND SHAPIRO, M. Non-monotonic snapshot isolation:

Scalable and strong consistency for geo-replicated transactional systems. In Proceedings of

the 32nd International Symposium on Reliable Distributed Systems, SRDS ’13, pp. 163–172.

[20] ATTIYA, H., ELLEN, F., AND MORRISON, A. Limitations of highly-available eventually-

consistent data stores. In Proceedings of the 2015 ACM Symposium on Principles of Distributed

Computing (2015), PODC ’15, ACM, pp. 385–394.

226

https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/s3/
https://aws.amazon.com/simpledb/
http://aws.amazon.com/ec2/
http://cassandra.apache.org/

[21] AZURE, M. Decentralized Identity. https://azure.microsoft.com/en-us/

overview/decentralized-identity.

[22] BAILIS, P., DAVIDSON, A., FEKETE, A., GHODSI, A., HELLERSTEIN, J. M., AND STOICA,

I. Highly available transactions: Virtues and limitations. PVLDB 7, 3 (2013), 181–192.

[23] BAILIS, P., FEKETE, A., FRANKLIN, M. J., GHODSI, A., HELLERSTEIN, J. M., AND

STOICA, I. Feral concurrency control: An empirical investigation of modern application

integrity. In Proceedings of the 2015 ACM SIGMOD International Conference on Management

of Data (2015), SIGMOD ’15, pp. 1327–1342.

[24] BAILIS, P., FEKETE, A., GHODSI, A., HELLERSTEIN, J. M., AND STOICA, I. The potential

dangers of causal consistency and an explicit solution. In Proceedings of the 3rd ACM

Symposium on Cloud Computing, SOCC ’12, pp. 22:1–22:7.

[25] BAILIS, P., FEKETE, A., GHODSI, A., HELLERSTEIN, J. M., AND STOICA, I. Scalable

atomic visibility with ramp transactions. ACM Transactions on Database Systems 41, 3 (July

2016), 15:1–15:45.

[26] BAILIS, P., GHODSI, A., HELLERSTEIN, J. M., AND STOICA, I. Bolt-on causal consistency.

In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’13.

[27] BAJAJ, S., AND SION, R. TrustedDB: A Trusted Hardware Based Database with Privacy and

Data Confidentiality. In ACM SIGMOD International Conference on Management of Data

(SIGMOD) (2011).

[28] BAKER, J., BOND, C., CORBETT, J. C., FURMAN, J., KHORLIN, A., LARSON, J., LEON,

J.-M., LI, Y., LLOYD, A., AND YUSHPRAKH, V. Megastore: Providing Scalable, Highly

Available Storage for Interactive Services. In Conference on Innovative Data Systems Research

(CIDR) (2011).

[29] BASHO. Riak. http://basho.com/products/.

[30] BEIMEL, A., ISHAI, Y., AND MALKIN, T. Reducing the servers’ computation in private

227

https://azure.microsoft.com/en-us/overview/decentralized-identity
https://azure.microsoft.com/en-us/overview/decentralized-identity
http://basho.com/products/

information retrieval: PIR with preprocessing. Journal of Cryptology (JOFC) 17, 2 (2004),

125–151.

[31] BERENSON, H., BERNSTEIN, P., GRAY, J., MELTON, J., O’NEIL, E., AND O’NEIL, P. A

critique of ANSI SQL isolation levels. In ACM SIGMOD Record (1995), vol. 24, pp. 1–10.

[32] BERNSTEIN, P. A., AND GOODMAN, N. Multiversion concurrency control;theory and

algorithms. ACM Transactions on Database Systems 8, 4 (1983), 465–483.

[33] BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN, N. Concurrency control and

recovery in database systems. 1987.

[34] BERNSTEIN, P. A., ROTHNIE, J., GOODMAN, N., AND PAPADIMITRIOU, C. A. Some

computational problems related to database concurrency control.

[35] BERNSTEIN, P. A., ROTHNIE, J., GOODMAN, N., AND PAPADIMITRIOU, C. A. The concur-

rency control mechanism of sdd-1: A system for distributed databases (the fully redundant

case). IEEE Transactions on Software Engineering, 3 (1978), 154–168.

[36] BERNSTEIN, P. A., SHIPMAN, D. W., AND WONG, W. S. Formal aspects of serializability

in database concurrency control. IEEE Trans. Softw. Eng. 5, 3 (May 1979), 203–216.

[37] BINDSCHAEDLER, V., NAVEED, M., PAN, X., WANG, X., AND HUANG, Y. Practicing

Oblivious Access on Cloud Storage: The Gap, the Fallacy, and the New Way Forward. In

ACM Conference on Computer and Communications Security (CCS) (2015).

[38] BOYLE, E., CHUNG, K.-M., AND PASS, R. Oblivious Parallel RAM and Applications. In

Theory of Cryptography Conference (TCC) (2016).

[39] BREWER, E. A. Towards robust distributed systems (abstract). In Proceedings of the 19th

ACM Symposium on Principles of Distributed Computing, PODC ’00.

[40] BRZEZINSKI, B., SOBANIEC, C., AND D., W. From session causality to causal consistency.

In Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network based

Processing (2004), PDP 2004.

[41] BULCK, J. V., MINKIN, M., WEISSE, O., GENKIN, D., KASIKCI, B., PIESSENS, F.,

228

SILBERSTEIN, M., WENISCH, T. F., YAROM, Y., AND STRACKX, R. Foreshadow: Extracting

the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In USENIX

Security Symposium (USENIX) (2018).

[42] CACHIN, C., KEIDAR, I., AND SHRAER, A. Trusting the cloud. SIGACT News 40, 2 (June

2009), 81–86.

[43] CANETTI, R. Universally composable security: A new paradigm for cryptographic protocols.

In IEEE Symposium on Foundations of Computer Science (FOCS) (2001).

[44] CASSANDRA. Use Cases. http://www.planetcassandra.org/

apache-cassandra-use-cases/.

[45] CECCHETTI, E., ZHANG, F., JI, Y., KOSBA, A., JUELS, A., AND SHI, E. Solidus: Confi-

dential Distributed Ledger Transactions via PVORM. In ACM Conference on Computer and

Communications Security (CCS) (2017).

[46] CERONE, A., BERNARDI, G., AND GOTSMAN, A. A framework for transactional consistency

models with atomic visibility. In 26th International Conference on Concurrency Theory,

CONCUR 2015, (2015).

[47] CERONE, A., AND GOTSMAN, A. Analysing snapshot isolation. In Proceedings of the

2016 ACM Symposium on Principles of Distributed Computing (2016), PODC ’16, ACM,

pp. 55–64.

[48] CERONE, A., GOTSMAN, A., AND YANG, H. Transaction Chopping for Parallel Snapshot

Isolation. DISC’15. 2015, pp. 388–404.

[49] At LAX, computer glitch delays 20,000 passengers. http://travel.latimes.com/articles/la-trw-

lax12aug12.

[50] CHOCKLER, G., FRIEDMAN, R., AND VITENBERG, R. Consistency conditions for a corba

caching service. In Proceedings of the 14th International Conference on Distributed Comput-

ing (London, UK, UK, 2000), DISC ’00, Springer-Verlag, pp. 374–388.

[51] CHOR, B., GILBOA, N., AND NAOR, M. Private information retrieval by keywords, 1997.

229

http://www.planetcassandra.org/apache-cassandra-use-cases/
http://www.planetcassandra.org/apache-cassandra-use-cases/

[52] CHOR, B., KUSHILEVITZ, E., GOLDREICH, O., AND SUDAN, M. Private Information

Retrieval. Journal of the ACM (JACM) 45, 6 (1998), 965–981.

[53] CLOUD, C. 5 advantages of a cloud-based EHR.

[54] COOPER, B. F., RAMAKRISHNAN, R., SRIVASTAVA, U., SILBERSTEIN, A., BOHANNON,

P., JACOBSEN, H.-A., PUZ, N., WEAVER, D., AND YERNENI, R. PNUTS: Yahoo!’s hosted

data serving platform. Proceedings of the VLDB Endowment 1, 2 (2008), 1277–1288.

[55] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R., AND SEARS, R. Bench-

marking Cloud Serving Systems with YCSB. In ACM Symposium on Cloud Computing

(SoCC) (2010).

[56] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST, C., FURMAN, J. J., GHE-

MAWAT, S., GUBAREV, A., HEISER, C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S.,

KOGAN, E., LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D., QUINLAN,

S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK, M., TAYLOR, C., WANG, R., AND

WOODFORD, D. Spanner: Google’s globally-distributed database. In Proceedings of the

10th USENIX Symposium on Operating Systems Design and Implementation, OSDI ’12,

pp. 251–264.

[57] CROOKS, N., BURKE, M., CECCHETTI, E., HAREL, S., AGARWAL, R., AND ALVISI,

L. Obladi: Oblivious serializable transactions in the cloud. In 13th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 18) (Carlsbad, CA, Oct. 2018),

USENIX Association, pp. 727–743.

[58] CROOKS, N., PU, Y., ALVISI, L., AND CLEMENT, A. Seeing is Believing: A Client-

Centric Specification of Database Isolation. In ACM Symposium on Principles of Distributed

Computing (PODC) (2017).

[59] CROOKS, N., PU, Y., ESTRADA, N., GUPTA, T., ALVISI, L., AND CLEMENT, A. TARDiS:

A Branch-and-Merge Approach To Weak Consistency. In ACM SIGMOD International

Conference on Management of Data (SIGMOD) (2016).

[60] DAUDJEE, K., AND SALEM, K. Lazy database replication with ordering guarantees. In

230

Proceedings of the 20th International Conference on Data Engineering (Washington, DC,

USA, 2004), ICDE ’04, IEEE Computer Society, pp. 424–.

[61] DAUDJEE, K., AND SALEM, K. Lazy database replication with snapshot isolation. In

Proceedings of the 32nd International Conference on Very Large Data Bases (2006), VLDB

’06, VLDB Endowment, pp. 715–726.

[62] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN, A.,

PILCHIN, A., SIVASUBRAMANIAN, S., VOSSHALL, P., AND VOGELS, W. Dynamo: Ama-

zon’s highly available key-value store. In Proceedings of 21st ACM Symposium on Operating

Systems Principles, SOSP ’07, pp. 205–220.

[63] DIFALLAH, D. E., PAVLO, A., CURINO, C., AND CUDRE-MAUROUX, P. OLTP-Bench: An

Extensible Testbed for Benchmarking Relational Databases.

[64] DU, J., IORGULESCU, C., ROY, A., AND ZWAENEPOEL, W. Gentlerain: Cheap and scalable

causal consistency with physical clocks. In Proceedings of the ACM Symposium on Cloud

Computing, SOCC ’14, pp. 4:1–4:13.

[65] DU, W., AND ELMAGARMID, A. Quasi serializability: A correctness criterion for global

concurrency control in interbase. In Proceedings of the 15th International Conference on Very

Large Data Bases (San Francisco, CA, USA, 1989), VLDB ’89, Morgan Kaufmann Publishers

Inc., pp. 347–355.

[66] DYNAMODB. DynamoDB. https://aws.amazon.com/dynamodb/.

[67] DYNAMODB. Encryption at rest. https://docs.aws.amazon.com/

amazondynamodb/latest/developerguide/EncryptionAtRest.html.

[68] EDWARDS, W. K., MYNATT, E. D., PETERSEN, K., SPREITZER, M. J., TERRY, D. B., AND

THEIMER, M. M. Designing and implementing asynchronous collaborative applications with

Bayou. In Proceedings of the 10th annual ACM symposium on User interface software and

technology (New York, NY, USA, 1997), UIST ’97, ACM, pp. 119–128.

231

https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html

[69] ESCRIVA, R., WONG, B., AND SIRER, E. G. Warp: Lightweight multi-key transactions for

key-value stores. CoRR abs/1509.07815 (2015).

[70] ESKANDARIAN, S., AND ZAHARIA, M. An Oblivious General-Purpose SQL Database for

the Cloud. CoRR abs/1710.00458 (2017).

[71] ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND TRAIGER, I. L. The notions of

consistency and predicate locks in a database system. Commun. ACM 19, 11 (Nov. 1976),

624–633.

[72] FALEIRO, J. M., ABADI, D., AND HELLERSTEIN, J. M. High performance transactions via

early write visibility. PVLDB 10, 5 (2017), 613–624.

[73] FEKETE, A., LIAROKAPIS, D., O’NEIL, E., O’NEIL, P., AND SHASHA, D. Making

Snapshot Isolation Serializable. ACM Trans. Database Syst. 30, 2 (2005), 492–528.

[74] FELDMAN, A. J., ZELLER, W. P., FREEDMAN, M. J., AND FELTEN, E. W. SPORC: Group

collaboration using untrusted cloud resources. In Proceedings of the 9th USENIX Symposium

on Operating Systems Design and Implementation, OSDI ’10.

[75] FLETCHER, C. W., REN, L., KWON, A., AND V. DI, M. A Low-Latency, Low-Area

Hardware Oblivious RAM Controller. In Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM) (2015).

[76] FLEXIBAKE. Flexibake. https://www.flexibake.com/.

[77] FREEHEALTH.IO. FreeHealth EHR. https://freehealth.io/. Accessed 2018-05-01.

[78] GARCIA-MOLINA, H. Using semantic knowledge for transaction processing in a distributed

database. ACM Trans. Database Syst. 8, 2 (June 1983), 186–213.

[79] GILBERT, S., AND LYNCH, N. Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. SIGACT News 33, 2 (June 2002), 51–59.

[80] GIT. Git: the fast version control system. http://git-scm.com.

[81] GOG, I., SCHWARZKOPF, M., CROOKS, N., GROSVENOR, M. P., CLEMENT, A., AND

232

https://www.flexibake.com/
https://freehealth.io/
http://git-scm.com

HAND, S. Musketeer: All for one, one for all in data processing systems. In Proceedings of

the Tenth European Conference on Computer Systems (New York, NY, USA, 2015), EuroSys

’15, ACM, pp. 2:1–2:16.

[82] GOLDREICH, O., AND OSTROVSKY, R. Software protection and simulation on oblivious

RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.

[83] GOOGLE. Bigtable - massively scalable nosql. https://cloud.google.com/

bigtable/.

[84] GOOGLE. Cloud sql - fully managed sql service. https://cloud.google.com/sql/.

[85] GRAY, J. The transaction concept: Virtues and limitations (invited paper). In Proceedings of

the Seventh International Conference on Very Large Data Bases - Volume 7 (1981), VLDB

’81, VLDB Endowment, pp. 144–154.

[86] GRAY, J., LORIE, R. A., PUTZOLU, G. R., AND TRAIGER, I. L. Granularity of locks and

degrees of consistency in a shared data base. In IFIP Working Conference on Modelling in

Data Base Management Systems (1976).

[87] GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B., LORIE, R., PRICE, T., PUTZOLU,

F., AND TRAIGER, I. The Recovery Manager of the System R Database Manager. ACM

Computing Surveys (CSUR) 13, 2 (1981), 223–242.

[88] GRAY, J. N., LORIE, R. A., AND PUTZOLU, G. R. Granularity of locks in a shared data base.

In Proceedings of the 1st International Conference on Very Large Data Bases (New York, NY,

USA, 1975), VLDB ’75, ACM, pp. 428–451.

[89] GUERRAOUI, R., AND KAPALKA, M. On the correctness of transactional memory. In

Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (2008), PPoPP ’08, ACM, pp. 175–184.

[90] GUPTA, T., CROOKS, N., MULHERN, W., SETTY, S., ALVISI, L., AND WALFISH, M.

Scalable and private media consumption with popcorn. In 13th USENIX Symposium on

233

https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/sql/

Networked Systems Design and Implementation (NSDI 16) (Santa Clara, CA, Mar. 2016),

USENIX Association, pp. 91–107.

[91] GUY, R. G., HEIDEMANN, J. S., MAK, W., PAGE, JR., T. W., POPEK, G. J., AND ROTH-

MEIR, D. Implementation of the Ficus Replicated File System. In Proceedings of the Summer

1990 USENIX Conference (1990), pp. 63–72.

[92] HERLIHY, M. P., AND WING, J. M. Linearizability: a correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst. 12, 3 (July 1990), 463–492.

[93] IMBS, D., AND RAYNAL, M. Virtual world consistency: A condition for stm systems (with a

versatile protocol with invisible read operations). Theoretical Computer Science 444 (July

2012), 113–127.

[94] INTEL. Intel Software Guard Extension - SGX. https://software.intel.com/

en-us/sgx.

[95] ISHAI, Y., KUSHILEVITZ, E., OSTROVSKY, R., AND SAHAI, A. Batch Codes and Their

Applications. In ACM Symposium on Theory of Computing (STOC) (2004).

[96] IT, H. Ehr adoption. https://dashboard.healthit.gov/evaluations/

data-briefs/non-federal-acute-care-hospital-ehr-adoption-2008-2015.

php.

[97] JONES, E. P., ABADI, D. J., AND MADDEN, S. Low Overhead Concurrency Control

for Partitioned Main Memory Databases. In ACM SIGMOD International Conference on

Management of Data (SIGMOD) (2010).

[98] KAPRITSOS, M., WANG, Y., QUEMA, V., CLEMENT, A., ALVISI, L., AND DAHLIN, M.

All about Eve: Execute-Verify Replication for Multi-Core Servers. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI) (2012).

[99] KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected operation in the coda file system.

In Thirteenth ACM Symposium on Operating Systems Principles (Asilomar Conference Center,

Pacific Grove, U.S., 1991), vol. 25, ACM Press, pp. 213–225.

234

https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://dashboard.healthit.gov/evaluations/data-briefs/non-federal-acute-care-hospital-ehr-adoption-2008-2015.php
https://dashboard.healthit.gov/evaluations/data-briefs/non-federal-acute-care-hospital-ehr-adoption-2008-2015.php
https://dashboard.healthit.gov/evaluations/data-briefs/non-federal-acute-care-hospital-ehr-adoption-2008-2015.php

[100] KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected operation in the coda file system.

ACM Trans. Comput. Syst. (1992).

[101] KLOPHAUS, R. Riak core: Building distributed applications without shared state. In ACM

SIGPLAN Commercial Users of Functional Programming, CUFP ’10.

[102] KOCHER, P., HORN, J., FOGH, A., , GENKIN, D., GRUSS, D., HAAS, W., HAMBURG, M.,

LIPP, M., MANGARD, S., PRESCHER, T., SCHWARZ, M., AND YAROM, Y. Spectre Attacks:

Exploiting Speculative Execution. In IEEE Symposium on Security and Privacy (SP) (2019).

[103] KORTH, H. K., AND SPEEGLE, G. Formal model of correctness without serializabilty. In

Proceedings of the 1988 ACM SIGMOD International Conference on Management of Data

(New York, NY, USA, 1988), SIGMOD ’88, ACM, pp. 379–386.

[104] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT, A., AND WONG, E. Zyzzyva: Speculative

Byzantine Fault Tolerance. ACM Transactions on Computer Systems 27, 4 (Jan. 2010),

7:1–7:39.

[105] KRASKA, T., PANG, G., FRANKLIN, M. J., MADDEN, S., AND FEKETE, A. Mdcc: multi-

data center consistency. In Proceedings of the 8th ACM European Conference on Computer

Systems, EuroSys ’13, pp. 113–126.

[106] KRIPKE, S. A. Semantical considerations on modal logic. Acta Philosophica Fennica 16,

1963 (1963), 83–94.

[107] KUNG, H. T., AND ROBINSON, J. T. On Optimistic Methods for Concurrency Control. ACM

Trans. Database Syst. 6, 2 (1981), 213–226.

[108] KUO, A. M.-H. Opportunities and challenges of cloud computing to improve health care

services. Journal of Medical Internet Research (JMIR) 13, 3 (2011).

[109] KUSHILEVITZ, E., AND OSTROVSKY, R. Replication is not needed: Single database,

computationally-private information retrieval. In IEEE Symposium on Foundations of Com-

puter Science (FOCS) (1997).

[110] KWON, A., CORRIGAN-GIBBS, H., DEVADAS, S., AND FORD, B. Atom: Horizontally

235

Scaling Strong Anonymity. In ACM Symposium on Operating System Principles (SOSP)

(2017).

[111] LAMPORT, L. How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Comput. 28, 9 (Sept. 1979), 690–691.

[112] LAMPORT, L. How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Comput. 28, 9 (Sept. 1979), 690–691.

[113] LARSON, P.-A., BLANAS, S., DIACONU, C., FREEDMAN, C., PATEL, J. M., AND ZWILL-

ING, M. High-performance Concurrency Control Mechanisms for Main-memory Databases.

In Proceedings of the VLDB Endowment (PVLDB) (2011).

[114] LI, C., PORTO, D., CLEMENT, A., GEHRKE, J., PREGUIÇA, N., AND RODRIGUES, R.

Making geo-replicated systems fast as possible, consistent when necessary. In Proceedings of

the 10th USENIX Symposium on Operating Systems Design and Implementation, OSDI ’12,

pp. 265–278.

[115] LI, J., KROHN, M., MAZIÈRES, D., AND SHASHA, D. Secure untrusted data repository

(SUNDR). In Proceedings of the 6th USENIX Symposium on Operating Systems Design and

Implementation - Volume 6, OSDI ’04.

[116] LIBRE, M. FreeHealth EHR. https://https://freemedsoft.com/fr/. Accessed

2018-05-01.

[117] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS, W., FOGH, A., HORN, J.,

MANGARD, S., KOCHER, P., GENKIN, D., YAROM, Y., AND HAMBURG, M. Meltdown:

Reading Kernel Memory from User Space. In USENIX Security Symposium (USENIX) (2018).

[118] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDERSEN, D. G. Don’t settle for

eventual: scalable causal consistency for wide-area storage with COPS. In Proceedings of the

23rd ACM Symposium on Operating Systems Principles, SOSP ’11, pp. 401–416.

[119] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDERSEN, D. G. Stronger seman-

236

https://https://freemedsoft.com/fr/

tics for low-latency geo-replicated storage. In Proceedings of the 10th USENIX Symposium

on Networked Systems Design and Implementation, NSDI ’13, pp. 313–328.

[120] LORCH, J., PARNO, B., MICKENS, J., RAYKOVA, M., AND SCHIFFMAN, J. Shroud:

Ensuring Private Access to Large-Scale Data in the Data Center. In Conference on File and

Storage Technologies (FAST) (2013).

[121] LUEKS, W., AND GOLDBERG, I. Sublinear Scaling for Multi-Client Private Information

Retrieval. In Financial Cryptography and Data Security (FC) (2015).

[122] MAAS, M., LOVE, E., STEFANOV, E., TIWARI, M., SHI, E., ASANOVIC, K., KUBIATOWICZ,

J., AND SONG, D. PHANTOM: Practical Oblivious Computation in a Secure Processor. In

ACM Conference on Computer and Communications Security (CCS) (2013).

[123] MAHAJAN, P., ALVISI, L., AND DAHLIN, M. Consistency, availability, convergence. Tech.

Rep. TR-11-22, Computer Science Department, University of Texas at Austin, May 2011.

[124] MAHAJAN, P., SETTY, S., LEE, S., CLEMENT, A., ALVISI, L., DAHLIN, M., AND WALFISH,

M. Depot: Cloud storage with minimal trust. ACM Transactions on Computer Systems 29, 4

(2011), 12.

[125] MAPDB. MapDB: Embedded Database Engine. http://www.mapdb.org/.

[126] MASHTIZADEH, A. J., BITTAU, A., HUANG, Y. F., AND MAZIÈRES, D. Replication,

History, and Grafting in the Ori File System. In Proceedings of the 24th ACM Symposium on

Operating Systems Principles, SOSP ’13, pp. 151–166.

[127] MB, B. Online retail. https://www.thebalancesmb.com/

compare-brick-and-mortar-stores-vs-online-retail-sites-4571050I.

[128] MEDIUM. The dao hack explained. https://medium.com/@ogucluturk/

the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562.

[129] MEHDI, S. A., LITTLEY, C., CROOKS, N., ALVISI, L., BRONSON, N., AND LLOYD, W. I

Can’t Believe It’s Not Causal! Scalable Causal Consistency with No Slowdown Cascades. In

USENIX Symposium on Networked Systems Design and Implementation (NSDI) (2017).

237

http://www.mapdb.org/
https://www.thebalancesmb.com/compare-brick-and-mortar-stores-vs-online-retail-sites-4571050 I
https://www.thebalancesmb.com/compare-brick-and-mortar-stores-vs-online-retail-sites-4571050 I
https://medium.com/@ogucluturk/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562
https://medium.com/@ogucluturk/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562

[130] MEMSQL. Memsql. https://www.memsql.com.

[131] MICKENS, J., NIGHTINGALE, E. B., ELSON, J., GEHRING, D., FAN, B., KADAV, A.,

CHIDAMBARAM, V., KHAN, O., AND NAREDDY, K. Blizzard: Fast, Cloud-Scale Block

Storage for Cloud-Oblivious Applications. In Proceedings of the 11th USENIX Symposium on

Networked Systems Design and Implementation (2014), NSDI’14.

[132] MICROSOFT. Azure sql database. https://https://azure.microsoft.com/

en-us/services/sql-database/?v=16.50.

[133] MICROSOFT. Azure storage - secure cloud storage. https://azure.microsoft.com/

en-us/services/storage/.

[134] MICROSOFT. Azure tables. https://azure.microsoft.com/en-us/services/

storage/tables/.

[135] MICROSOFT. Documentdb - nosql service for json. https://azure.microsoft.com/

en-us/services/documentdb/.

[136] MICROSOFT. SQL Server. https://www.microsoft.com/en-cy/sql-server/

sql-server-2016.

[137] MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH, H., AND SCHWARZ, P. ARIES: A

Transaction Recovery Method Supporting Fine-granularity Locking and Partial Rollbacks

Using Write-ahead Logging. ACM Trans. Database Syst. 17, 1 (1992), 94–162.

[138] MONGODB. Agility, Performance, Scalibility. Pick three. https://www.mongodb.

org/.

[139] MU, S., CUI, Y., ZHANG, Y., LLOYD, W., AND LI, J. Extracting more concurrency from

distributed transactions. In Proceedings of the 11th USENIX Conference on Operating Systems

Design and Implementation (Berkeley, CA, USA, 2014), OSDI’14, USENIX Association,

pp. 479–494.

[140] NARAYANAN, A., AND SHMATIKOV, V. Robust De-anonymization of Large Sparse Datasets.

In IEEE Symposium on Security and Privacy (SP) (2008).

238

https://www.memsql.com
https://https://azure.microsoft.com/en-us/services/sql-database/?v=16.50
https://https://azure.microsoft.com/en-us/services/sql-database/?v=16.50
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/tables/
https://azure.microsoft.com/en-us/services/storage/tables/
https://azure.microsoft.com/en-us/services/documentdb/
https://azure.microsoft.com/en-us/services/documentdb/
https://www.microsoft.com/en-cy/sql-server/sql-server-2016
https://www.microsoft.com/en-cy/sql-server/sql-server-2016
https://www.mongodb.org/
https://www.mongodb.org/

[141] NARAYANAN, A., AND SHMATIKOV, V. Myths and fallacies of “personally identifiable

information”. Commun. ACM 53, 6 (June 2010), 24–26.

[142] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M., AND FLINN, J. Rethink the

sync. In Proc. 7th OSDI (Nov. 2006).

[143] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M., AND FLINN, J. Rethink the

Sync. ACM Transactions on Computer Systems 26, 3 (Sept. 2008), 6:1–6:26.

[144] OLSON, M. A., BOSTIC, K., AND SELTZER, M. Berkeley DB. In Proceedings of the Annual

Conference on USENIX Annual Technical Conference, ATEC ’99.

[145] OLUMOFIN, F., AND GOLDBERG, I. Privacy-preserving Queries over Relational Databases.

In Privacy Enhancing Technologies Symposium (PETS) (2010).

[146] ORACLE. InnoDB. https://dev.mysql.com/doc/refman/8.0/en/

innodb-storage-engine.html/.

[147] ORACLE. MySQL. https://www.mysql.com/.

[148] ORACLE. MySQL Cluster. https://www.mysql.com/products/cluster/.

[149] ORACLE. Oracle 12c - isolation levels. https://docs.oracle.com/database/

121/CNCPT/consist.htm#CNCPT1320/.

[150] ORACLE. Oracle database 18c. https://docs.oracle.com/en/database/

oracle/oracle-database/18/index.html, 2018.

[151] PADILHA, R., AND PEDONE, F. Augustus: Scalable and robust storage for cloud applications.

In Proceedings of the 8th ACM European Conference on Computer Systems, EuroSys ’13,

pp. 99–112.

[152] PAPADIMITRIOU, A., BHAGWAN, R., CHANDRAN, N., RAMJEE, R., HAEBERLEN, A.,

SINGH, H., MODI, A., AND BADRINARAYANAN, S. Big Data Analytics over Encrypted

Datasets with Seabed. In USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI) (2016).

239

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html/
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html/
https://www.mysql.com/
https://www.mysql.com/products/cluster/
https://docs.oracle.com/database/121/CNCPT/consist.htm#CNCPT1320/
https://docs.oracle.com/database/121/CNCPT/consist.htm#CNCPT1320/
https://docs.oracle.com/en/database/oracle/oracle-database/18/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/18/index.html

[153] PAPADIMITRIOU, C. H. The serializability of concurrent database updates. J. ACM 26, 4

(Oct. 1979), 631–653.

[154] PEDONE, F., ZWAENEPOEL, W., AND ELNIKETY, S. Database replication using generalized

snapshot isolation. 24th IEEE Symposium on Reliable Distributed Systems (2005), 73–84.

[155] PLATFORM, G. C. Cloud spanner. http://cloud.google.com/spanner/.

[156] POPA, R. A., REDFIELD, C. M. S., ZELDOVICH, N., AND BALAKRISHNAN, H. CryptDB:

Protecting Confidentiality with Encrypted Query Processing. In ACM Symposium on Operating

System Principles (SOSP) (2011).

[157] PORTS, D. R. K., LI, J., LIU, V., SHARMA, N. K., AND KRISHNAMURTHY, A. Designing

distributed systems using approximate synchrony in data center networks. In Proceedings of

the 12th USENIX Conference on Networked Systems Design and Implementation (Berkeley,

CA, USA, 2015), NSDI’15, pp. 43–57.

[158] POSTGRESQL. http://www.postgresql.org/.

[159] PREGUICA, N., MARQUES, J. M., SHAPIRO, M., AND LETIA, M. A commutative replicated

data type for cooperative editing. In Proceedings of the 29th IEEE International Conference

on Distributed Computing Systems, ICDCS ’09, pp. 395–403.

[160] REDDY, P. K., AND KITSUREGAWA, M. Speculative Locking Protocols to Improve Per-

formance for Distributed Database Systems. IEEE Transactions on Knowledge and Data

Engineering (TKDE) 16, 2 (2004), 154–169.

[161] REED, D. P. Implementing Atomic Actions on Decentralized Data (Extended Abstract). In

ACM Symposium on Operating System Principles (SOSP) (1979).

[162] REED, D. P. Implementing Atomic Actions on Decentralized Data. ACM Trans. Comput.

Syst. 1, 1 (1983), 3–23.

[163] REIHER, P., HEIDEMANN, J., RATNER, D., SKINNER, G., AND POPEK, G. Resolving file

conflicts in the ficus file system, 1994.

[164] REN, L., FLETCHER, C., KWON, A., STEFANOV, E., SHI, E., VAN DIJK, M., AND DE-

240

http://cloud.google.com/spanner/
http://www.postgresql.org/

VADAS, S. Constants Count: Practical Improvements to Oblivious RAM. In USENIX Security

Symposium (USENIX) (2015).

[165] RETWIS. Twitter-like Clone. http://retwis.redis.io/.

[166] ROSENKRANTZ, D. J., STEARNS, R. E., AND LEWIS, II, P. M. System level concurrency

control for distributed database systems. ACM Trans. Database Syst. 3, 2 (June 1978),

178–198.

[167] SAHIN, C., ZAKHARY, V., EL ABBADI, A., LIN, H., AND TESSARO, S. TaoStore: Overcom-

ing Asynchronicity in Oblivious Data Storage. In IEEE Symposium on Security and Privacy

(SP) (2016).

[168] SAP. Hana. https://www.sap.com/products/hana.html.

[169] SERVER, M. S. Always Encrypted. https://www.microsoft.com/en-us/

research/project/always-encrypted/.

[170] SHAPIRO, M., ARDEKANI, M. S., AND PETRI, G. Consistency in 3d (invited paper). In 27th

International Conference on Concurrency Theory (CONCUR 2016) (2016).

[171] SHAPIRO, M., PREGUIÇA, N., BAQUERO, C., AND ZAWIRSKI, M. A comprehensive study

of Convergent and Commutative Replicated Data Types. Rapport de recherche RR-7506,

INRIA, Jan. 2011.

[172] SHAPIRO, M., PREGUIÇA, N., BAQUERO, C., AND ZAWIRSKI, M. Conflict-free replicated

data types. X. Défago, F. Petit, and V. Villain, Eds., vol. 6976, pp. 386–400.

[173] SHEFF, I., MAGRINO, T., LIU, J., MYERS, A. C., AND VAN RENESSE, R. Safe Serializable

Secure Scheduling: Transactions and the Trade-Off Between Security and Consistency. In

ACM Conference on Computer and Communications Security (CCS) (2016).

[174] SHI, E., CHAN, T.-H. H., STEFANOV, E., AND LI, M. Oblivious RAM with O((Logn)3)

Worst-case Cost. In International Conference on The Theory and Application of Cryptology

and Information Security (2011).

[175] SHI, E., CHAN, T.-H. H., STEFANOV, E., AND LI, M. Oblivious RAM with O((logN)3)

241

http://retwis.redis.io/
https://www.sap.com/products/hana.html
https://www.microsoft.com/en-us/research/project/always-encrypted/
https://www.microsoft.com/en-us/research/project/always-encrypted/

Worst-Case Cost. In International Conference on The Theory and Application of Cryptology

and Information Security (2011).

[176] SHRIRA, L., TIAN, H., AND TERRY, D. Exo-leasing: escrow synchronization for mobile

clients of commodity storage servers. In Proceedings of the 9th ACM/IFIP/USENIX Interna-

tional Conference on Middleware, Middleware ’08, pp. 42–61.

[177] SINGEL, R. Netflix spilled your Brokeback Mountain secret, lawsuit claims. Wired

(Dec. 2009). http://www.wired.com/images_blogs/threatlevel/2009/

12/doe-v-netflix.pdf.

[178] SOVRAN, Y., POWER, R., AGUILERA, M. K., AND LI, J. Transactional storage for geo-

replicated systems. In Proceedings of the 23rd ACM Symposium on Operating Systems

Principles, SOSP ’11, pp. 385–400.

[179] STEFANOV, E., AND SHI, E. ObliviStore: High Performance Oblivious Cloud Storage. In

IEEE Symposium on Security and Privacy (SP) (2013).

[180] STEFANOV, E., AND SHI, E. ObliviStore: High Performance Oblivious Distributed Cloud

Data Store. In Network and Distributed System Security Symposium (NDSS) (2013).

[181] STEFANOV, E., SHI, E., AND SONG, D. Towards Practical Oblivious RAM.

[182] STEFANOV, E., VAN DIJK, M., SHI, E., FLETCHER, C., REN, L., YU, X., AND DEVADAS,

S. Path ORAM: An Extremely Simple Oblivious RAM Protocol. In ACM Conference on

Computer and Communications Security (CCS) (2013).

[183] SU, C., CROOKS, N., DING, C., ALVISI, L., AND XIE, C. Bringing modular concurrency

control to the next level. In Proceedings of the 2017 ACM International Conference on

Management of Data (2017), SIGMOD ’17, pp. 283–297.

[184] SUN, C., AND ELLIS, C. Operational transformation in real-time group editors: issues,

algorithms, and achievements. In Proceedings of the 1998 ACM Conference on Computer

Supported Cooperative Work, CSCW ’98, pp. 59–68.

[185] TERRY, D. B., DEMERS, A. J., PETERSEN, K., SPREITZER, M. J., THEIMER, M. M., AND

242

http://www.wired.com/images_blogs/threatlevel/2009/12/doe-v-netflix.pdf
http://www.wired.com/images_blogs/threatlevel/2009/12/doe-v-netflix.pdf

WELCH, B. B. Session guarantees for weakly consistent replicated data. In Proceedings of

the 3rd International Conference on on Parallel and Distributed Information Systems, PDIS

’94, pp. 140–150.

[186] TERRY, D. B., PRABHAKARAN, V., KOTLA, R., BALAKRISHNAN, M., AGUILERA, M. K.,

AND ABU-LIBDEH, H. Consistency-based service level agreements for cloud storage. In

Proceedings of the 24th ACM Symposium on Operating Systems Principles, SOSP ’13, pp. 309–

324.

[187] TERRY, D. B., THEIMER, M. M., PETERSEN, K., DEMERS, A. J., SPREITZER, M. J., AND

HAUSER, C. H. Managing update conflicts in Bayou, a weakly connected replicated storage

system. In Proceedings of the 15th ACM Symposium on Operating Systems Principles, SOSP

’95, pp. 172–182.

[188] THOMSON, A., DIAMOND, T., WENG, S.-C., REN, K., SHAO, P., AND ABADI, D. J.

Calvin: Fast distributed transactions for partitioned database systems. In Proceedings of

the 2012 ACM SIGMOD International Conference on Management of Data, SIGMOD ’12,

pp. 1–12.

[189] TRANSACTION PROCESSING PERFORMANCE COUNCIL. The TPC-C home page.

http://www.tpc.org/tpcc.

[190] TU, S., KAASHOEK, M. F., MADDEN, S., AND ZELDOVICH, N. Processing Analytical

Queries over Encrypted Data. In Proceedings of the VLDB Endowment (PVLDB) (2013).

[191] TU, S., ZHENG, W., KOHLER, E., LISKOV, B., AND MADDEN, S. Speedy Transactions in

Multicore In-memory Databases. In ACM Symposium on Operating System Principles (SOSP)

(2013).

[192] VIOTTI, P., AND VUKOLIĆ, M. Consistency in non-transactional distributed storage systems.

ACM Computing Survey 49, 1 (June 2016), 19:1–19:34.

[193] VOGELS, W. Eventually consistent. Queue 6, 6 (Oct. 2008), 14–19.

[194] WANG, F., YUN, C., GOLDWASSER, S., VAIKUNTANATHAN, V., AND ZAHARIA, M. Splin-

243

ter: Practical Private Queries on Public Data. In USENIX Symposium on Networked Systems

Design and Implementation (NSDI) (2017).

[195] WARSZAWSKI, T., AND BAILIS, P. Acidrain: Concurrency-related attacks on database-backed

web applications. In Proceedings of the 2017 ACM International Conference on Management

of Data (2017), SIGMOD ’17, pp. 5–20.

[196] WEIKUM, G. Principles and Realization Strategies of Multilevel Transaction Management.

ACM Trans. Database Syst. 16, 1 (1991), 132–180.

[197] WIKIPEDIA. Wikipedia: Conflicting Sources. http://en.wikipedia.org/wiki/

Wikipedia:Conflicting_sources.

[198] WILLIAMS, P., SION, R., AND CARBUNAR, B. Building Castles out of Mud: Practical Access

Pattern Privacy and Correctness on Untrusted Storage. In ACM Conference on Computer and

Communications Security (CCS) (2008).

[199] WILLIAMS, P., SION, R., AND TOMESCU, A. PrivateFS: A Parallel Oblivious File System.

In ACM Conference on Computer and Communications Security (CCS) (2012).

[200] WU, Z., BUTKIEWICZ, M., PERKINS, D., KATZ-BASSETT, E., AND MADHYASTHA, H. V.

Spanstore: Cost-effective geo-replicated storage spanning multiple cloud services. In Proceed-

ings of the 24th ACM Symposium on Operating Systems Principles, SOSP ’13, pp. 292–308.

[201] XIE, C., SU, C., LITTLEY, C., ALVISI, L., KAPRITSOS, M., AND WANG, Y. High-

performance ACID via Modular Concurrency Control. In ACM Symposium on Operating

System Principles (SOSP) (2015).

[202] YANNAKAKIS, M. Serializability by locking. J. ACM 31, 2 (Mar. 1984), 227–244.

[203] YU, H., AND VAHDAT, A. Design and evaluation of a continuous consistency model for

replicated services. In Proceedings of the 4th USENIX Symposium on Operating Systems

Design and Implementation - Volume 4, OSDI ’00.

[204] ZHANG, I., SHARMA, N. K., SZEKERES, A., KRISHNAMURTHY, A., AND PORTS, D. R. K.

Building consistent transactions with inconsistent replication. In Proceedings of the 25th

244

http://en.wikipedia.org/wiki/Wikipedia:Conflicting_sources
http://en.wikipedia.org/wiki/Wikipedia:Conflicting_sources

Symposium on Operating Systems Principles (New York, NY, USA, 2015), SOSP ’15, ACM,

pp. 263–278.

[205] ZHANG, Y., POWER, R., ZHOU, S., SOVRAN, Y., AGUILERA, M. K., AND LI, J. Transaction

chains: Achieving serializability with low latency in geo-distributed storage systems. In

Proceedings of the 24th ACM Symposium on Operating Systems Principles, SOSP ’13, pp. 276–

291.

[206] ZHENG, W., DAVE, A., BEEKMAN, J. G., POPA, R. A., GONZALEZ, J. E., AND STOICA, I.

Opaque: An Oblivious and Encrypted Distributed Analytics Platform. In USENIX Symposium

on Networked Systems Design and Implementation (NSDI) (2017).

245

	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	The cloud as a black-box
	Semantic challenges
	Performance opportunities

	Contributions
	Thesis Overview

	Chapter Correctness Background
	Transactions
	Isolation
	The beautiful doctrine of serializability
	The gritty reality of serializability
	Living on the edge: weak isolation and anomalies
	Formalising weak isolation

	But what about distributed system consistency?
	Consistency Anomalies
	Issues with current formalisms

	Chapter A new model of isolation
	A State-based Model
	Towards a new formalism
	Model Overview
	Definitions

	Formalising Isolation
	Benefits of a state-based approach
	Minimizing the intuition gap
	Removing implementation artefacts
	Identifying performance opportunities

	Related work
	Limitations
	Conclusion

	Chapter Extending our model to consistency
	A State-based Model
	A new model for consistency
	From Session Guarantees to Causal Consistency
	Limitations
	Conclusion

	Chapter Simplifying weak consistency with client-centric forking and merging
	The gap between causality and reality
	Bridging the gap: branches
	State branching and merging
	Weak consistency end-to-end
	System Goals

	TARDiS Architecture
	Using TARDiS
	Interface
	Coding with TARDiS

	Design and Implementation
	Basic Operation
	Merge Transactions
	Garbage Collection
	Replication
	Fault Tolerance and Recovery
	Implementation notes

	Evaluation
	Microbenchmarks
	Applications

	Related Work
	Limitations
	Conclusion

	Chapter Oblivious transactions through client-centric serializability
	Threat and Failure Model
	Towards Private Transactions
	Security for Isolation and Durability
	Performance/functionality limitations
	Introducing Obladi

	Background
	System Architecture
	Proxy Design
	Concurrency Control
	Data Handler
	Reducing Work
	Configuring Obladi

	Parallelizing the ORAM
	Durability
	System Security
	Ensuring Data Integrity in Obladi
	Implementation
	Evaluation
	End-to-end Performance
	Impact of Epochs
	Durability

	Related Work
	Limitations
	Conclusion

	Chapter Conclusion
	Other Work
	Acknowledgements
	Appendix
	Equivalence to Adya et al.
	Adya et al. model adya99weakconsis summary
	Serializability
	Snapshot Isolation
	Read Committed
	Read Uncommitted

	Equivalence to read-atomic
	Bailis et al. bailis2014ramp model summary
	Read Atomic

	Equivalence to ANSI, Strong and Session SI
	Berenson/Daudjee et al. berenson1995ansi,daudjee06lazy model summary
	ANSI SI
	Strong Session SI
	Strong SI

	Equivalence to PC-SI and GSI
	Elnikety et al. pedone06gsi model summary
	Generalized Snapshot Isolation
	Prefix-consistent Snapshot Isolation

	Equivalence to PL-2+ and PSI
	Cerone et al. cerone2015framework's model summary
	PL-2+
	PSI

	Hierarchy
	Adya SI PSI
	ANSI SI Adya SI
	Strong Session SI ANSI SI
	Strong SI Strong Session SI

	Causality and Session Guarantees
	Formal Security
	Ideal Functionality
	Security Lemmas
	Proof of Security

	Bibliography

